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SUMMARY

We use the Stolt migration/de-migration operator to eliminate
simultaneous source interference noise in common receiver
gathers. The Stolt operator is adopted to efficiently compute
the apex shifted hyperbolic Radon model. The problem of es-
timating the interference free data using the Stolt operator is
posed as a robust inversion problem. This inversion utilizes `1
misfit that is not susceptible to the erratic interferences in com-
mon receiver gathers. Synthetic and real data examples show
that a Radon transform designed via the Stolt operator can be
used to efficiently remove interferences.

INTRODUCTION

Simultaneous source acquisition permits sources to interfere
and therefore, it shortens the acquisition time (Garotta, 1983;
Beasley, 2008; Berkhout, 2008; Ikelle, 2010). This reduces
the acquisition cost and can increase subsurface illumination
by increasing source density. Moreover, Berkhout (2012) sug-
gested using different frequency bands for sources with differ-
ent spatial distribution to increase acquisition efficiency. Si-
multaneous source data can be synthesized from the non over-
lapping (conventional) sources by

b = Γ D, (1)

where b is the simultaneous source data, D represents the non-
overlapping sources data cube and Γ is the blending operator
representing the sources firing times (Berkhout, 2008). The
simultaneous source data b can be separated using the adjoint
of the blending operator which is known as pseudo-deblending

D̃ = Γ
T b, (2)

where D̃ is pseudo-deblended data cube. Pseudo-deblending
eliminates the delay of sources and decompose the long blended
data into its non-overlapping single source data components.
However, pseudo-deblending does not remove interferences
resulting from overlapping sources. These interferences are
difficult to handle in processing and imaging. Therefore, si-
multaneous source separation (also known as deblending) is
needed prior to the classical processing sequences. Simultane-
ous source separation methods can be broadly sorted into two
main categories. In the first category, deblending is posed as
direct inversion problem that minimize a cost function consist-
ing of data misfit and a regularization term. In these meth-
ods, the cost function estimates the coefficients of the data
in a transform domain. By choosing the appropriate domain,
seismic data can be focused and the sparsity assumption can
be used. Methods that belong to this category include sparse
Radon inversion (Moore et al., 2008; Akerberg et al., 2008),
iterative f − k filtering (Mahdad et al., 2011; Doulgeris et al.,
2012) and curvelet-based source separation (Lin and Herrmann,
2009; Wason et al., 2011). This inversion process can also be

posed via a projected gradient optimization algorithm (Abma
et al., 2010). A second category of simultaneous source sep-
aration methods estimate the data from the pseudo-deblended
data by de-noising techniques (Beasley et al., 1998; Beasley,
2008; Kim et al., 2009; Huo et al., 2012; Ibrahim and Sacchi,
2013, 2014). These methods use the incoherent structure of
interferences in gathers such as common receiver gathers (see
Figure 1) to separate the sources (Berkhout, 2008). Recently,
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Figure 1: Pseudo-deblended data cube showing the different
structure of interference noise.

Ibrahim and Sacchi (2013, 2014) used a robust Apex Shifted
Hyperbolic Radon Transform (ASHRT) to eliminate interfer-
ence noise in common receiver gathers of simultaneous source
data. ASHRT basis match the reflection hyperbolas in com-
mon receiver gathers that makes it very suitable for denoising.
However, the disadvantage of this approach is the high com-
putational cost of the ASHRT operator. Trad (2003) proposed
using the Stolt migration and de-migration operators (Stolt,
1978) to speed up the ASHRT for interpolation. In this work,
we adopt the Stolt operator approach to design a robust and
fast ASHRT that can be used to eliminate source interferences
in common receiver gathers.

THEORY

Robust Radon Transform
In order to remove interferences by utilizing their incoherency,
we need to use a suitable transform that utilizes signal co-
herency. Since seismic reflections can be represented by the



superposition of hyperbolic events, they can be decomposed
using hyperbolic Radon transforms. Transformations that use
hyperbolic basis are a variant of the classical Radon trans-
form (Radon, 1917). However, Radon transforms are non-
orthogonal transformations that complicate data recovery from
the model. Therefore, Thorson and Claerbout (1985) suggested
casting Radon transform as an inversion problem. Since the
inversion of Radon transform is an ill posed problem, a regu-
larization (penalty) term is included in inversion cost function
to estimate a stable and unique model. The general form of
Radon inversion cost function is

J = ‖d−Lm‖p
p +µ‖m‖q

q

where d is the data, m is Radon model, L is Radon operator
and µ is the trade off parameter. In this cost function p and q
represent the norms used to measure the misfit term ‖d−Lm‖
and the model regularization term ‖m‖, respectively. One pop-
ular model regularization is the `2 norm (Beylkin, 1987). The
advantage of `2 norm regularization is that the cost function
minimum can be easily estimated by solving linear system of
equations. However, `2 model regularization results in smooth
(low resolution) Radon model since it assumes that the model
coefficients follow Gaussian probability density function (Sac-
chi and Ulrych, 1995a). Since the Radon transform basis func-
tions match reflection hyperbolas, an ideal Radon model should
be sparse. This is the main idea of the high resolution (also
called sparse) Radon transforms (Thorson and Claerbout, 1985;
Sacchi and Ulrych, 1995a,b; Trad et al., 2003). Sparse Radon
transforms use a regularization term that enforce sparsity (`1
norm) and a quadratic misfit term in the cost function to es-
timate Radon model. However, the quadratic `2 misfit term
in the cost function is sensitive to erratic noise in the data.
For data contaminated with erratic noise, Claerbout and Muir
(1973) suggested replacing the conventional `2 misfit with `1
misfit function which is not sensitive to erratic noise in the data
(Guitton and Symes, 2003; Ji, 2006, 2012; Li et al., 2012). In
simultaneous source acquisition, it is common that high ampli-
tude reflections of one source interfere with the low amplitude
reflections of another source. Since the amplitude changes sig-
nificantly in seismic data, the interferences cause large misfits
(data outliers). Therefore, the Radon model estimated using
quadratic `2 misfit are not accurate because of the `2 misfit sen-
sitivity to outliers. Ibrahim and Sacchi (2013, 2014) showed
that the robust misfit is more effective in removing interfer-
ence noise while preserving the signal. In this work, we use
Iteratively Re-weighted Least Squares (IRLS) algorithm to es-
timate sparse and robust ASHRT model. For more details on
IRLS and robust Radon transform please refer to Ibrahim and
Sacchi (2014).

Stolt operator
Stolt (1978) introduced a migration operator that map the tem-
poral frequency ω to the vertical wavenumber kz in Fourier
domain for constant velocity using the dispersion relation

ω =V
√

k2
x + k2

x , (3)

where V is the migration velocity and kx is the horizontal wavenum-
ber. This is followed by scaling the amplitude by

S =V
kz√

k2
x + k2

z

. (4)

Therefore, the adjoint Stolt (migration) operator can be written
as a sequence of three operators

LT = FFT−1
kz,kx

MT
ω,kx

FFTt,x, (5)

and similarly the forward (de-migration) operator can be writ-
ten as

L = FFT−1
ω,kx

Mkz,kx FFTz,x, (6)

where, M is the f − k mapping operator and FFT is the Fast
Fourier Transform operator. Although the Stolt operator is de-
rived with constant velocity assumption, it can be used to con-
struct ASHRT model with multiple velocities. We can com-
pute the ASHRT model using several Stolt models with each
representing one plane inside the ASHRT model cube as shown
in Figure 2. The classical ASHRT operator has a computa-
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iterations is less than a defined tolerance value (tolerance = 0.01) or when it reach a maximum

number of iterations.

Finally, we also clarify that the forward Stolt operator is also convolved with a wavelet. This permits

representing a constant amplitude hyperbola via a single coefficient in Radon space. Consequently,

the adjoint operator is crosscorrelated with the wavelet. In other words, in our algorithm we

have replaced the operator L by CL and LT by LTCT . The operators C and CT correspond to

convolution and crosscorrelation with a known wavelet, respectively (Claerbout, 1992). We have

selected a zero phase wavelet with an amplitude spectrum similar to the amplitude spectrum of the

wavelet in the data.

1.4 Synthetic Data Example
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Figure 2: A Stolt model is a plane at constant velocity inside
the ASHRT model cube.

tional cost of O(na × nτ × nv × nx), where na,nτ ,nv and nx
are the number of apex locations, apex times, velocities and
offsets, respectively. Assuming that we scan for all possible
apex locations and times, then na = nx and nτ = nt . There-
fore, the ASHRT operator cost is O(n2

x×nt×nv). On the other
hand, the Stolt based ASHRT (without FFT zero padding) op-
erator has a cost that is of the 2D FFT of the data with size
nt ×nx followed by f − k mapping and inverse 2D FFT of the
model with size nt × nv × nx. Therefore, the total computa-
tional cost of an ASHRT implemented via the Stlot operator
is O([nt log2(nt)+nx log2(nx)][nv+1]+nv×nkx×nω ), where
nkx and nω are numbers of horizontal wavenumbers and tem-
poral frequencies, respectively. The cost of the f − k mapping
is proportional to nv×nkx×nω and we stress that the latter is
an upper limit, since in practice we only scan for a limited band
of positive frequencies and use the Fourier domain symmetry
to compute the negative frequencies. Figure 3a shows the com-
putational times of the ASHRT and the Stolt operator with and
without zero padding. Zero padding is sometimes required to
reduce artifacts associated with f − k interpolation. Figure 3b
shows the improvement in the computational time by using the



Stolt operator with and without zero padding compared to the
conventional ASHRT. It is clear that computing Radon model
via the Stolt operator can lead to a significant saving in compu-
tational cost. This is very important for processing large data
set with a large number of common receiver gathers.
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Figure 3: Comparing operators (a) Computation times. (b) The
Stolt operator computation times compared to the ASHRT.

EXAMPLES

We tested the robust the Stolt-based ASHRT with a synthetic
and a marine data set from the Gulf of Mexico. Both data sets
are blended numerically with a 50% time reduction compared

to the conventional acquisition. The blending scheme repre-
sents one source firing with random delays while the receivers
are at fixed locations. For each of the two data sets, the blended
data is initially separated using the pseudo-deblending opera-
tor. Then each common receiver gather is de-noised using ro-
bust inversion. Figure 4 and figure 5 show the results of the
synthetic and real data examples, respectively. The quality of
the recovered data is measured using the following expression

Q = 10Log
‖doriginal‖2

2

‖doriginal −drecovered‖2
2
. (7)

The Q value for the recovered synthetic data cube is 22.01 dB
and for the real data cube is 11.11 dB.

CONCLUSION

We have implemented a Radon transform designed via the Stolt
operator to eliminate erratic incoherent noise that arises in com-
mon receiver gathers of simultaneous source data. We showed
that the Radon transform based on the Stolt operator can re-
move source interferences in common receiver gathers at a
computational cost that is substantially below the computa-
tional cost of the classical Radon transform. The Stolt operator
is a more computationally efficient approach to the computa-
tion of the apex shifted Radon transform. Since the Stolt op-
erator is implemented in f − k domain, it can be used in com-
bination with the non-uniform Fourier transform to interpolate
missing traces. Future work entails generalizing the problem
to the 3D shot distribution.

ACKNOWLEDGEMENTS

The authors are grateful to the sponsors of Signal Analysis and
Imaging Group (SAIG) at the University of Alberta. This re-
search was also supported by the Natural Sciences and Engi-
neering Research Council of Canada via a grant to MDS.



0.9

T
im

e 
(s

)

41
Receiver number

21
So

ur
ce
 nu

m
be

r
a)

0.9

41
Receiver number

21
So

ur
ce
 nu

m
be

r
b)

0.9

T
im

e 
(s

)

41
Receiver number

21
So

ur
ce
 nu

m
be

r
c)

0.9

41
Receiver number

21
So

ur
ce
 nu

m
be

r
d)

0.9

Ti
m

e 
(s

)

41
Receiver number

21
Sou

rce
 number

a)

0.9

41
Receiver number

21
Sou

rce
 number

b)

0.9

Ti
m

e 
(s

)

41
Receiver number

21
Sou

rce
 number

c)

0.9

41
Receiver number

21
Sou

rce
 number

d)

0.9

Ti
m

e 
(s

)

41
Receiver number

21
Sou

rce
 number

a)

0.9

41
Receiver number

21
Sou

rce
 number

b)

0.9

Ti
m

e 
(s

)

41
Receiver number

21
Sou

rce
 number

c)

0.9

41
Receiver number

21
Sou

rce
 number

d)

Figure 4: Synthetic data cube. (a) Original data . (b) Pseudo-
deblended data. (c) Data recovered by forward modelling the
Radon coefficients estimated via the robust Stolt p = 1 and
q = 1. (d) Difference between the recovered and the original
data cubes.
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Figure 5: Real data cube. (a) Original. (b) Pseudo-deblended.
(c) Data recovered by forward modelling the Radon coeffi-
cients estimated via the robust Stolt p = 1 and q = 1. (d) Dif-
ference between the recovered and the original data cubes.



REFERENCES

Abma, R., T. Manning, M. Tanis, J. Yu, and M. Foster, 2010,
High quality separation of simultaneous sources by sparse
inversion: 72nd Annual International Conference and Ex-
hibition, EAGE, Expanded Abstracts, B003.

Akerberg, P., G. Hampson, J. Rickett, H. Martin, and J. Cole,
2008, Simultaneous source separation by sparse Radon
transform: 78th Annual International Meeting, SEG, Ex-
panded Abstracts, 2801–2805.

Beasley, C. J., 2008, A new look at marine simultaneous
sources: The Leading Edge, 27, 914–917.

Beasley, C. J., R. E. Chambers, and Z. Jiang, 1998, A new look
at simultaneous sources: 68th Annual International Meet-
ing, SEG, Expanded Abstracts, 133–135.

Berkhout, A., 2008, Changing the mindset in seismic data ac-
quisition: The Leading Edge, 27, 924–938.

——–, 2012, Blended acquisition with dispersed source ar-
rays: Geophysics, 77, A19–A23.

Beylkin, G., 1987, Discrete Radon transform: Acoustics,
Speech and Signal Processing: IEEE Transactions on, 35,
162–172.

Claerbout, J., and F. Muir, 1973, Robust modeling with erratic
data: Geophysics, 38, 826–844.

Doulgeris, P., K. Bube, G. Hampson, and G. Blacquire, 2012,
Convergence analysis of a coherency-constrained inversion
for the separation of blended data: Geophysical Prospect-
ing, 60, 769–781.

Garotta, R., 1983, Simultaneous recording of several vibro-
seis seismic lines: 53rd annual international meeting: 53rd
Annual International Meeting, SEG, Expanded Abstracts,
308–310.

Guitton, A., and W. W. Symes, 2003, Robust inversion of seis-
mic data using the huber norm: Geophysics, 68, 1310–
1319.

Huo, S., Y. Luo, and P. G. Kelamis, 2012, Simultaneous
sources separation via multidirectional vector-median fil-
tering: Geophysics, 77, V123–V131.

Ibrahim, A., and M. D. Sacchi, 2013, Simultaneous source sep-
aration using a robust Radon transform: 83th Annual Inter-
national Meeting, SEG, Expanded Abstracts, 4283–4288.

——–, 2014, Simultaneous source separation using a robust
Radon transform: Geophysics, 79, V1–V11.

Ikelle, L., 2010, Coding and decoding: Seismic data: The con-
cept of multishooting: Elsevier Science. Handbook of Geo-
physical Exploration: Seismic Exploration.

Ji, J., 2006, CGG method for robust inversion and its applica-
tion to velocity-stack inversion: Geophysics, 71, R59–R67.

——–, 2012, Robust inversion using biweight norm and its
application to seismic inversion: Exploration Geophysics,
43, 70–76.

Kim, Y., I. Gruzinov, M. Guo, and S. Sen, 2009, Source sep-
aration of simultaneous source OBC data: 79th Annual In-
ternational Meeting, SEG, Expanded Abstracts, 51–55.

Li, Y., Y. Zhang, and J. Claerbout, 2012, Hyperbolic estima-
tion of sparse models from erratic data: Geophysics, 77,
V1–V9.

Lin, T. T., and F. J. Herrmann, 2009, Designing simultaneous
acquisitions with compressive sensing: 71st Annual Inter-

national Conference and Exhibition, EAGE, Extended Ab-
stracts, S006.

Mahdad, A., P. Doulgeris, and G. Blacquiere, 2011, Separation
of blended data by iterative estimation and subtraction of
blending interference noise: Geophysics, 76, Q9–Q17.

Moore, I., B. Dragoset, T. Ommundsen, D. Wilson, C. Ward,
and D. Eke, 2008, Simultaneous source separation using
dithered sources: 78th Annual International Meeting, SEG,
Expanded Abstracts, 2806–2810.
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