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Estimation of the discrete Fourier transform,
a linear inversion approach

Mauricio D. Sacchi*, and Tadeusz J. UIrych*

ABSTRACT

Spatio-temporal analysis of seismic records is of par-
ticular relevance in many geophysical applications, e.g.,
vertical seismic profiles, plane-wave slowness estimation
in seismographic array processing and in sonar array
processing. The goal is to estimate from a limited
number of receivers the 2-D spectral signature of a
group of events that are recorded on a linear array of
receivers. When the spatial coverage of the array is
small, conventional f-k analysis based on Fourier trans-
form leads to f-k panels that are dominated by side-
lobes. An algorithm that uses a Bayesian approach to
design an artifacts-reduced Fourier transform has been
developed to overcome this shortcoming. A by-product
of the method is a high-resolution periodogram. This
extrapolation gives the periodogram that would have
been recorded with a longer array of receivers if the data
were a limited superposition of monochromatic planes
waves.

The technique is useful in array processing for two
reasons. First, it provides spatial extrapolation of the
array (subject to the above data assumption) and second,
missing receivers within and outside the aperture are
treated as unknowns rather than as zeros.

The performance of the technique is illustrated with
synthetic examples for both broad-band and narrow-
band data. Finally, the applicability of the procedure is
assessed analyzing the f-k spectral signature of a vertical
seismic profile (VSP).

F-K spectralanalysis plays a fundamental role in the inter-

INTRODUCTION

pretation of 2-D geophysical signals. The conventional analysis
based on 2-D Fourier transformation might result in poorly
resolved spectral panels caused by the presence of sidelobes
that tend to mask the signals. This is more noticeable when the

spatial aperture of the signal is small compared with the range
of wavenumbers we are seeking. The combined effect of the
sidelobes and noise make the problem even more severe.

Many of the 1-D high-resolution spectral analysis techniques
that are cited in the literature can be extended easily to the 2-D
case. A review of these methods can be found in Kay and
Marple (1981). Two-dimensional extensions of these proce-
dures are given in Marple (1987). We are not going to discuss
these procedures in detail since that would exceed the scope of
the paper. However, one can say that the power spectrum
estimate is computed by honoring a few lags of the autocorre-
lation function (1-D or 2-D depending the problem). Examples
of these approaches are 2-D parametric spectral analysis (Lim
and Malik, 1982) and the Capon maximum likelihood method
(Capon, 1969). Hybrid techniques can be designed by applying
any 1-D high-resolution spectral method to the rows of an
auxiliary array composed of column vectors obtained with the
discrete Fourier transform (DFT). Since the auxiliary array is
complex, high-resolution algorithms in complex form are nec-
essary (Marple, 1987). The hybrid scheme serves to improve
the resolution of only one of the variables (temporal fre-
quency, f, or wavenumber, k.) In array processing, the spatial
resolution is limited by the small number of receivers relative
to the number of time samples of each trace. In other words,
the spatial coverage dictates the requirement of high-resolu-
tion methods. Ulrych and Walker (1981) and more recently
Swingler and Walker (1989) applied linear prediction to
extrapolate the data and simulate a longer array that can be
analyzed using conventional spectral analysis.

Finally, we would especially like to mention the eigenvalues
based or subspace techniques. These techniques have been
borrowed from the field of sonar processing (Bienvenu and
Koop, 1983) and have been successfully applied in geophysics
in different contexts, i.e., velocity analysis (Biondi and Kostov,
1989; Kirlin, 1992), wavefield separation (Mari and Glangeaud,
1990; Rutty and Jackson, 1992). Subspace methods can cer-
tainly provide high resolution but their performance is severely
affected when the number of signals are over or underesti-
mated. In fact, these methods are based on a 2-D extension of
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Pisarenko’s harmonic spectral analysis (Pisarenko, 1973)
which, as is well known, is very sensitive to the number of
harmonics that compose the process. A similar problem is also
encountered in parametric spectral estimation, where a knowl-
edge of the number of parameters is vital in obtaining reliable
estimates.

Since the techniques described above provide a high-reso-
lution power spectral density (PSD) estimate, only the auto-
correlation function of the data can be reconstructed. In this
paper, we propose a new approach to the problem of deter-
mining a high-resolution 2-D PSD estimate. First, we use the
data as the constraints rather than the autocorrelation function
(an approach first suggested to us by Colin Walker). Second,
our unknown is an unwindowed DFT, or in other words a DFT
where truncation artifacts (sidelobes) are mitigated. This is an
important distinction with respect to conventional spectral
analysis where the target is the PSD. It is straightforward to see
that the PSD is obtained as a by-product of the procedure
using the unwindowed DFT.

The high-resolution DFT is computed solving an inverse
problem. The proper regularization of the problem is derived
using Bayes’s rule to combine prior information with the data
likelihood. We propose to model the prior distribution of
spectral amplitudes by means of the Cauchy probability density
function (pdf). Techniques using the Bayesian approach are
also popular in image reconstruction (see, for instance, Skilling
and Bryan, 1984).

It must be pointed out that the Cauchy pdf has also been
adopted in Crase et al. (1990) and Amundsen (1991) who used
this pdf in an attempt to diminish errors resulting from
outliers. In our approach the Cauchy pdf is used to model the
unknown parameters. The Cauchy pdf serves to model a sparse
distribution of parameters, which is indeed the case when the
data consist of a limited number of monocromatic plane waves.

LINEAR INVERSION OF THE DISCRETE FOURIER
TRANSFORM

Problem definition and details

For simplicity, we will start with the 1-D DFT since exten-
sions to higher dimensions are straightforward. Consider a
N-sample time or spatial series          The
DFT of the discrete series is given by ( 6 )

            (1)

and similarly, the inverse DFT is given by

      (2)

Let us suppose that we want to estimate M spectral samples
where M > N. A standard approach to solving this problem is
by means of zero padding. Defining a new time series consist-
ing of the original series plus a zero extension for n = N, . . . ,
M - 1, we can estimate M spectral samples using the DFT.
This procedure helps to remove ambiguities caused by discreti-
zation of the Fourier transform but, as is well known, it does
not reduce the sidelobes created by the temporal/spatial

window or improve the resolution. Let us therefore consider
the estimation of M spectral samples but using equation (1)
without zero padding. In other words, we want to estimate the
DFT using only the available information. At this point, it is
interesting to note that the underlying philosophy is similar to
Burg’s maximum entropy method (MEM) (Burg, 1975). How-
ever, in Burg’s MEM the target is a PSD estimate, a phase-less
function.

To avoid biasing our results by the discretization, we also
impose the condition M >> N. Rewriting equation (2) as

1       (3)

gives rise to a linear system ofequations

(4)

where the vector y   and x   denote the available
information and the unknown DFT, respectively. Equation (4)
is a linear underdetermined problem which, as is well known,
can be satisfied bymany different solutions. Uni.quenessis
imposed by defining a regularized solution,  which is obtained
solving the problem (see, for example, Tikhonov and
Goncharsky, 1987) expressed by

       (5)

The regularizer  serves to impose a particular feature on
the solution. In the next section, we explore a Bayesian
approach to compute the regularizer. In equation (5) 
stands for the  norm.

The Gaussian regularization

Throughout this paper, we will consider data contaminated
with noise that is distributed as N(0,  We use the
Gaussian distribution not only because this leads to an easily
manageable least-squares type solution but also because it is
the most parsimonious manner of describing “noise” in prob-
abilistic terms. Therefore, invoking the Gaussian hypothesis,
the conditional distribution of the data is given by

Consider a prior distribution for   a,) conditional on a set
of parameters According to Bayes’s rule [see, for instance,
Loredo (1990) for a review of Bayesian methods], the a
posteriori distribution of the vector of parameters is given by

   
 

   
(7)

From the point of view of a frequentist, where probabilities
are derived from the relative frequencies of outcomes, assign-
ing a prior density to a model may appear incorrect. However,
from a Bayesian perspective, the prior assigns the degree of
plausibility that a model is correct. Once the prior probability
is assigned, the problem remaining is how to choose a model.
A natural rule is to compute the so called maximum a
posteriori (MAP) estimator  This estimator maximizesp (xl y,

  for given  and  Let us assume that the prior
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(8 )

that is a completely different approach to inversion. Specifi-
cally, when the first Dirichlet criterion of the Backus and
Gilbert theory is used, the resulting expression is equivalent to
that shown in equation (13). This is a simple consequence of
using this criterion; other spreading functions lead to different
results. An important conclusion that may be drawn from
Oldenburg’spaper is that the resolutionis fixed and cannot be
modified bymoving our estimate alongthe tradeoffcurve. An
intuitive explanation is as follows; since the resolution of the
PSD is controlled by the width of the sidelobes that are
independent of the scaling factor, the DFT computed with the
Gauss-Gauss model will lead to a PSD estimator that is
equivalent to the periodogram of the truncated time series.

distribution of Xk is Gaussian, and since Xk is a complex
variable, the real and imaginary parts are independent vari-
ables with Gaussian distributions. Then

The last equation describes the joint distribution of 2 (M - 1)
random variables that represent the joint distribution of M -
1 complex variables (Johnson and Kotz, 1972). Since 

    x, equation (8) may be regarded as the joint
distribution of the complex variable x we designate by p (x).
The MAP solution that maximizes the a posteriori probability
also minimizes the following cost function

I

      

       

where the subscript gg stands for the Gauss-Gauss model.
s c a l a r    is also known in inverse theory

(9 )

The
as

Regularization by the Cauchy-Gauss model

In the previous section, we showed that the Gauss-Gauss
regularization does not serve our purpose of obtaining a
high-resolution PSD estimator. We have found that a very
appealing idea is the use of a regularization derived from a
distribution that mimics asparse distributionof spectral am-
plitudes. The reason is simple and can be interpreted as
follows: In general, the interpretation of spatio-temporal data
is involvedwith a finite number of events that exhibitspatial
continuity. If the data show great complexity, timeand/or
spatial windows are chosen such that particular events may be
more easily distinguished and mapped. Because of the limited
number of such events, it is appropriate to require a model that
consists ofthe minimumnumberof events that can satisfythe
data. Thisis the classic idea ofsimplicity or parsimony and

the tradeoff or ridge regression parameter. Equation (9) is the
objective function of the problem. The first term represents
the model norm, while the second term is the misfit function.
The hyper-parameter  enables us to move our estimate along
the tradeoff curve. Taking derivatives and equating to zero
yield

(10) quite opposite
“structure” of a

losophy to norms that describe the
by means of, for exa  the small

 
surface

flattest, or smoothest models. A “long tailed” distribution, like
the Cauchy pdf, will induce a model consisting of only a few
elements different from zero. This pdf has been used by Crase
et al. (1990) and Amundsen (1991) to increase the robustness
of the inversion of seismic data. In their approach, the “long
tails” of the pdf permit the damping of the influence of outliers
in the inversion. In our approach, the Cauchy pdf is used to
impose a particular feature on our model, that of sparseness.
The Cauchy pdf is given by

We can
identity

write equation (10) in another form using the following

      (11)

where  and represent M X M and N X N identity
matrices, respectively. Recalling equation (11) and that

 
for the Gauss-Gauss model

  we end up with the Fourier transform estimate

     (12) (15)

The result is nothing else than the DFT of xn, modified by a
scale factor. The solution expressed by equation (12) becomes

where is a scale parameter. This distribution does not
possess fi nite moments, but  C plays a role similar to that of
variance. When we combinea Cauchy prior with the data

1
    

 (13)
likelihood the cost function becomes

which is the DFT of the windowed time series [equation (l)]
and is equivalent to padding with zeros in the range n =
N, . . ..M - 1. It is easy to see that the Gauss-Gauss model
yields a scaled version of the DFT. Hence, the associated
periodogram exhibits a resolution that is proportional to the
inverse of the length of the time series. The periodogram
becomes

          (16)

where the subscript cg stands for the Cauchy-Gauss model.
The function, S(x), which is expressed by

(14) (17)

It is interesting to point out that Oldenburg (1976) arrived to
the same observation using the Backus and Gilbert formalism

is the regularizer imposed by the Cauchy distribution and is a
measure of thesparsenessof the vector of spectral powers



Estimation of the DFT 1131

             The constant  controls
the amount of sparseness that can be attained by the inversion.
The sparseness of the estimate will also depend on the noise
level since  may inhibit a reliable sparse solution.

Taking derivatives of Jcg (x) and equating to zero yields the
following result

      (18)

where   and Q is a M X M diagonal matrix with
elements given by

 (19)

Although expression (18) resembles the damped least-squares
solution, we note that Q is nonlinearly related to the DFT of
the data.  Equation (18) can be written using the following
iden t i t y

      (20)

The forms        are positive
definite leading to the following identity

          (21)

Using identity (21) we can write equation (18) as

       (22)

We stress that, from the theoretical point of view of uniqueness
and convergence, the operators given by equations (18) and
(22) are equivalent. However, from the point of view of
computational advantages, the following observations apply.

1) Whereas equation (18) demands the inversion of an M X
M matrix, equation (22) requires the inversion of an N X
N matrix.

2) The operator    in equation (22) is
Toeplitz Hermitian provided that the time series is
uniformly discretized and a fast solver like Levinson’s
recursion can be used.

3) In the case of nonuniform discretization, a Cholesky
decomposition is appropriate. This type of algorithm is
also appropriate in the case of gapped data.

As we have mentioned, the Cauchy-Gauss model leads to an
algorithm that resembles the minimum norm solution of
equation (4). This is particularly true when  is large com-
pared to the spectral amplitudes that we are seeking. In this
case, the functional S(x)   +  where K is a
constant. Thus, minimizing Jcg (x) is equivalent to minimizing
Jgg (x). In the contrary case, the algorithm will seek a DFT with
a sparse distribution of spectral amplitudes,  leading to
an enhancement of the spectral peaks and reducing windowing
effects or sidelobes. In the Gauss-Gauss regularization, the
scale parameters and  reduce to a single hyper-param-
eter  which completely defines the distribution of the un-
known model. On the other hand, in the Cauchy-Gauss
regularization, we have two independent hyper-parameters,

 or   When the power of the noise is known, the
optimum  is computed using any fitting criterion, e.g., the x2

criterion. The simultaneous estimation of  and  is not an
easy task since it demands the computation of the marginal
joint pdf of  and  for a given solution 

The method that we employ to solve equation (22) is very
simple.

1) Begin with an initial model that can be the DFT of the
finite-length time series x(0).

2) Select the hyperparameters  and 
3) Iteratively solve equation (22),

       (23)

where  is the iteration number.
4) The procedure is stopped when  does not change with

the number of iterations.
5) The misfit is computed. A new value of  is used if the

misfit is not satisfactory.

Since the Hessian matrix of Jcg is positive, the uniqueness of
the solution is guaranteed. The algorithm converges after
about ten iterations. Good resolution may, however, be at-
tained in less than ten iterations.

NUMERICAL SIMULATIONS

Hybrid 2-D estimator of the DFT

We present a hybrid procedure based on standard Fourier
analysis in the temporal variable, while for the spatial variable,
we invert in the wavenumber space using the Cauchy-Gauss
regularization. Usually the length of the temporal window is
sufficient to achieve high resolution with simple methods based
on standard Fourier analysis while the aperture of the array
limits the spatial resolution. The 2-D algorithm works as
follows:

1) Each record is transformed to the frequency-offset do-
main using the FFT.

2) High-resolution analysis is performed at each frequency
that comprises the signal using the Cauchy-Gauss regu-
larization.

3) The amplitude in the f-k space is plotted to identify the
spatio-temporal structure of each source.

4) Alternatively, the data outside the original aperture may
be extrapolated to simulate a longer array, and any 2-D
spectral technique may be used in conjunction with the
extended data set.

Undesired components can be masked before mapping back
the unwindowed DFT to space-time. This is demonstrated in
detail in the broad-band example below.

First example; Spatio-temporal spectrum of
narrow-band signals

The algorithm is applied to estimate the spatio-temporal
spectrum of a signal received by a passive array of receivers.
This problem frequently arises in radar and sonar processing
(Bienvenu and Kopp, 1983). The goal is to estimate the
direction of arrival and the temporal spectral signature of a set
of sources impinging from different angles on a uniform array
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of N receivers. In seismology, the problem has been studied
particularly to detect plane-wave signals and estimate the
slowness vector. We assume that the array of receivers is linear,
but the method can be easily generalized to any distribution of
receivers.

We simulate three narrow-band linear events with the
following features. First, we model two sinusoids with unit
amplitude and with normalized wavenumbers of 0.30 and 0.25
units and a normalized frequency of 0.20 units, respectively.
The third wave ( f = 0.35, k = - 0.25) has an amplitude that
is 25% below the amplitude of the first and second waves. The
temporal extension of each channel is 150 samples, which
represents one order of magnitude above the aperture of the
array (15 receivers). Gaussian noise with standard deviation,

= 0.1 was added to the composite record. The noise
represents 40% of the amplitude of the third wave. Each
channel was tapered with a Hamming window. The spatio-
temporal spectrum computed using the periodogram is illus-
trated in Figure la. The contour lines correspond to normal-
ized amplitudes ranging from 0 to -40 dB, with an interval of
-5 dB. The f-k plane is dominated by sidelobes caused by
truncation in space and time. This is more noticeable for the
wavenumber, since the aperture of the array is one order
smaller that the length of the time series. The data were
processed with the hybrid procedure based on the Cauchy-
Gauss model. The parameters  and  were chosen to reject
the noise. The number of iterations varies from frequency to
frequency, usually  iterations are sufficient to reach the
minimum of the objective function  The resulting high
resolution f-k panel is portrayed in Figure lb. Contour lines
range from 0 to -40 dB as in Figure la. There is a clear
enhancement of the spatial resolution and a suppression of the
background noise. Since the contour lines exhibit similar width
in the k and f direction, we can infer that the normalized
aperture is of the same order as the length of the time series.
In other words, the f-k panel portrayed in Figure lb corre-
sponds to an equivalent array of approximately 150 receivers.

Second example: Broad-band applications

The algorithm was tested with two broad-band linear events
impinging an array of 25 receivers. The source is modeled with
a Ricker wavelet with central frequency, f = 20 Hz. The first
event has slowness 1.2 X 10-5 s/m and the second -1.2 X
10-5 s/m. Since we used a different polarity for each wave,
there is destructive interference at near offset traces
(Figure 2a.) We have changed the sign convention of the
temporal DFT to obtain positive wavenumbers for waves
propagating with positive slowness.

We first examine the noiseless case. Figure 2a shows the data
while Figure 2b illustrates the conventional PSD computed
with the DFT. Since the slowness of each event is nearly
identical, the conventional f-k panel cannot distinguish the
existence of two signals. The positive and negative wavenum-
ber quadrants were masked to estimate the wave with negative
slowness (Figure 2c) and the wave with positive slowness
(Figure 2d). Although both wavefields were decomposed, the
decomposition is not correct as is clearly shown by the char-
acter of the wavelet that varies with offset in both figures.

The same procedure was carried out using the Cauchy-
Gauss inversion scheme. We set  = 0 in equation (22) since
we are willing to fit the data exactly. The parameter  is 0.1%
of the maximum amplitude encountered in the raw perio-
dogram which is computed from the finite-length DFT. The
PSD computed with the Cauchy-Gauss DFT is shown in
Figure 2e. We note that there is a clear enhancement of the
spatial resolution. The wavefields with negative and positive
slowness are portrayed in Figures 2f and 2g, respectively.
These panels were computed after masking the corresponding
wavenumber quadrant. In comparing Figures 2f and 2g with
Figures 2c and 2d it is clear that the high-resolution scheme
enables us to discriminate both events correctly. Figures 2f and
2d also show that the wavelet does not suffer substantial
changes with offset. In Figures 2h and 2i, we show the original
aperture plus the extrapolated aperture computed with the

FIG. 1. 2-D spectrum of three narrow-band signals of normalized frequency-wavenumber pairs: (0.2, 0.3), (0.2, 0.25), and (0.35,
-0.25). (a) Conventional 2-D estimator obtained with DFT. (b) 2-D estimator obtained with the Cauchy-Gauss model.
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FIG. 2. (a) Synthetic data. (b) Spatio-temporal spectrum using DFT. (c)-(d) Wavefield decomposition after masking the positive and
negative quadrant respectively. (e) High-resolution f-k plane computed with the Cauchy-Gauss model.
decomposition. Original aperture plus extrapolated aperture: (h) Conventional solution using the DFT.

f)-(g) Wavefield

regularization.
i) Cauchy-Gauss
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conventional DFT and with the high resolution DFT, respec- Gauss DFT was used to reconstruct the t-x space after masking
tively. It is evident that the high resolution DFT correspond to the right and left quadrant of the f-k domain and the results
a longer array of receivers. The reliability of the extrapolated are portrayed in Figures 3f and 3g. These figures show an
data depends on how reliable is the sparse assumption toaccurate separation of each wavefield and an important signal-
model the DFT. to-noise ratio enhancement.

Finally, the data were contaminated with Gaussian noise
= 0.1). Figure 3a portrays the data while Figure 3b shows

the PSD computed using the DFT (conventional f-k analysis).
Figures 3c and 3d show the wavefield separation using the
conventional DFT analysis. Not only is the character of the
wavelet changing with offset, but also the signal-to-noise ratio
has not been improved.

The Cauchy-Gauss PSD is illustrated in Figure 3e. When
compared with Figure 3b, we note that the resolution has been
improved and the noise is attenuated substantially. It must be
pointed out that, like in the broad-band case, the parameters

APPLICATION TO VERTICAL SEISMIC PROFILING

VSP data are particularly suitable for our algorithm. The
VSP data are composed of two principal linear wavefields: the
downgoing and upgoing waves. The downgoing waves have the
higher amplitude and tend to mask the upgoing waves. The
data correspond to 26 traces of a VSP and are portrayed in
Figure 4a. As in the previous examples, we compute the 2-D
PSD with the conventional DFT and with the DFT computed
by means of the Cauchy-Gauss inversion. The results are

 are chosen to suppress the noise. The Cauchy- portrayed in Figures 4b and 4c, respectively. The wavefield

FIG. 3. (a) Synthetic data contaminated with noise. (b) Spatio-temporal spectrum using DFT. (c)-(d) Wavefield decomposition after
masking the positive and negative quadrant, respectively. (e) High-resolutionf-k plane computed with the Cauchy-Gauss model.
(f)-(g) Wavefield decomposition.
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separation carried out using the Cauchy-Gauss DFT is shown
in Figure 4d (upgoing waves) and Figure 4e (downgoing
waves). It is clear from a comparison of the f-k results in
Figures 4b and 4c that the Cauchy-Gauss f-k result is consid-
erably superior not only in allowing a better identification of
different wavefields, but also from the point of view of the
design of suitable filters for event separation.

DISCUSSION AND CONCLUSIONS

The high-resolution technique for the estimation of the
power spectrum presented in this paper is based on the
application of an algorithm that seeks a sparse solution to the
ubiquitous problem of spectrum estimation from a finite set of
data. What makes the algorithm very attractive is that, since
the sparseness measure is minimized subject to data con-
straints, phase information is also recovered and allows the
extrapolation of the signal outside the original window or
aperture, depending on the problem. The latter is consistent
with the idea of simulating a longer array and then estimating
the PSD using the DFT.

Another attractive feature of the method is that the back-
ground noise may be considerably attenuated after tuning the
hyperparameters. The synthetic examples and the VSP exam-
ple show the viability of the technique in the processing of real
data. The technique that we have presented has wide applica-
bility and a wide range of problems suggest themselves. An
example is multiple suppression from normal moveout cor-
rected gathers, where the aperture of the array inhibits the
correct identification of signals with close moveout.

We would like to mention that our algorithm is not intended
as an alternative to the pivotal FFT algorithm. We do, how-
ever, suggest its application in cases where effects related to the
ubiquitous aperture limitation problem give rise to difficulties
in the identification and interpretation of closely spaced
events.

Finally, we would like to stress the importance of using prior
information to improve the resolution of 2-D spectral estima-
tors. We have to recognize, however, that there is a resolution
tradeoff. In our problem, if the data do not consist of a limited
number of plane waves, the sparse assumption is doomed to
failure. This facet is constantly present in any inverse problem.
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