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SUMMARY

Seismic data are always contaminated with noise. Therefore,
signal-to-noise ratio enhancement plays an important role in
seismic data processing. This paper illustrates a robust prin-
cipal component analysis (RPCA) method to suppress erratic
noise that contaminates seismic data. The method operates in
the frequency-space domain and relies on a robust low-rank
approximation of the seismic data volume. We adopt a nuclear
norm constraint that yields the low-rank approximation of the
desired data while using an `1 norm constraint to properly esti-
mate the erratic (sparse) noise. The problem is then tackled via
the first-order gradient iteration method with two steps of soft-
thresholding. We illustrate the effectiveness of this method via
synthetic examples.

INTRODUCTION

Principal component analysis (PCA) is an important tool for
multivariate analysis in statistics. The idea is to reduce the di-
mensionality of a data set while preserving as much variability
of data variables as possible (Jolliffe, 2010). Let us consider
to recover a low-rank matrix L from the observed data

D = L+E , (1)

where E is a matrix representing the additive error. If we as-
sume E is composed by small random perturbations, an opti-
mal estimate of L can be acquired via the following optimiza-
tion problem

min kEk2
F

s.t. rank(L) = k , D = L+E . (2)

The problem can be efficiently solved via singular value de-
composition (SVD) (Golub and van Loan, 1996). The ob-
served data D can be decomposed into a group of eigen-images
via the SVD. The low-rank component L can be described with
a few eigen-images that are associated to the largest singular
values. The error E, however, will have energy spread over all
the eigen-images (Trickett, 2003).

A variety of methods based on PCA have been developed in
seismic data processing. For instance, Ulrych et al. (1999)
introduced a time domain matrix rank reduction method to
eliminate incoherent noise from seismic records. A related
family of methods, the Karhunen-Loeve transform, has also
been introduced for the enhancement of the signal-to-noise ra-
tio of prestack gathers (Al-Yahya, 1991). Dipping events can
be handled by applying eigen-image filters in the f �x�y do-
main (Trickett, 2003). Similarly, Cadzow de-noising (Trick-
ett and Burroughs, 2009), or singular spectrum analysis (SSA)
(Sacchi, 2009; Oropeza and Sacchi, 2011) also operates in the
frequency-space domain and are capable of preserving coher-
ent dips while attenuating random noise. Cadzow and SSA

de-noising, unlike traditional eignen-images methods (Ulrych
et al., 1999), do not operate on the spatial data themselves but
on Hankel matrices that are formed from data in the f � x or
f � x� y domain.

Although the aforedescribed rank reduction methods are very
effective techniques for attenuating random Gaussian noise,
their applications to real data problems are limited due to lack
of robustness to erratic noise. In seismic data processing, er-
ratic noise includes swell noise, power line noise and artifacts
caused by glitches in recording instruments. Outliers tend to
manifest as high-amplitude isolated signals that do not obey
the Gaussian distribution. Therefore, the conventional least-
squares error criterion utilized by PCA will perform poorly
(Golub and van Loan, 1996; Trickett et al., 2012; Chen and
Sacchi, 2014). In this article, we replace the least-squares con-
straint by an `1 norm constraint where we have assumed that
the erratic noise is a sparse signal. Finding a low-rank approxi-
mation matrix subject to an l1 misfit constraint is a non-convex
optimization problem (Wright et al., 2009). A practical algo-
rithm can be developed by simply replacing the non-convex
optimization problem by a convex one where a gradient based
optimization method is used. The resulting algorithm is named
robust principal component analysis (RPCA) (Candès et al.,
2011). We will show that that RPCA is capable of suppressing
erratic noise. We tested the proposed algorithm with synthetic
examples to de-noise erratic noise present in seismic records.

ROBUST PRINCIPAL COMPONENT ANALYSIS

We assume that the erratic noise can be represented using a
sparse matrix S. Only a few entries of S are non-zero elements
and can be arbitrarily large in amplitude (Zhou et al., 2010).
Robust principal component analysis suggests the following
optimization problem:

min kSk0

s.t. rank(L) = k , D = L+S , (3)

where ||S||0 denotes the `0 norm of S, which means the number
of non-zero elements in S. Equation (3) is a NP-hard problem.
To make the problem tractable, we use the `1 norm, which is
defined by the summation of absolute values of the elements
of the matrix S, to replace the `0 norm. In the meantime, we
consider to replace the the low-rank constraint by the nuclear
norm of L, which is defined as the sum of all singular values
of the matrix L. One can show that the `1 norm is the tightest
convex relaxation of the `0 norm (Donoho, 2006). Similarly,
the nuclear norm is the tightest convex relaxation to the low-
rank constraint (Fazel, 2002). We also introduce a Frobenius

norm constraint, ||D � L � S||2
F

, to tolerate the inclusion of
Gaussian noise. The resulting cost function can be written as
follows

min J =
1

2µ
||D�L�S||2

F

+ l ||S||1 + ||L||⇤ . (4)
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Erratic noise suppression

l is a trade-off parameter that balances the sparsity and low
rank constraints. The scalar µ is a small constant that controls
the inclusion of Gaussian noise.

We consider to minimize Equation (4) via an iterative scheme
to estimate the low-rank data L as well as the sparse erratic
noise S. We split the cost function into two sub-problems
based on the sub-gradient method. The solution of Equation
(4) is equivalent to the solution of the following system of
equations

min J

S

= l ||S||1 + ||S � Ŝk||2
F

(5a)
min J

L

= ||L||⇤+ ||L � L̂k||2
F

(5b)

only if L̂k and Ŝk converge to the solution of

min J0 =
1

2µ
kD�L�Sk2

F

. (6)

Therefore, we can calculate L̂k and Ŝk by updating a current
estimation in the opposite direction of the gradient of J0

Ŝk = Sk � 1
2µ

(Lk + Sk � D)

L̂k = Lk � 1
2µ

(Lk + Sk � D) .
(7)

Equation (5a) are commonly seen in the field of compressive
sensing. It leads to a soft-thresholding step to all the entries of
the updated solution Ŝk (Beck and Teboulle, 2009). The solu-
tion to Equation (5b) can also be found in recent developments
of matrix completion. In this case, instead of applying soft-
thresholding directly to the entries, a soft-thresholding step are
performed to the singular values of the matrix L̂k (Cai et al.,
2010; Recht et al., 2010) (see algorithm (1)).

Algorithm 1 RPCA

Inputs:

Observed data D, trade-off parameter l and
stopping criterion e

Initialize:

L0 = 0; S0 = 0; k = 1
repeat

Ŝk = Sk� 1
2µ (L

k +Sk�D)

L̂k = Lk� 1
2µ (L

k +Sk�D)

Sk+1 = max(|Ŝ
k

(i, j)|� l µ
2 ,0)

[U,SSS,V] = svd[L̂k]

ŜSS = max(|S(i, i)|� l µ
2 ,0)

Lk+1 = UŜSSV⇤

k = k+1

until kD�Lk�Skk2
F

< e

Outputs:

Low-rank estimation Lk+1;
Estimated erratic noise Sk+1 .

The RPCA method is summarized in Algorithm (1). In each
iteration, we modify the current estimate of the low-rank data
and erratic noise in the opposite direction to the gradient of the
quadratic term. Then, we apply two steps of soft-thresholding
to the modified estimators. Zhou et al. (2010) have proved that
the selection of l = 1/max(m,n) can guarantee high quality
recovery of the matrix L, where m and n are the size of the data
matrix D. The tuning parameter µ can be chosen according to

µ = 0.1
q

max(m,n)+8s
p

max(m,n) (Tao and Yuan, 2011)
where s is an estimator of the standard error of the additive
noise in the data.

RPCA SEISMIC DATA NOISE ATTENUATION

The Robust Principal Component Analysis can be adopted to
suppress erratic noise present in the seismic data. We con-
sider to apply the RPCA algorithm to a 3D volume D(t,x,y)
extracted from a multi-dimensional seismic data set. We re-
mind the reader that the Fourier transform that maps data from
t� x� y domain to f � x� y domain can be expressed by

D̃(w,x,y) =

Z
D(t,x,y)eiwt

dw . (8)

At a given frequency w , the spatial data can be denoted via
a spectral matrix Dw . The desired signal is coherent along
the two spatial directions. Therefore, Dw is a low-rank ma-
trix (Trickett, 2003; Cheng and Sacchi, 2014). The de-noising
method, which applies robust matrix rank reduction to each
frequency slice of the f � x� y data cube, is shown in Algo-
rithm (2).

Algorithm 2 RPCA de-noising

Inputs:
3D seismic volume D
trade-off parameter l

D̃(w, x, y) D(t, x, y) (FFT)

for w = w
min

: w
max

do
Dw  D̃(w, :, :)
[L ,S] = RPCA[Dw ] (Algorithm 1)
ˆ̃D(w, :, :)  L

end for

D̂(t, x, y) ˆ̃D(w, x, y) (IFFT)

EXAMPLES

Erratic noise elimination
A synthetic data set is utilized to test the robustness of the pro-
posed de-noising method. Figure 1 (a) shows the 3D t� x� y

data set, which has 30⇥ 30 traces and a total time of 1 sec-
ond. As is shown in Figure 1 (b), we added Gaussian noise
with signal-to-noise ratio equals to 3. We also added isolated
traces with erratic noise with an amplitude that is about 3 times
of the maximum amplitude of desired signal. The processing
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Erratic noise suppression

frequency band ranges from 1 to 40 Hz. The results of the
f � x� y eigen-image filtering and the RPCA de-noising were
compared. We evaluate the performance of the algorithm via a
quality factor

Q =
kD̂�Dk2

F

kDk2
F

,

where D is the noise-free data and D̂ denotes the de-noised
data. Figure 1 (c) shows the result of f � x� y eigen-image
filtering. The rank was set to 3. Figure 1 (d) shows the dif-
ference between the filtered data and the true data.The erratic
noise was not properly removed and the estimated data shows
noticeable artifacts. Figure 1 (e) is the result of the RPCA de-
noising. Both the Gaussian noise and the erratic noise are suc-
cessfully suppressed. The proposed method effectively sup-
pressed the incoherent noise. Figure 1 (f) shows the error panel
corresponding to RPCA de-nosing. We improve the quality of
the data from Q =�6.7 dB to Q = 11.9 dB.

0

0.2

0.4

0.6

0.8

t(s
)

10 20 30
trace number(a)

0

0.2

0.4

0.6

0.8

t(s
)

10 20 30
trace number(b)

0

0.2

0.4

0.6

0.8

t(s
)

10 20 30
trace number(c)

0

0.2

0.4

0.6

0.8

t(s
)

10 20 30
trace number(d)

0

0.2

0.4

0.6

0.8

t(s
)

10 20 30
trace number(e)

0

0.2

0.4

0.6

0.8

t(s
)

10 20 30
trace number(f)

Figure 1: Results of Robust de-noising for the synthetic data
set. (a) The ideal CMP gather of the 3D data cube. (b) The
CMP gather contaminated with Gaussian and erratic noise. (c)
De-noised gather with f �x�y eigen-image filtering. (d) Dif-
ferences between (a) and (c). (e) CMP gather after RPCA De-
noising. (f) Difference between (a) and (e).

We tested the RPCA de-noising method with a real data set.
Figure (2) shows a small patch (50⇥50 traces) from an offset-
midpoint gather of a post-stack seismic volume. The total time
length of the patch is 1 second. We added erratic noise to iso-
lated traces with cosine signals that mimic power line noise.
Figure (2) shows that the RPCA de-noising method has effec-
tively suppressed the erratic noise while preserving the desired
signal. In this example, the quality factor of data was improved
from Q�4.7 dB to Q = 9 dB.

Simultaneous source noise suppression

We also applied the proposed algorithm to solve the deblend-
ing problem in common receiver domain. We adopted a syn-
thetic 3D vertical seismic profile to mimic a simultaneous source
acquisition. The data set contains 205 source lines with 205
source positions on each line. The interval of each source po-
sition is 16.67m and the line spacing is also 16.67m (O’Brien,
2010). One common receiver gather has been extracted at
depth 1600m. We assume that the data are blended with the
self-simultaneous shooting technique. Only one vessel fires
with small random time delays generated via a uniform dis-
tribution. The expected time delays are 70% of one conven-
tional shot record length. Figure 3 (b) shows the center shot
line of the pseudo-deblended common gather which contains
the blending noise. In this example, we assume that 30 % of
the acquisition time is saved via the proposed acquisition de-
sign. Figure 3 (c) shows the de-noising result with the pro-
posed method. The RPCA algorithm is able to remove the in-
terferences and yields a value Q= 10.2. This example portrays
a deblending technique based on robust de-noising (Huo et al.,
2009; Ibrahim and Sacchi, 2014). However, it is important to
mention that deblending methods that are based on rank con-
strained inversion could also be adopted (Cheng and Sacchi,
2014).

CONCLUSIONS

We presented a robust principal component analysis method
for suppressing erratic noise that is often present seismic data.
We assume the ideal data can be represented via low-rank ma-
trices in the frequency-space domain and that the erratic noise
can be represented via a sparse matrix. A nuclear norm con-
straint as well as an l1 norm constraint are used to simultane-
ously recover the data and the erratic noise. We tackled the
problem via first order gradient method. Through tests with
synthetic examples, the proposed RPCA de-noising method is
shown to be able to remove both Gaussian and erratic noise.
The method has the potential to be adapted for simultaneous
source seismic data de-noising and reconstruction. Further-
more, higher dimensional version of the algorithm could be de-
veloped by interchanging matrices by multilinear arrays (ten-
sors) to represent multi-dimensional spatial data at a given
temporal frequency.
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Figure 2: Results of Robust de-noising for a real 3D data set (post-stack). (a) An ideal CMP gather of the 3D data cube. (b) The
CMP gather contaminated with erratic noise. (c) CMP gather after RPCA de-noising. (d) Differences between (a) and (c).
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Figure 3: (a) The center shot line of the ideal unblended common receiver gather. (b) The center shot line of a pseudo-deblended
common receiver gather, in this example, we save 30 % of acquisition time. (c) The center shot line of the deblended common
receiver gather after RPCA de-noising. (d) The difference between section (a) and (c).
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