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SUMMARY

In this paper, we report an inversion algorithm based on sin-
gular spectrum analysis (SSA) that is capable of suppressing
the interferences generated by simultaneous source acquisi-
tion. We derive an iterative scheme that adopts the projected
gradient method to solve the source separation problem. The
projection operator is the SSA rank reduction filter that sup-
presses incoherent noise in the frequency-space domain. Con-
vergence of this algorithm can be achieved with appropriate
choice of step size and an initial starting point. We use syn-
thetic examples simulated with a data set from the Gulf of
Mexico to illustrate this method.

INTRODUCTION

Simultaneous source acquisition has been attracting much at-
tention because of the great economical potential it offers. In
the configuration of simultaneous source acquisition, instead
of firing one shot at a time and imposing large time intervals
between shots, several shots fire at close times (Beasley et al.,
1998). The major problem associated with this acquisition
design is the strong interferences caused by having seismic
events originating from more than one shot recorded by ar-
rays of receivers. Randomization of time delays would make
interferences appear incoherent in domains like common re-
ceiver gathers (Stefani et al., 2007). This fact further leads to
a variety of separation algorithms. Direct processing steps like
pre-stack time migration and stacking are considered sufficient
to suppress the overlaps in 3D acquisition (Krey, 1987; Stefani
et al., 2007). However, problems may rise when performing
amplitude sensitive analysis, such as AVO inversion and time-
lapse seismic monitoring. Coherent pass filters in τ− p, f − k
and f − x domains were developed to filter out incoherent in-
terferences (Akerberg et al., 2008; Moore et al., 2008; Huo
et al., 2009; Maraschini et al., 2012). Better separation was
achieved with inversion methods based on projecting the data
to other domains where the coherent constraints can be effec-
tively implemented (Abma et al., 2010; Mahdad et al., 2011;
Lin and Herrmann, 2009; Mansour et al., 2012).

In this paper, we present a method named iterative rank re-
duction (IRR) for separating simultaneously fired shots before
stacking. This method is basically an inversion method and
relies on the incoherency of overlaps in common receiver do-
main.

THEORY

Preliminaries

We use the matrix representation of seismic data presented by
Berkhout (2008), where data acquired from traditional acqui-

sition methods can be arranged into the so-called data matrix
D. Each row of D represents a shot record and each column
corresponds to a receiver gather. Then data acquired from si-
multaneous source acquisition Dobs can be expressed by

Dobs = ΓD , (1)

where Γ is the blending operator. This system of equations
is under-constrained as the signal received in each detector
contains information from multiple sources. The minimum
norm solution would exactly lead to the adjoint operator Γ∗

also called the pseudo-deblending operator. The latter implies
the process of shifting time delays back and decomposing the
blended shot into conventional shot gathers. Unfortunately,
we cannot recover the unblended shot without applying inter-
ference removal techniques.

Iterative Rank Reduction

Let’s consider Equation (1) as a linear projection. In addition,
we consider that the ideal data D can be represented via a low
rank matrix. As we will see this is not a good assumption, how-
ever, it will permit to develop the basic Iterative Rank Reduc-
tion algorithm which will be used to separate blended shots.
Our problem is to estimate D via the solution of the following
optimization problem

minimize J = ‖Dobs−ΓD‖2
2 s.t. Rank(D) = k. (2)

Equation (2) can be solved via singular value decomposition
(SVD). However, we can also adapt the classic Landweber it-
eration and solve the problem in an iterative framework as fol-
lows

xi+1 = Di−λ∇J

Di+1 = P(xi+1),
(3)

where P is an operator that projects data into a low rank ma-
trix. This can be effectively done utilizing SVD, Lanczos de-
composition or low rank matrix factorization techniques. The
gradient is given by

∇J = Γ
∗(ΓDi−Dobs) (4)

In each iteration, we minimize the misfit function by updat-
ing the current model solution along the gradient descent di-
rection. The solutions are then projected to a matrix of low
(known) rank. This algorithm, known as fixed point iterative
algorithm or singular value projection, has been discussed in
details with examples in matrix completion (Ma et al., 2011;
Jain et al., 2009). The convergence of this algorithm holds
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Simultaneous source separation

when the stepsize, λ < 2/σmax with σmax the maximum eigen-
value of the operator (Γ∗Γ). In expression (3) the operator P[x]
symbolized for instance rank reduction via the SVD.

Iterative Rank Reduction with SSA denoising

In our approach, we replace the constraint Rank(D) = k by
Rank(H) = k where H is the Hankel matrix computed from
spatial data at a given monochromatic frequency. In other
words, the low rank data constraint was replaced by a Cad-
zow filter also called the Singular Spectrum Analysis (SSA)
denosing method (Sacchi, 2009; Trickett and Burroughs, 2009;
Oropeza and Sacchi, 2011). SSA denoising can be expressed
by the following algorithm

Algorithm 1 Singular Spectrum Analysis (SSA) denoising:
Fssa

Inputs:
Data to denoise (preserve linear events): D
Size of subspace: k;

dω−x←Ft(D)
for each ω do

H← Hankel(dω−x)
Compute largest k singular values and associated singu-

lar vectors of H: Uk,Σk,Vk
Hk←UkΣkV H

k
dω−x

k ← averaging along antidiagonals of Hk
end for
D̂←F−1

t (dω−x
k )

return D̂: the SSA denoised data

SSA entails forming Hankel matrices from f − x domain data,
performing rank reduction and then recovering the data via
anti-diagonal averaging of the reduced-rank Hankel form. It
can be shown that SSA can preserve linear events and filter in-
coherent events (Sacchi, 2009; Trickett and Burroughs, 2009).
In addition, it is easy to show that for a data set composed of
the superposition of k dips, the Hankel matrix of the data is a
rank k matrix. If the data are contaminated with noise, the rank
of their associated Hankel matrix will increase and therefore,
rank reduction is an effective way of noise attenuation. One
way to exclude interferences caused by secondary sources is
by filtering in small windows of data in the common-receiver
domain with the SSA filter. By doing this, we are assuming
that the events are predictable along the spatial direction. Then
the rank constrained optimization problem can be reformulated
as follows

minimize J = ‖Dobs−ΓD‖2
2 s.t. Rank[H(D)] = k, (5)

where H represents projecting data to a Hankel structured ma-
trix. We adapt the solver used for Equation (2) by replacing the
SVD with SSA. Now P is a new projection operator that con-
tains the processes of sorting data into common receiver gath-
ers, windowing, SSA filtering and resorting data to common
source domain. The adapted iterative rank reduction method
is shown in Algorithm (2). The projection operator P is now
given by

P[x] = S∗
∑

i

FssaWiS[x] (6)

where S denotes sorting in common receiver gathers, Wi is the
localized t− x small i-th window in common receiver domain,
Fssa is the aforedescribed SSA denoising filter and S∗ means
sorting back to common source gathers after window patch-
ing. The window functions Wi are designed with overlaps that
honor a partition of unity

∑
i Wi = 1.

Algorithm 2 Iterative Rank Reduction with SSA denoising
Inputs:

Blending and its adjoint operator Γ and Γ∗

Observed blended data Dobs

Size of subspace k
Stopping criterion ε;
Initial stepsize λ0

Initialize:
D0 = Γ∗Dobs; i = 0;

repeat
λ = λ0/

√
i

xi+1← Di−λΓ∗(ΓDi−Dobs)
Di+1← P(xi+1)
i← i+1

until ‖Dobs−ΓD‖2
2 < ε

It is very difficult to prove the convergence of this algorithm
because the projection operator P[x] is non-convex. The solu-
tion to the iterative algorithm can be trapped into local minima
if the initial point and step size are not properly selected (Fazel,
2002). In this paper, a reasonable candidate for initial solu-
tion is the pseudo-deblended data. This is because the pseudo-
deblended data contain exactly the signals from an unblended
shot and it is actually very close to the true solution. Now the
problem becomes suppressing noise in the pseudo-deblended
dataset by performing iterative rank reduction. Convergence
can then be achieved with the nonsummable diminishing step
lengths, which is shown in Figure (1). In this example the step
size is decreased according to 1/

√
(iteration). We show the

misfit values between solution and observation in blended do-
main, as well as the differences with respect to the true solution
in unblended domain. The algorithm is comparatively effec-
tive as both curves reach convergence after about 20 iterations.
We can also let the rank increase with iterations. At early itera-
tions, we can apply harsh filtering to eliminate strong crosstalk
and gradually increase the rank to allow modeling details that
depart from the linear event model. This analogous to setting
the threshold schedule in projection-onto-convex sets regular-
ization and deblending methods (Abma et al., 2010).

EXAMPLES

We test the proposed algorithm with a 2D synthetic example
simulated from field dataset acquired in the Gulf of Mexico.
The spatial and temporal sampling intervals are set to be 4ms
and 87.5 feet. Each time we assume 5 shots that fire almost si-
multaneously and 16 supershots are generated. The firing time
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Simultaneous source separation
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Figure 1: Convergence of iterative rank reduction source sep-
aration algorithm. Blue line indicates the l2 norm of the dif-
ference between the blended observations and the synthesized
blended observation versus iteration. We also portray in blue
the difference between the unblended data and the true data
versus iteration.

are random. Figure (2) shows the spatial and temporal distri-
bution of sources in this acquisition design. Then we apply
the proposed algorithm to unblend the data for the whole vol-
ume. Figure (3) shows the results of the separation after 40
iterations for shot number 20. The interferences from simul-
taneously fired shots are effectively suppressed. We improve
the signal to noise ratio of the pseudo-deblended dataset from
0 dB to 7.78 dB. As a result, the unblended solution becomes
comparable with the true shot record. In this example the rank
parameter was variable with iteration number, the SSA filter
was run in overlapping windows in common receiver gathers
of size 100 time samples and 20 traces. The windows were
overlapped 20% in both time and space with Gaussian tappers
designed to satisfy a partition of unity.

We have tested the algorithm under diverse parameters and
noticed that small windows are needed when operating with
small subspaces. Increasing the rank of the SSA filtering with
progressing iterations helps to avoid having harsh filters all
way in the optimization process. A strategy that have work
for us entailed starting with k = 3 and increased the rank by
one unit every 5 iterations. In short, the final rank after 30
iterations was 9.

CONCLUSION

This paper illustrates an iterative rank reduction algorithm based
on singular spectrum analysis for separating simultaneous sources.
The proposed algorithm can be classified among the family of
deblending methods via inversion schemes. By implement-
ing rank reduction with a projection operator via the SSA fil-
ter, solutions are constrained to be low rank in Hankel ma-
trices extracted from small spatio-temporal windows in com-
mon receiver domain. The latter is important because the SSA
method is a valid denosing technique for a superposition of
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Figure 2: Temporal and spatial source distribution of simulta-
neous source separation. Each time 5 shots are recorded by a
same set of receivers

plane waves. In a small window the data can be approxi-
mated via a limited number of dips plus incoherent interfer-
ences caused by the blending process. Convergence of this al-
gorithm can be achieved if the pseudo-deblended data is adopted
as the initial solution. Through tests with synthetic examples
made by blending a traditional marine acquisition, we show
that the interferences of the wavefields can be effectively sup-
pressed. This algorithm also sees applications in multidimen-
sional cases by adopting high order SVDs (Kreimer and Sac-
chi, 2012) or by adopting block Hankel matrices (Gao et al.,
2011).
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Figure 3: Results of separation via Iterative Rank Reduction method: (a) The real unblended shot record (20th). (b) Pseudo-
deblended shot record. (c) Shot record separated with singular value projection. (d) Differences between (a) and (c)
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