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SUMMARY

The asymptote and apex shifted hyperbolic Radon transform
is an extension to the apex shifted hyperbolic Radon transform
allowing shifts in both the asymptote and apex of hyperbolic
events. Thanks to the additional degree of freedom, the trans-
form can better focus seismic reflections and diffractions in
common shot domain. An efficient transform kernel is imple-
mented using Stolt migration and demigration operators and
applied to the interpolation of a simple synthetic dataset and a
common shot gather from the 2D BP/SEG salt model.

INTRODUCTION

In towed-streamer marine seismic acquisition, operational costs
and entanglement issues pose substantial limits to sampling
along the spatial crossline axis. This can lead to aliasing prob-
lems and lower the imaging resolution of the subsurface. There-
fore, seismic data usually require interpolation to increase the
spatial sampling prior to time-domain processing and imaging.

Most interpolation algorithms rely on transforms that can fo-
cus seismic data in the transform domain. These focusing abil-
ities arise from the similarity between seismic data and the
chosen transform dictionary. This justifies the ongoing re-
search into new dictionaries that closely match seismic data
for interpolation applications (Terenghi, 2014).

Since the travel-times of a variety of seismic events can be
approximated by hyperbolas, Radon transforms that use a hy-
perbolic dictionary represent a powerful tool for interpolation
(Sacchi and Ulrych, 1995; Trad, 2003). The most common of
these transforms is the Hyperbolic Radon Transform (HRT),
which is used for processing common midpoint gathers, where
the apexes of seismic reflection hyperbolas are usually located
at zero offset (Thorson and Claerbout, 1985). However, Trad
(2003) proposed interpolating seismic data in the common shot
gather domain using an Apex Shifted Hyperbolic Radon Trans-
form (ASHRT), which extends the conventional HRT by scan-
ning for the horizontal location of apexes. The ASHRT has
been applied in order to interpolate and/or denoise seismic
data in the shot gather domain (Trad et al., 2003; Ibrahim and
Sacchi, 2014c) or as part of 3D multiple prediction algorithms
(van Dedem and Verschuur, 2000, 2005).

In this paper, we present an additional extension to the ASHRT
by scanning for both the apex and asymptote shifts to match
both reflection and diffraction hyperbolas more closely. Seis-
mic diffractions can provide important information about sub-
surface discontinuities such as faults, pinch outs and small size
scattering objects that can be used in interpretation or imaging
(Khaidukov et al., 2004; Bansal and Imhof, 2005; Klokov and
Fomel, 2012). The travel time curve of diffracted waves can be
represented by the double square root equation (Landa et al.,

1987; Kanasewich and Phadke, 1988)

t =
√

t2
d +(xs− xd)2/v2 +

√
t2
d +(xd − xr)2/v2 (1)

where td is the one way travel time for the diffraction, xd is
the diffraction location along the horizontal axis, v is the ve-
locity at the diffraction, xs is the source location and xr is the
receiver location. If we are considering a common shot gather,
the value of the first square root is constant for each diffrac-
tion hyperbola. Therefore, we introduce the new parameter,

τ0 =
√

t2
d +(xs− xd)2/v2, into the previous equation,

t = τ0 +

√
t2
d +

(xd − xr)2

v2 . (2)

We use this equation to define the new Asymptote and Apex
Shifted Hyperbolic Radon Transform (AASHRT) which scans
for the asymptote origin time shift τ0. This equation simplifies
to the ASHRT definition when the asymptote origin time shift
τ0 is set to zero and the diffraction time td and location xd are
replaced by the apex time τ and location xa, respectively.

An efficient implementation of the AASHRT can be obtained
using Stolt migration/demigration operators (Stolt, 1978; Trad,
2003; Ibrahim and Sacchi, 2014b,a). The asymptote shift in-
troduced by the AASHRT can be incorporated easily into the
Stolt kernel using the Fourier time shift property. In case of
uniform sampling, computational efficiency can be further in-
creased using fast Fourier transforms and by scanning only the
non zeros elements of the data in the ω− k domain.

ASYMPTOTE AND APEX SHIFTED HYPERBOLIC
RADON TRANSFORM

The AASHRT models seismic data using a superposition of
asymptote and apex shifted hyperbolas as follows

d(t,xr) =
∑

τ0

∑
xa

∑
v

m(τ =

√
t2− (xr− xa)2

v2 − τ0,v,xa,τ0)

(3)
where d(t,xr) is the modelled seismic data and m(τ,v,xa,τ0)
is the AASHRT model. A low resolution AASHRT model can
be estimated using the adjoint operation as follows

m̃(τ,v,xa,τ0) =
∑

xr

d(t = τ0 +

√
τ2 +

(xr− xa)2

v2 ,xr) (4)

where m̃(τ,v,xa,τ0) is the estimated AASHRT model. These
transforms can be rewritten in the operator format as

d = Lm, (5)

m̃ = LT d, (6)

where d, m and m̃ represent the data, model and estimated
model in vector form, respectively. The forward and adjoint
AASHRT operators are represented by L and LT , respectively.



STOLT BASED AASHRT

The time domain implementation of the AASHRT operator is
computationally intensive. Fortunately, the AASHRT kernel
can be computed efficiently in the ω − k domain using fast
Stolt migration/demigration operators. These operators per-
form migration by mapping data in the ω − kx domain into
ωτ −kx for a constant subsurface velocity using the dispersion
relation (Yilmaz, 2001; Ibrahim and Sacchi, 2014b,a)

ωτ =
√

ω2− (vkx)2 (7)

where ωτ is the Fourier dual of the apex time τ , kx is the hori-
zontal wavenumber and v is the subsurface velocity. Using the
exploding reflector principle (Claerbout, 1992) and the con-
stant subsurface velocity assumption, the Stolt migration op-
erator can be used to estimate the subsurface model. Simi-
larly, the Stolt migration operator can be used to estimate the
AASHRT model m̃(τ,v,xa,τ0) as follows

m̃(τ,v,xa,τ0) =C
∫ ∫

exp [iωτ τ0]d(ω =

√
ω2

τ +(vkx)2,kx)

× exp [−ikxx− iωτ (v)τ] dωτ dkx (8)

where C = v (ωτ/ω) is a scaling factor resulting from the
change of variables. It is worth emphasizing that, using Stolt-
based operators, (1) every horizontal axis location x is treated
as a possible receiver and apex location (so xa ≡ xr ≡ x) and
(2) the periodicity of m̃ along x is implied.

Stolt-based forward modelling can be written as

d(t,x) =
∫ ∫ ∫ ∫

m(ωτ =
√

ω2− (vkx)2,v,kx)

× exp [−iωτ τ0]exp[ikxx+ iωt] dω dkx dv dτ0 (9)

The adjoint transforms in equation (9) can be rewritten in op-
erator form as

LT = FFT−1
ωτ ,kx

MT
ω,v,kx

TT FFTt,x AT ST , (10)

and similarly the forward (modelling) operator (equation 8)
can be written as

L = S A FFT−1
ω,kx

T Mωτ ,v,kx FFTτ,x, (11)

where, FFT is the Fast Fourier Transform, Mωτ ,v,kx is the Stolt
mapping operator, A is a summation operator and its adjoint is
a spraying operator (Claerbout, 1992). Operator T represents
the time shift operator in frequency domain while S represents
the sampling operator used for interpolation (Liu and Sacchi,
2004). In case of non-uniform spatial sampling, the FFT oper-
ator may be replaced by a Discrete Fourier Transform operator
or a non-uniform Fast Fourier Transform operator.

SPARSE INVERSION

The estimated model m̃ and the original model m are clearly
not identical because Radon transforms are not orthogonal trans-
formations (LLT 6= 1). Furthermore, seismic reflection data
may be affected by a number of disturbing factors, including

significant noise, limited spatial aperture, coarse and irregu-
lar spatial sampling, missing traces, etc. The estimation of
the Radon model must then be posed as an inversion problem
(Thorson and Claerbout, 1985) conditioned by a regulariza-
tion (penalty) term. The general form of the cost function to
be minimized in order to obtain the Radon coefficients is given
by (Ibrahim and Sacchi, 2014c)

J = ‖d−Lm‖p
p +µ‖m‖q

q (12)

where µ is the trade-off parameter that controls the relative
weight between the model regularization term ‖m‖q

q and the
misfit term ‖d−Lm‖p

p. Furthermore, parameters p and q in-
dicate the order of the norms used for the misfit and regular-
ization terms. Since we choose a Radon dictionary that closely
matches the seismic data, the Radon coefficients should be
sparse. We therefore choose an `1 norm (q = 1) for the model
regularization term and an `2 norm (p = 2) for data misfit
term. This cost function can be minimized using the Fast
Iterative Shrinkage/Threshold Algorithm (FISTA) (Beck and
Teboulle, 2009). This algorithm requires an approximation for
the largest eigenvalue of the LTL operator which is calculated
using Rayleigh’s power method (Larson and Edwards, 2009).
For details about the FISTA algorthim and its application in
geophysics refer to Rodriguez et al. (2012) and Perez et al.
(2013).

EXAMPLES

We evaluate the proposed AASHRT interpolation algorithm on
a set of purpose-built synthetics composed of well distanced
hyperbolic events, including 3 reflected and 3 diffracted events.
Each reflection represents the acoustic response of a planar in-
terface overlaid by a constant velocity medium. The interfaces,
characterized by dips of 10, 20 and -30 degrees, are located at
depths of 300, 600 and 900m below the source, respectively.
The overlaying media are characterized by propagation veloc-
ities of 1500, 1750 and 2000 m/s. The 3 diffractions originate
from features located at a common depth of 400m and horizon-
tal offsets of -500, 0, and 1500m with respect to the source. In
its undecimated version the test dataset is uniformly sampled
with traces 12.5m apart (figure 1b), to ensure absence of spa-
tial aliasing up to 60Hz (figure 1f). The subset used as input
to the interpolation algorithm is obtained by uniformly under-
sampling the initial data by a factor of 5 (one in every five
traces is kept). The algorithm, parametrized to recover data at
the initial spatial sampling rate of 12.5m produces the results
shown in figure 1.

We also tested the new transform on synthetics modelled us-
ing the 2004 BP velocity benchmark (Billette and Brandsberg-
Dahl, 2005). Similar to the previous example, the data in its
undecimated version is uniformly sampled with traces 12.5m
apart. The input to the interpolation algorithm is obtained by
uniformly under-sampling the initial data by a factor of 3 (one
in every three traces is kept). We recover the data at sampling
rate of 12.5 m producing the results shown in figure 2. The
quality of the interpolation is calculated using the following
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Figure 1: Simplified synthetic shot gather example. (a) Decimated gather. (b) Original gather. (c) Interpolated gather. (d) Interpo-
lation error. (e), (f), (g) and (h) are the ω− kx spectra of (a), (b), (c), and (d), respectively.

formula:

Q = 10 log10

(
‖doriginal‖2

2

‖doriginal −drecovered‖2
2

)
. (13)

The Q value for the recovered simple synthetic shot gather is
17.09 dB and for the BP/SEG model shot gather is 14.99 dB.

CONCLUSION

We have implemented an asymptote and apex shifted hyper-
bolic Radon transform with a Stolt migration/demigration op-
erator as its kernel to speed up computation. The new trans-
form dictionary is designed to closely match both reflections

and diffractions. Our tests show that the new transform is a
suitable tool for interpolation. Since the new transform is im-
plemented in ω−k domain, it can be used in combination with
the non-uniform Fourier transform to improve interpolation.
Future work entails generalizing the problem to the 3D shot
distribution.
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Figure 2: Shot gather example of the BP/SEG velocity model. (a) Decimated gather. (b) Original gather. (c) Interpolated gather.
(d) Interpolation error. (e), (f), (g) and (h) are the ω− kx spectra of (a), (b), (c), and (d), respectively.
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