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Introduction

We are interested in solving linear seismic inverse problems of the form

d. =Lm + ¢,

d,. € R™: data vector
® m € R™: earth model or unknown signal

® ¢: unknown data error (the noise)

L :R” — R™: linear forward operator that maps m to d
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Introduction

® Seismic inversion is severely ill-posed due to a non-trivial null space of the forward
operator.

® Many solutions can fit the acquired data equally well.

e m = L~'d, is not possible.
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Introduction

® Seismic inversion is severely ill-posed due to a non-trivial null space of the forward
operator.

® Many solutions can fit the acquired data equally well.

e m = L~'d, is not possible.

A simple unique solution: m* = Lfd,

® Enjoys data consistency: Lm* = d.
® No assumption about the null space component — poor solution for ill-posed
problems.

® We can use regularization.
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Learning the prior knowledge directly from data

Learned post-processing approach

Improve an initial reconstruction m* with a model-to-model mapping DNN Ay(m*),
typically by means of residual architectures (learn a perturbation, don’t learn the physics):

Ag(m*) = (I, + Ny)(m”")
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Learning the prior knowledge directly from data

Learned post-processing approach

Improve an initial reconstruction m* with a model-to-model mapping DNN Ay(m*),
typically by means of residual architectures (learn a perturbation, don’t learn the physics)

Ag(m*) = (I, + Ny)(m”")
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Learning the prior knowledge directly from data

Learned post-processing approaches generally cannot preserve data consistency.
Let’s assume m* = Lfd,. Then:

LAg (m*) 75 d6
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Learning the prior knowledge directly from data

Learned post-processing approaches generally cannot preserve data consistency.
Let’s assume m* = Lfd,. Then:

LAg(m®) # d.
Null space networks

e Akin to learned post-processing approach Ag(m*) = (I,, + Np)(m*).

® Residual architecture with a twist: after the last weight layer, incorporate projection
onto the null space Py such that LPy(m) = Lmy = 0. Then:

Ag(m™) = (I, + Py o Ny)(m")

® Preserve data consistency in the sense that

LAg(m*) = L(I, + Py o Ng)(m*) = LL'd, + 0 = d.

Jualberta.ca
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Null space learning

Null space networks solution
myg = Lid. + Py(Ng(L'd,))

(train Ny by minimizing error between m and myg)
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Null space learning

Null space networks solution
myg = Lid. + Py(Ng(L'd,))

(train Ny by minimizing error between m and myg)

® Enjoys global data consistency, i.e. Lmy ¢ = d.

® Only works for the noise-free case (e = 0):moise may limit the ability to predict the
null space component from noisy measurements.

® Only denoises in the null space (no denoising capability in the range component
R(LT))
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Null space learning

Null space networks solution
mj g = LTd, + Py(Np(Ld,))

(train Ny by minimizing error between m and mjg)

® Enjoys global data consistency, i.e. Lmy ¢ = d.

¢ Only works for the noise-free case (¢ = 0):noise may limit the ability to predict the
null space component from noisy measurements.

® Only denoises in the null space (no denoising capability in the range component
R(LT))

® Deep Decomposition Learning: extends null space learning by attaching a
complementary network to act as a denoiser on the range of the pseudoinverse.
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Range - Null space decomposition
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Range - Null space decomposition
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Range - Null space decomposition

m=mpg+ my = Pg(m) + Py(m)

By definition, these two components satisfy, respectively,
mp = L'd, = L'Lm + L'¢,
and
Lmpy =0.
The two orthogonal projections are defined as:
Pp =L'L,
and

Py =1, - L'L.
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Deep decomposition learning

Based on this fragmentation, we can express the ideal reconstruction as
m* =L'd, — Lfe + my.
Deep decomposition learning attempts to solve above equation with a trained estimator

A R™ — R"” defined as

A(de;61,62) = Lid, + Pg o Fy, o Ld. + Py o Ny, o (L'd, + Pg o Fy, o L'd,),
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Deep decomposition learning

Based on this fragmentation of the model, we can express the ideal reconstruction as

m* =L'd, — Lfe + my.

Deep decomposition learning attempts to solve above equation with a trained estimator
A :R™ — R" defined as

A(de; 01, 6:) = Lid, + Py o Ny, o (Lfd, ),

A(de;0) = (I4 Py o Np)(L'd,) — Standard null space network
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Deep decomposition learning

Substituting LT by a regularized initial approximation L,TC such that:

k

* _ 1t _ )
mTSVD = Lkde = Z V;
i=1

we can train the estimator A(d; 61, 6) as

N
Arg min Z Im’ — A(d; 01, 05)][3 + A1 Y [[LFg, (LEdE) — €']]3 + o023,
1,02 =1
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Deep decomposition learning

Substituting LT by a regularized initial approximation L,TC such that:

k

T
. u; d
migyp = Lide =) Vi
i=1 "
we can train the estimator A(d%; 0y, 6;) as:
1 & : : N . .
AIg N 7 S lm’ = A(dL01,05)[3 + A D |LFg, (L) — €3 + Aol|62][3,
1,02 i=1 i=1

e Supervised training on a synthetic dataset D = {(m‘,d?)}Y, using the MSE loss
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Deep decomposition learning

Substituting LT by a regularized initial approximation L,TC such that:

k

* _ 1t _ )
mTSVD = Lkde = Z V;
=1

we can train the estimator A(d; 61, 6) as

N
Arg min Z [Im’ — A(d; 01, 05)][3 + A1 D [[LFg, (LLd]) — €'[]3 + Aa[02]3,
1,02 i=1

® Supervised training on a synthetic dataset D = {(m‘,d?)}Y, using the MSE loss

® Prevents the denoising component from breaking the data consistency property
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Deep decomposition learning

Substituting LT by a regularized initial approximation L,TC such that:

k

* _ 1t _ )
mTSVD = Lkde = Z V;
i=1

we can train the estimator A(d; 61, 6) as

N
Arg min Z [Im’ — A(d; 01, 05)][3 + A1 Y [[LFg, (LEdE) — €']]3 + o013,
1,02 =1

® Supervised training on a synthetic dataset D = {(m‘,d?)}Y, using the MSE loss
® Prevents the denoising component from breaking the data consistency property

® Provides Ny, with robustness to small perturbations via weight regularization.
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Deep decomposition learning
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Original U-net architecture




Deep decomposition learning

1 I 1 1 Output

Four-layered CNN denoising architecture.
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Deconvolution

e Example 1: single-channel deconvolution.

e Example 2: 2D application to a real dataset.

s(t) = w(t) «r(t) + e(t)
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Deconvolution

e Example 1: single-channel deconvolution.

e Example 2: 2D application to a real dataset.
s(t) = w(t) «r(t) + e(t)

d.=Lm+e¢
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Deconvolution

e Example 1: single-channel deconvolution.

e Example 2: 2D application to a real dataset.
s(t) = w(t) «r(t) + e(t)
d.=Lm+e¢
e L=UxVT

e Initial estimator L}, = V;, 2 1U7

k uld
® mrsyp = Zizl o Vi
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Example 1: single-channel deconvolution

Training details:
¢ Additive Gaussian noise (SNR = 20%) added to the clean data.
® 5000 randomly generated reflectivity sequences

® 400 epochs of stochastic gradient descent with learning rate of 0.001
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Example 1: single-channel deconvolution

¢ Test sample Accuracy(dB) = 10 x logy, ﬁlrgflrﬂ%“
2
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Example 1: single-channel deconvolution
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Example 2

e Seismic resolution and thin-bed reflectivity inversion (Chopra et al., 2006)
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Example 2: applications to real data

Training details:
¢ Additive Gaussian noise (SNR = 20%) added to the clean data.
® 5000 randomly generated reflectivity sequences
® 400 epochs of stochastic gradient descent with learning rate of 0.001
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Example 2: applications to real data

® Results for 2D data:
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Example 2: Applications to real data
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Example 3: Traveltime tomography

Linearized traveltime tomography d. = Lm + e.
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Example 3: Traveltime tomography

Linearized traveltime tomography d. = Lm + e.

Straight ray tomography does not take into account ray bending but can provide a good
quick first velocity model.
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Example 3: Traveltime tomography

Acquisition setup

® Transmission experiment: 128 sources and receivers on the right and left boundaries
of the domain, respectively.

® m is discretized in 128 x 128 cells with 10 m grid spacing.

Training details:
¢ Additive Gaussian noise (SNR = 20%) added to the clean data.
® 1000 randomly generated training samples (slowness). 250 wuth salt bodies.

® 400 epochs of stochastic gradient descent with learning rate of 0.001

torresba@ualberta.ca Deep null space regularization



veltime tomography
Test model
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Conclusions

Advantages

Data consistency (the reconstruction is consistent with the measurement)
Interpretable ML: deep learning is only used for inferring lost information.

Physics-engaged: components of the solution are obtained by pseudoinverse and
orthogonal projections.

Unlike traditional algorithms, this approach does not make any prior explicit
assumption on the solution.

Disadvantages

Still a supervised approach (it learns from ground-truth models)

Requires easy access to projections (examples where we can explicitly compute the
pseudoinverse).
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Conclusions

With the numerical applications we showed that:
® Learned null space regularization adds reasonable estimates from the null space while
naturally enforcing that the high-resolution prediction is consistent with the
low-resolution input.

® Implementing a deep decomposition architecture with TSVD helped produce clean
inputs for the efficient training of the null space network.
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Future work

Extension to bigger problems:
e Main ingredient in null space networks is access to the projection operators P, and P,

e Explicitly computing L' is prohibitive
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Future work

Extension to bigger problems:
® Main ingredient in null space networks is access to the projection operators P, and P,

e Explicitly computing L' is prohibitive

Improve training of denoising component

e Adapt to specific types of seismic noise/artifacts
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Future work

Extension to bigger problems:

® Main ingredient in null space networks is access to the projection operators P, and P,
e Explicitly computing L' is prohibitive

Improve training of denoising component

e Adapt to specific types of seismic noise/artifacts

Learning without labels?

® Unsupervised and Semi-supervised learning
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Future work

Extension to bigger problems:

® Main ingredient in null space networks is access to the projection operators P, and P,

e Explicitly computing L' is prohibitive

Improve training of denoising component

e Adapt to specific types of seismic noise/artifacts

Learning without labels?

® Unsupervised and Semi-supervised learning

Uncertainty quantification
e Null space shutters (Deal and Nolet, 1996)
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