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Introduction

a)

Number
of
sources

N

b)

Number
of
sources
s

Number of receivers Ny

+*VVVVVVVVVVVVVVVVVVVYVY

*VVVVVVVVVVVVVVVVVVVY

*VVVVVVVVVVVVVVVVVVYVY

*VVVVVVVVVVVVVVVVVVVY

KXVYVVVVVVVVVVVVVVVVVYVY

Number of receivers ny

v

A

VvV V V VVV V V VVVY

4VV V

V VVV V. V VVVY

VY Vv

V VVV V. V VVYVYY

Conventional survey

Optimal sensor placement

NP hard problem




Introduction

Compressive
sensing

A Seismic survey design

Machine

learning

Optimal sparse
sensing







Compressive sensing

d° —"Pd 4- il (1)
d” = TUs +n=0Os+n (2)

s’ = argmin ||s], , subject to ||d®*® — T®s||; < o (3)
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Compressive sensing




Compressive sensing

Which sparse transform one should adopt?

How to design the sampling scheme?

Which reconstruction algorithm should we choose?
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Optimal sparse sensing

Which sparse transform one should adopt?

How to design the sampling scheme?

Optimal sparse sensing '

Which reconstruction algorithm should we choose?

POD
basis

Least
squares
method
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Optimal sparse sensing

Geocentrism Heliocentrism

From: Malin Christersson
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Optimal sparse sensing
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Optimal sparse sensing
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Optimal sparse sensing

According to Eckart-Young theorem:

[ |
[
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The coefficients are:

A= |a a --- a (6)
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Optimal sparse sensing

d* =TU,a+n=0Oa+n (7)
Jobs T U a ® a
u B ﬂ B E u

Legend: I in the sampling matrix T represent
identity matrix with length equals to the time
samples per trace (N;).

<— Length equals N,
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Optimal sparse sensing

Identity matrixes in T align with
selected rows in the basis.

U/T! = QR 8)
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Optimal sparse sensing
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Optimal receivers selection
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A synthetic 2D velocity model of four dipping reflectors
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Optimal receive
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Optimal receivers selection

Time(s)

50 100 150
Receiver number

200

50 100 150
Receiver number

200

50 100 150
Receiver number

200

24



Optimal receivers selection
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Optimal
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Optimal sources selection
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Deblending Noise Elimination
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Seismic Acquisition Design Application
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Sleipner Model
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Two set of shot gathers generated by finite-difference modelling for both the base model and the monitor model;



Difference Panel
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Optimal Reconstruction

Time(s)
Time(s)

5
100 200 300 100 200 300
Receiver number Receiver number

100 200
Receiver number

300

100 200
Receiver number

300

36



37



Conclusions

In this study, we adopted the optimal sensor selection method for seismic
acquisition design.

POD is used to extract the basis from the training dataset, and optimal acquisition
geometry is determined via the QR decomposition with column pivoting.

| tested the method on optimal receivers and sources selection examples, and
synthetic data example demonstrates that using fewer sensors when given the
condition that the dataset is low rank, the reconstructed result can be promising.
Further, random or erratic noise, can be removed simultaneously with
reconstruction.

The time-lapse example results reveal that a previously obtained dense base
survey can optimize the monitoring design.
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