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Summary

A fast algorithm for multiple removal based on the
Hyperbolic Radon Transform (HRT) is proposed. The
algorithm (Fast Hyperbolic Radon Transform (FHRT)) uses
a binary classification strategy to define areas of interest in
both data and model space. The main concept behind the
proposed algorithm is to shrink the computational domain
of the integrals (sums in the discrete case) that define the
forward and adjoint Radon operators.  The latter will
substantially decrease the computational cost of inverting
the Hyperbolic Radon operator using the method conjugate
of gradients.

Synthetic and field data examples are utilized to access the
feasibility of the proposed algorithm at the time of using
the Hyperbolic Radon transform for de-multiple.
   
Introduction

The key idea in Radon based de-multiple is to map the
CMP gather to a new domain where seismic reflections
collapse to point-like events and, therefore, the
identification and filtering of multiples become an easy task.
Several authors have investigated the application of the
Parabolic Radon transform to multiple removal (Hampson,
1986, Yilmaz, 1989). One advantage of the Parabolic
Radon Transfom is that the Radon operator can efficiently
be inverted in the frequency domain using fast solvers
(Kostov, 1990, Sacchi and Porsani 1999). On the other
hand, the Hyperbolic Radon transform is a time variant
mapping that cannot operate in the frequency domain.
Inverting the Hyperbolic Radon operator entails the
inversion of a large sparse linear operator that, in general,
leads to very inefficient de-multiple algorithms. The latter
is an important impediment at the time of using Hyperbolic
Radon de-multiple to process large data sets (Qiang, 1999).

As we have already mentioned, the Hyperbolic Radon
panel is obtained by solving a large inverse problem. The
latter is accomplished via the method of conjugate
gradients (CG). The CG algorithm requires the
specification of the forward and adjoint Hyperbolic Radon
operators. It can be shown that an important part of the
computational cost of the inversion hinges on the iterative
application of the forward and adjoint operators. Reducing
the computational cost of the aforementioned operators is
the goal of this paper.

We have developed a method capable of shrinking the
computational domain of the forward and adjoint

Hyperbolic Radon pair. Areas of interest in both the data
and the Radon panel are first identified and then, used to
speed up the computational cost of the forward and adjoint
Hyperbolic Radon operators. A similar method have been
proposed by Li et al. (1998) and Liu and Sacchi (1999) to
compress Kirchhoff migration operators. These researchers
have adopted matching pursuit and wavalet transform
algorithms to define “areas of interest” in data space. In this
case, migration algorithms were designed to “touch” only
data regions where significant energy exists.

Hyperbolic Radon Transform

The forward Hyperbolic Radon Transform is expressed by
the following mapping
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 The latter can be written down in vector form as follows

Lmd = , (2)

where ),( thd  indicates the CMP gather in offset-time

domain and ),( τvm the Radon panel in velocity-intercept
time space.  Similarly, the adjoint operator is defined as
follows:
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Notice that since L  is not a unitary operator
),(~),( ττ vmvm ≠ . It is clear that to recover ),( τvm

from ),( thd  an inversion procedure for equation (1) is
required. Equation (1) can be inverted using the method of
conjugate gradients (CG) (see, for instance, Strang, 1986).
The CG method constructs the solution that minimizes the
Euclidean norm |||| dLm −  via a sequence of steps

(iterations); in each iteration the operators L and 'L are
applied.
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A pseudo-code for L and L’

Below we provide a very simple algorithm to implement
the sums given by equations (1) and (3) (Claerbout, 1992;
Trad et al., 2002):
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Notice that this pseudo-code could be modified in order to
take into account an interpolation operator and its adjoint.
Moreover, one could also incorporate a wavelet shaping
operator. The latter can become important when inverting
high-resolution velocity gathers (Qiang, 1999). It is clear
that computing the forward and/or adjoint operator requires
a number of operations that is proportional to the size of the
input domain (CMP gather or Radon Panel). One way to
speed up the computation of operators (1) and (3) is by
defining areas of interest in the input space. Being the input
space the CMP gather when using the adjoint operator and
the Radon panel (velocity gather) when using the forward
operator.
  
By regions of interest, we understand areas where a
significant amount of signal exists and therefore a non-
negligible contribution to the sums given by equations (1)
and (3) is expected. Once these regions have been
identified, the pseudo-code for the forward operator will
contain the following loops:

....

:hhfor  h

R(v,τ(for  v,τ

maxmin=
∈

where ),( τvR is the region of interest associated to the
input Radon panel.  Similarly, a pseudo-code for the adjoint
operator will contain the following loops:

....

:vvfor  v

R(h,τ(for  h,τ

maxmin=
∈

where, now, ),( τhR  denotes the region of interest in data
space (CMP gather).

Defining regions of interest

To generate areas of interest, a fast classification procedure
based on the binary image method is developed. Regions of
interest for the Radon panel are found by defining first a

threshold value mλ . Then, the regions of interest are given

by the pairs )τ,v(  such that .|),(| mvm λτ > This analysis

is carried out before applying the forward operator in each
CG step. Similarly, the regions of interest for the adjoint
operator are obtained by defining areas of concentration of
energy at near offset traces. The latter defines the set of
intercept times at which reflections occur. It is clear that
this procedure will change the definition of the
adjoint/forward pair from iteration to iteration, and one
might think that this would affect the convergence of the
CG method. Fortunately, we have found that this is only
true when we attempt to use a very small threshold in an
attempt to further speed up the computation of the sum
given in equation (1).

Numerical Examples

We illustrate the performance of the proposed method with
two examples. First, we analyze a synthetic example. Then,
we examine a marine data example from the Gulf of
Mexico.
  
Figure 1 portrays the synthetic CMP gather that we have
used to test our algorithm. The synthetic CMP gather
consists of 92 traces of 1751 samples per trace. Notice that
the algorithm can also be applied to super-CMP gathers
(ensemble of adjacent CMP gathers). We first use the least-
squares Hyperbolic Transform to generate a Radon panel;
the filtered Radon panel was used to generate a model of
multiples. The latter was subtracted from the original data
to generate the model of primaries. The de-multiple data set
in Figure 2 (Left) was computed using the conventional
least squares Hyperbolic Radon transform; in other words,
no attempt to define regions of interest was made.  Figure 2
(Right) portrays the data after de-multiple with the
proposed algorithm. Table 1 reports the running times for
the original Hyperbolic least-squares Radon transform
(HRT) and for the proposed algorithm (Fast HRT). These
results were obtained using a sequential f77 code
implemented in a Linux PC running at 450 MHz.

The second example is a marine data set from the Gulf of
Mexico. These data have been provided by Western
Geophysical to several academic and industrial research
groups to test new multiple attenuation technologies (see
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the special issue of The Leading Edge of January, 1999).
This data set has severe multiple contamination problems.
Multiple reflections are more problematic than usual
despite the fact that they are weak; this is because the
primaries below the salt body are weak as well. Therefore,
removing the multiples without corrupting the primaries is
a critical concern at the time of processing these data.
Figure 3 (Left) portrays the stacked section before de-
multiple. Figure 3 (Right) illustrates the stacked section
after de-multiple using the fast Hyperbolic Radon
transform proposed in this paper. The processing time for a
single CMP gather for the HRT and fast HRT algorithms
are provided in Table 1. In both cases, the same level of
misfit was achieved after about 11 CG iterations. In general,
we have noticed a saving of an order of 2 to 3 times with
respect to the conventional least squares Hyperbolic Radon
transform.
  

Table 1 Comparison of computing times.

Dataset
Original HRT

 (sec)
Fast HRT

 (sec)
Synthetic Data 164 52

Gulf of Mexico 113 43

Conclusions

A fast de-multiple algorithm based on the least squares
Hyperbolic Radon transform was proposed. The key idea of
the suggested algorithm is to define regions of interest to
speed up the computation of the sums that define the
forward and adjoint Radon operators.

Tests with synthetic and real data showed an important
improvement with respect to the classical least-squares
implementation of the Hyperbolic Radon transform using
CG. It is important to stress, however, that more research
needs to be done to develop Hyperbolic Radon de-multiple
algorithms capable of competing in time performance with
the time invariant Parabolic Radon transform.
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Figure 3.  Left: Stacked section from the Gulf of Mexico. Right:
Stacked section after fast HRT de-multiple.

Figure 1. Syntethic CMP gather.

 
Figure 2. CMP gather after Hyperbolic Radon de-multiple.
Left: least squares Hyperbolic Radon  transform (HRT).
Right: fast HRT.
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