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Summary

This paper presents a new scheme for high-resolution AVP
(Amplitude Variation with ray Parameter) imaging that
uses non-quadratic regularization. We pose migration
as an inverse problem and propose a cost function that
makes use of a priori information about the AVP common
image gather. In particular, we introduce two regulariza-
tion goals: smoothness along the offset ray parameter axis
and sparseness in depth. The latter yields high-resolution
AVP gathers with robust estimates of amplitude varia-
tions with ray parameter. An iterative re-weighted least-
squares conjugate gradients algorithm is used to minimize
the cost function of the problem. We test the algorithm
with synthetic data (a wedge model and the Marmousi
data set). Both tests show that the method helps to im-
prove the vertical resolution of inverted common image
gathers.

Introduction

It has been shown (Nemeth et al., 1999; Duquet et al.,
2000; Kuehl et al., 2002, 2003) that seismic resolution
can be improved by inverting the De-migration/Migration
kernel and by enforcing a regularization constraint, for ex-
ample, by introducing smoothness in the solution. How-
ever, as the results of these methods show, there are many
artifacts present in the solution due to operator mismatch,
wave-field sampling and noise.

One possible way to further enhance the resolution and
attenuate artifacts is by taking advantage of the solution
itself. Iteratively using the result as a model-space regu-
larization can lead to high-resolution artifact-free seismic
images. This idea has been used in many fields of signal
and image processing (Sacchi and Ulrych, 1995; Charbon-
nier, et al., 1997; Youzwhisen, 2001; Sacchi et al., 2003;
Trad et al., 2003; Downtown and Lines, 2004). In this
paper, we utilize a model-dependent sparse regularization
and a model-independent smoothing regularization to es-
timate common image AVP gathers. Model-dependent
sparse regularization is introduced via a non-quadratic
norm (Cauchy norm). Smoothing, on the other hand, is
implemented via a convolutional operator applied to AVP
common image gathers along the ray parameter direction.
This idea is used to develop an algorithm to simultane-
ously improve the structural interpretability and ampli-
tude accuracy of seismic images.

It is important to point out the similarities between our
algorithm and methods for impedance inversion based on
sparse spike deconvolution of post-stack cubes (Olden-
burg et al., 1983; Debeye and van Riel, 1990). In prin-

ciple, we are using very similar concepts to find a solu-
tion that exhibits pre-defined properties such as sparse-
ness, smoothness, etc. The main difference of our method
with respect to sparse spike inversion strategies is that our
operator is a one-way forward modeling operator rather
than a convolutional kernel. In addition, our inversion
results are in depth and the input data are prestack vol-
umes as opposed to time-domain reflectivity estimates
and post stack volumes, respectively. We believe that
the proposed method provides a unifying thread between
convolution-based sparse spike inversion and regularized
migration/inversion methods.

Methodology

One advantage of imaging via regularized inversion is that
we can make use of a priori information about the un-
known image model (Prucha and Biondi, 2002). Robust
inversion algorithms can be developed by properly hon-
oring such information. For example, Kuehl and Sacchi
(2002, 2003) showed that applying smoothing regulariza-
tion in the ray parameter axis can help to remove artifacts
introduced by missing information, aliasing, noise and op-
erator mismatch. The scheme is based on the minimiza-
tion of a quadratic cost function. In addition, Sacchi et
al. (2003) showed that higher resolution can be acquired
by solving a non-quadratic problem.

In this paper we reformulate the cost function for the
least-squares wave equation AVP/AVA migration prob-
lem as follows:

J(m) = [[W(Lm - )|} + ’F(SDm)), (1)
where m is the earth model in terms of AVP common
image gathers, L is a wave equation modeling operator
that transforms the model to prestack seismic data, d is
the seismic data, and W is a sampling matrix used to
accommodate missing data in the inversion. The mod-
eling operator is synthesized via the double-square-root
upward continuation operator with split-step corrections
in conjunction with a radial transform, which converts
ray-parameter-dependent reflectivity to local wavefields
(Kuehl and Sacchi, 2003). The operator D is a model-
independent high-pass filter that we use to penalize non-
smooth solutions, S is a stacking operator that converts
common image gathers to a stacked image, F' is a model-
dependent functional used to enforce sparseness, and A is
a trade-off parameter that control the amount of regular-
ization. By using the Cauchy norm (Sacchi and Ulrych,
1995), the sparse regularization operator F' is given by

F(m) = X7 1in(1 +m?/o2,) (2)
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where o2, is a scale parameter. By adopting a precon-
ditioning strategy (Wang et al., 2004), the cost function
can be expressed as follows

J = |[W(LPz — d)|[5 + \>F(Sz), (3)

where P is the preconditioning matrix, and z is the model
modified by the preconditioner. It is clear that the final
solution is m = Pz. The problem can be efficiently solved
by Iterative Re-weighted Least-squares (IRLS) (Scales
and Smith, 1994). The cost function at the k-th itera-
tion of the IRLS algorithm is given by

J(zi) = ||W(LPz — |3 + 1*||v/Qs—1Szill3,  (4)

where Q1 is a diagonal weighting matrix with diagonal
elements given by

1

L+ (ml " fomat)?

Q?fl = (5)

In the above expression, m*~! is the i-th element of the
vector Sz at the (k—1)-th iteration of IRLS. Finally, o%;;!
is a scale parameter, which is empirically set to some per-
centage of the maximum amplitude of the aforementioned
vector. Application of the IRLS method involves properly
choosing two hyper parameters, p and k=1 The latter
can be reduced to selecting one h{per—parameter, d, by
using the following expression: oyg' = & - maz(|ms|).
Based on our experience, pairs of § and p with a constant
product lead to similar solutions. In addition, large values
of § yield low-resolution results. Therefore in practice, we
usually set ¢ to a small value, for example, 0.025, and ad-
just the other hyper parameter p to obtain a satisfactory
fitting.

The algorithm can be summarized as follows:

e We initialize m = 0 and compute Q
e Minimize cost function (4) via the CG algorithm.

e Update the diagonal matrix Q , and restart the CG
algorithm.

The above procedure requires about 3-4 updates (itera-
tions) to obtain a solution that is sparse in depth and
smooth with respect to the ray parameter.

Synthetic examples: a wedge model
and Marmousi model

A 2-D synthetic data set was used to test the algorithm.
We prepared the data by applying the forward operator L
to a constant-velocity wedge model, which is represented
by a set of AVP common image gathers (CIGs). Ideally,
the inversion should be able to reconstruct the CIGs, and
the stacked image of these CIGs should clearly portray
the modeled structure.

We processed the data by three methods: conventional
migration (the adjoint of the modeling operator), pre-
conditioned least-squares migration (PLSM, Wang et al.,

2004) and the sparse least-squares migration (SLSM) pro-
posed in this paper. Figure 1 shows the stacked images.
The result of the adjoint is quite blurry since the algo-
rithm is not capable of reconstructing high frequencies not
present in the data. On the other hand, both PLSM and
SLSM are able to recover the structural images. In addi-
tion, the SLSM algorithm has produced a highly resolved
CIG. This is a consequence of using a sparseness con-
straint that attempts to collapse the band-limiting seis-
mic wavelet into a broad-band impulsive signal. Figure
2a-c displays a zoomed view of three common image gath-
ers produced by these methods. The PLSM method has
the ability of suppressing the sidelobes introduced by the
band-limited nature of the data. To complete our anal-
ysis, we have extracted the amplitude of the tilted event
and plotted AVA curves for the three methods in Figure
2d. We can observe that both PLSM and SLSM are able
to preserve the amplitude response of the reflection.

We also applied the algorithm to the Marmousi data set.
We randomly removed 70% of the traces to simulate a
sparse data acquisition. Artifacts are present in the com-
mon image gather obtained with the migration algorithm
(Figure 4a). These artifacts are substantially removed
from the images obtained with PLSM and SLSM. For
the purpose of comparison, we calculated the reflectiv-
ity series by using the true velocity and density model.
A side-by-side comparison confirms that the SLSM has
properly reconstructed the model. We observe again, as in
our previous examples, an important attenuation of ring-
ing arising from the band-limiting wavelet in the data.
To evaluate the amplitude preserving properties of our
algorithm, we have obtained AVA curves for the event
at depth z = 800m. The amplitude response obtained
via the migrated image is difficult to extract due to sam-
pling artifacts. The inverted AVA responses (PLSM and
SLSM), on the other hand, are in good agreement with
the theoretical value.

Conclusions and discussion

We have introduced an algorithm to obtain high resolu-
tion AVA gather. The algorithm removes spurious arti-
facts by constraining the solution to be smooth in the
ray-parameter direction and sparse in depth.

Our tests have shown that over-regularization leads to loss
of valuable information that is often contained in events
with small amplitudes. This problem is also encountered
in techniques for post stack inversion of seismic data that
are based on the sparse reflectivity assumption.
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Fig. 1: Stacked images by migration, PLSM and SLSM. (a)
Migration. (b) PLSM. (¢) SLSM
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Fig. 2: Common image gathers (CIGs) and AVA curves at z = 500m for the wedge model. (a) Migration. (b) Preconditioned least-
squares migration (PLSM). (c) Sparse least-squares migration (SLSM). (d) AVA curves for the first event. Red dashed: the theoretical
curve. Green: migration. Blue: PLSM. Black: SLSM.
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Fig. 3: Stacked images of the Marmousi data.(a) Migration. (b) PLSM. (¢) SLSM.
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Fig. 4: Common image gathers (CIGs) and AVA curves at z = 7500m for the Marmousi data. (a) Migration. (b) PLSM. (¢) SLSM. (d)
Zero-offset reflectivity from the density and velocity model. (e) AVA curves for the event at depth 800m.Red dashed: the theoretical
curve. Green: migration. Blue: PLSM. Black: SLSM.



