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Introduction

We are interested in solving linear seismic inverse problems of the form

dϵ = Lm+ ϵ,

• dϵ ∈ Rm: data vector

• m ∈ Rn: earth model or unknown signal

• ϵ: unknown data error (the noise)

• L : Rn → Rm: linear forward operator that maps m to d
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Introduction

• Seismic inversion is severely ill-posed due to a non-trivial null space of the forward
operator.

• Many solutions can fit the acquired data equally well.

• m = L−1dϵ is not possible.

A simple unique solution: m∗ = L†dϵ

• Enjoys data consistency: Lm∗ = dϵ

• No assumption about the null space component → poor solution for ill-posed
problems.

• We can use regularization.
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Learning the prior knowledge directly from data

Learned post-processing approach
Improve an initial reconstruction m∗ with a model-to-model mapping DNN Λθ(m

∗),
typically by means of residual architectures (learn a perturbation, don’t learn the physics):

Λθ(m
∗) = (In +Nθ)(m

∗)
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Learning the prior knowledge directly from data

Learned post-processing approaches generally cannot preserve data consistency.
Let’s assume m∗ = L†dϵ. Then:

LΛθ(m
∗) ̸= dϵ

Null space networks

• Akin to learned post-processing approach Λθ(m
∗) = (In +Nθ)(m

∗).

• Residual architecture with a twist: after the last weight layer, incorporate projection
onto the null space PN such that LPN (m) = LmN = 0. Then:

Λθ(m
∗) = (In + PN ◦Nθ)(m

∗) (1)

• Preserve data consistency in the sense that

LΛθ(m
∗) = L(In + PN ◦Nθ)(m

∗) = LL†dϵ + 0 = dϵ (2)
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Null space learning

Null space networks solution

m∗
NS = L†dϵ + PN (Nθ(L

†dϵ))

(train Nθ by minimizing error between m and m∗
NS)

• Enjoys global data consistency, i.e. Lm∗
NS = dϵ

• Only works for the noise-free case (ϵ = 0):noise may limit the ability to predict the
null space component from noisy measurements.

• Only denoises in the null space (no denoising capability in the range component
R(L†))

• Deep Decomposition Learning: extends null space learning by attaching a
complementary network to act as a denoiser on the range of the pseudoinverse.
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Range - Null space decomposition

m = mR +mN = PR(m) + PN (m)
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Range - Null space decomposition

m = mR +mN = PR(m) + PN (m)

By definition, these two components satisfy, respectively,

mR = L†dϵ = L†Lm+ L†ϵ,

and
LmN = 0.

The two orthogonal projections are defined as:

PR = L†L,

and

PN = In − L†L.
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Deep decomposition learning

dϵ = Lm+ ϵ

Based on this fragmentation, we can express the ideal reconstruction as

m∗ = L†dϵ − L†ϵ+mN .

Deep decomposition learning attempts to solve above equation with a trained estimator
Λ : Rm → Rn defined as

Λ(dϵ; θ1, θ2) = L†dϵ + PR ◦ Fθ1 ◦ L†dϵ + PN ◦Nθ2 ◦ (L†dϵ + PR ◦ Fθ1 ◦ L†dϵ),
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dϵ = Lm+ ϵ

Based on this fragmentation of the model, we can express the ideal reconstruction as

m∗ = L†dϵ − L†ϵ+mN .

Deep decomposition learning attempts to solve above equation with a trained estimator
Λ : Rm → Rn defined as

Λ(dϵ; θ1, θ2) = L†dϵ+PR ◦ Fθ1 ◦ L†dϵ + PN ◦Nθ2 ◦ (L†dϵ+PR ◦ Fθ1 ◦ L†dϵ),

Λ(dϵ; θ) = (I+ PN ◦Nθ)(L
†dϵ) → Standard null space network
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Deep decomposition learning

Substituting L† by a regularized initial approximation L†
k such that:

m∗
TSVD = L†

kdϵ =

k∑
i=1

uT
i d

σi
vi

we can train the estimator Λ(di
ϵ; θ1, θ2) as:

argmin
θ1,θ2

1

N

N∑
i=1

||mi − Λ(di
ϵ; θ1, θ2)||22 + λ1

N∑
i=1

||LFθ1(L
†
kd

i
ϵ)− ϵi||22 + λ2||θ2||22,
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i=1

||LFθ1(L
†
kd

i
ϵ)− ϵi||22 + λ2||θ2||22,

• Supervised training on a synthetic dataset D = {(mi,di
ϵ)}Ni=1 using the MSE loss

• Prevents the denoising component from breaking the data consistency property

• Provides Nθ2 with robustness to small perturbations via weight regularization.
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Deep decomposition learning

Λ(dϵ; θ1, θ2) = L†dϵ + PR ◦ Fθ1 ◦ L†dϵ + PN ◦Nθ2 ◦ (L†dϵ + PR ◦ Fθ1 ◦ L†dϵ)
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Deep decomposition learning

Λ(dϵ; θ1, θ2) = L†dϵ + PR ◦ Fθ1 ◦ L†dϵ + PN ◦Nθ2 ◦ (L†dϵ + PR ◦ Fθ1 ◦ L†dϵ)
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Four-layered CNN denoising architecture.

torresba@ualberta.ca Deep null space regularization 19 / 35



Content

1 Introduction

2 Regularization via null space networks

3 Numerical experiments
Deconvolution
Crosswell traveltime tomography

4 Conclusions and future work

torresba@ualberta.ca Deep null space regularization 19 / 35



Content

1 Introduction

2 Regularization via null space networks

3 Numerical experiments
Deconvolution
Crosswell traveltime tomography

4 Conclusions and future work

torresba@ualberta.ca Deep null space regularization 19 / 35



Deconvolution

• Example 1: single-channel deconvolution.

• Example 2: 2D application to a real dataset.

s(t) = w(t) ∗ r(t) + ϵ(t)

dϵ = Lm+ ϵ

• L = UΣVT

• Initial estimator L†
k = VkΣ

−1
k UT

k

• mTSVD =
∑k

i=1
uT
i d
σi

vi
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Example 1: single-channel deconvolution

Training details:

• Additive Gaussian noise (SNR = 20%) added to the clean data.

• 5000 randomly generated reflectivity sequences

• 400 epochs of stochastic gradient descent with learning rate of 0.001
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Example 1: single-channel deconvolution

• Test sample Accuracy(dB) = 10× log10
||m||22
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Example 2: Applications to real data

• Seismic resolution and thin-bed reflectivity inversion (Chopra et al., 2006)
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Example 2: applications to real data

Training details:
• Additive Gaussian noise (SNR = 20%) added to the clean data.
• 5000 randomly generated reflectivity sequences
• 400 epochs of stochastic gradient descent with learning rate of 0.001
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Example 2: applications to real data

• Results for 2D data:
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Example 2: Applications to real data
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Example 3: Traveltime tomography

Linearized traveltime tomography dϵ = Lm+ ϵ.

Straight ray tomography does not take into account ray bending but can provide a good
quick first velocity model.
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Example 3: Traveltime tomography

Acquisition setup

• Transmission experiment: 128 sources and receivers on the right and left boundaries
of the domain, respectively.

• m is discretized in 128× 128 cells with 10 m grid spacing.

Training details:

• Additive Gaussian noise (SNR = 20%) added to the clean data.

• 1000 randomly generated training samples (slowness). 250 wuth salt bodies.

• 400 epochs of stochastic gradient descent with learning rate of 0.001
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Example 3: Traveltime tomography
• Test model
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Conclusions

Advantages

• Data consistency (the reconstruction is consistent with the measurement)

• Interpretable ML: deep learning is only used for inferring lost information.

• Physics-engaged: components of the solution are obtained by pseudoinverse and
orthogonal projections.

• Unlike traditional algorithms, this approach does not make any prior explicit
assumption on the solution.

Disadvantages

• Still a supervised approach (it learns from ground-truth models)

• Requires easy access to projections (examples where we can explicitly compute the
pseudoinverse).
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Conclusions

With the numerical applications we showed that:

• Learned null space regularization adds reasonable estimates from the null space while
naturally enforcing that the high-resolution prediction is consistent with the
low-resolution input.

• Implementing a deep decomposition architecture with TSVD helped produce clean
inputs for the efficient training of the null space network.
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Future work

Extension to bigger problems:

• Main ingredient in null space networks is access to the projection operators Pr and Pn

• Explicitly computing L† is prohibitive

Improve training of denoising component

• Adapt to specific types of seismic noise/artifacts

Learning without labels?

• Unsupervised and Semi-supervised learning

Uncertainty quantification

• Null space shutters (Deal and Nolet, 1996)
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