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Summary

GPR is a powerful tool for geophysical near-surface in-
vestigations. It is capable of delivering a high-resolution
image of the subsurface structure. However, if the under-
ground consists of many reflecting events, the analysis
and interpretation of the data can be very complicated.
In this paper, we report on a new image decomposition
technique that is based on Local Radon transforms.
This technique is a parametric local dip-decomposition
method that allows us to extract features or reconstruct
GPR data. After reconstructing the data with only a
subset of dips, the interpretation of the data improves
substantially. We demonstrate the capabilities of this
technique at GPR data acquired at the highly fractured
summit of Turtle Mountain (Alberta/Canada).

Introduction

Ground penetrating radar (GPR) has become a fre-
quently employed technique in geophysical near surface
investigation. GPR data are an image of the dielectric
structure of the subsurface with high vertical and
horizontal resolution. It has therefore gained popularity
for near-surface studies in many civil engineering and
environmental applications (e.g., Zeng and McMechan,
1997) as well as archaeological studies (e.g., Goodman
et al., 1995), among others. However, the analysis of
GPR images can be complicated in highly structured
media, where numerous events may overlap, and hamper
the interpretation. An example for that are the GPR
data that were acquired at Turtle Mountain in Alberta,
Canada, to map bedding planes and fractures for a slope
stability estimation project (Theune et al., 2005). The
unmigrated data are shown in Fig. 1.

The highly fractured nature of the rock is apparent in
the GPR image through many reflectors of various dips.
There are several reflectors that dip ”downwards” with
increasing distance along the profile. Examples of this
reflector pattern are indicated by black arrows in Fig. 1.
A second set of reflectors, less in number and reflected
amplitude strength, is present between 0 and 40 m profile
length with ”upward” dips along the survey line (green
arrows). However, numerous other events complicate the
analysis of the image. The situation becomes worse after
migration (Fig. 3a).

Different techniques have been applied to improve the im-
age of quality: Cagnoli and Ulrych (2001) applied singular
value decomposition, and Nuzzo and Quarta (2004) used
wavelet and τ−p (or linear Radon) transforms, to mention
a few. The chief problem of many techniques is that they
operate globally on the entire data set, thus they may not
represent local features very well. For example, the per-

formance of Radon transforms breaks down if there is a
mismatch between the transform’s integration path and
the traveltime signature in the data.

In this paper, we explore the potential of Local Radon
transforms to achieve dip-dependent image decomposition
of GPR data. Radon transforms have a long history in
seismic data processing to remove coherent noise such as
ground roll or multiples (Ulrych et al., 1999). In addition,
Radon transforms are also often used in image analysis for
feature extraction. Here, we employ the combination of
the concepts of generalized convolution and Local Radon
transforms, as described by Sacchi et al. (2004), to en-
hance and extract features in GPR images.

Methodology

Radon transforms can be interpreted as a ”search for
coherent events” in seismic or GPR data sets. In a
typical seismic application, data amplitudes are summed
along certain integration paths, which are usually either
linear, parabolic, or hyperbolic and extend over the
entire offset of the data. For example, a linear coherent
event such as ground roll will have a large summation
value for a particular search direction.

The principal idea of Local Radon transforms is to use
a short summation path that is applied locally at each
x− t-point in the data set. In our application, we employ
a linear Local Radon operator of the form that is given
in the Fourier domain by (Sacchi et al., 2004)

b̂(x, ω, p) = ŝ(ω)h(x)eiωp·x, −`0 ≤ x ≤ `o. (1)

In this expression, ŝ(ω) is ideally the real wavelet; in re-
ality, the wavelet is often unknown. Therefore, we choose
an approximation to the wavelet instead. The variable
h(x) is a spatial taper that gives larger weights to the
center of the operator, and p · x is the linear integration
path with dip p. `0 defines the operator half-width. After
applying Fourier transform, we obtain the operator in the
data domain,

b(x, t, p) = F−1[b̂(x, ω, p)]. (2)

This operator is now applied at every point (x0, t0) of
the data set. In doing so, we obtain a measure for the
local data coherence at each data point for the operator
b(x− x0, t− t0, p). We denote this measure by fp(x0, t0).
Applying this operation to the entire data results into a
new set of data dp(x, t) that we call the p-mode:

dp(x, t) =
∑

x0

∑

t0

fp(x0, t0) b(x − x0, t − t0, p). (3)
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Fig. 1: Unmigrated GPR data acquired at Turtle Mountain.

This last equation can also be written in matrix form as
Dp = Fp ⊗ B(p). The last expression is referred to as
generalized convolution. Sacchi et al. (2004) interpreted
the parameter Fp as shaping filters that transform the
operators B(p) into the data Dp. These filter panels are
determined from the data by minimizing the following
cost function J ,

J = ||D −

Np∑

p=1

Fp ⊗ B(p)||22. (4)

Determining Fp from the data is analogous to finding the
deconvolution operator. Hence, we may call this oper-
ation generalized deconvolution. The cost function J
is minimized using the method of conjugate gradients.
The inner products in the algorithm are efficiently imple-
mented in the Fourier domain with FFTs.

After determining the filters Fp, we can construct a syn-

thetic image of the data using all dips p, D̃, by generalized
convolution. Another possibility is to synthesize a data
set D̄ using only a subset Sp of the available dips,

D̄(x, t) =
∑

p∈Sp

Fp(x, t) ⊗B(x, t, p) (5)

Such an operation may be called generalized filtering. The
selection of the subset of modes can be chosen such that
linear events of a particular dip are removed or retained.
Removing linear events such as ground roll would be a
typical application in seismic data processing. In the ex-
ample introduced in the following section, we synthesized
several data sets D̄ with narrow dip ranges to isolate re-
flectors in the data.

A workflow for dip-dependent image decomposition may
look like:

1. We start with data after initial processing consist-
ing of topographic corrections, amplitude gain, and
bandpass filtering.

2. Then, we migrate the data using a constant velocity
Kirchhoff migration algorithm. The resulting image
will be used to test the data reconstruction.

3. Using generalized deconvolution, we decompose the
image into Np modes with different dips.

4. Now, we reconstruct the data using generalized con-
volution. This data set should be close to the original
data.

5. Alternatively, we can use only a subset of the avail-
able data modes to extract certain dips in the data
(i.e., generalized filtering). We can then migrate the
new data set to visualize the chosen dips and com-
pare them with the original data.

The chart in Fig. 2 shows this workflow symbolically.

Example

We applied generalized deconvolution to a GPR data
set that was acquired at the highly fractured summit of
Turtle Mountain in Alberta, Canada. The main purpose
of these measurements was to detect fractures and to
map bedding planes for geotechnical slope stability stud-
ies. There are two dominating reflector patterns in the
data that we have indicated by black and green arrows,
respectively. However, due to the presence of dense
fracture systems that often overlap, the interpretation of
the migrated data is complicated.

To improve the image analysis, we decomposed the
data into 25 modes, where the dip p varied between
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Fig. 2: Flow diagram for generalized deconvolution and filtering.

−60.0 ns/m and 60.0 ns/m. Since the wavelet of the prop-
agating electro-magnetic wave is unknown, we approxi-
mated it by a Ricker wavelet with a central frequency of
50 MHz. Furthermore, we chose the aperture half-width
(`O) to be 1 m, which is equivalent to including 10 GPR
traces into the local operator. Finally, a Hamming win-
dow was used as the taper function h(x).

We then synthesized data sets using only narrow ranges
of dips that represent a reflector pattern in the data
and subsequently applied Kirchhoff migration. For the
data shown in Fig. 3b, we used only dips in the range
0.005 ns/m ≤ p ≤ +0.019 ns/m, and only dips with
−0.015 ns/m ≤ p ≤ 0.00 ns/m were considered in the
data synthesis shown in Fig. 3c. When comparing these
images with the migration results of the original data
(Fig. 3a), it is apparent that the interpretation of the
data is less ambiguous in the synthesized data. This is
especially evident in the details shown in Fig. 4. Fig. 4a
is a detail of the original data set after migration. For this
part of the data, it is very difficult to infer any features
from the data that may indicate coherent reflectors. This
is contrasted by the details shown in Fig. 4b and c that
clearly show coherent events in this section of the data
(Fig. 4b shows a detail from the migrated image in Fig.
3b, Fig. 4c is taken from Fig. 3c).

Conclusions

The concept of generalized convolution applied to Local
Radon transforms for dip dependent image decomposi-
tion allows for the extraction of desired features in GPR
data, in our case reflectors with a particular dip. After
partial image reconstruction using only a subset of the
available data modes Dp, coherent events, previously
superimposed by numerous reflectors with different dips,
are much easier to detect. The interpretation of the
data therefore improves significantly. We applied this
method to extract and enhance coherent features in the
data. However, other applications to remove coherent
features are possible as well. Examples are removal of
”system ringing” or strong off-side reflections from metal

constructions near a GPR survey area.
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Fig. 3: Top: Detail of the migration using the original data set. Bottom left: ”Upward” dipping image component, bottom right:
”downward” dipping components.

Fig. 4: a): Detail of the migration using the original data set (Fig. 3a), b): ”Upward” dipping image component (detail of Fig 3b); c):
”downward” dipping components (taken from Fig. 3c).


