
Seismic data are often represented
by the well known convolutional
model:

s(t) = w(t) ⊗ r(t) + n(t) (1)

where w(t) denotes the seismic
wavelet, r(t) the reflectivity series,
and n(t) additive noise. The goal of
seismic deconvolution is to design a
filter f(t) capable of removing or com-
pressing the wavelet. To understand
the effect of removing the wavelet
from the seismogram, convolve both
sides of equation (1) with the filter 

f(t) ⊗ s(t) = f(t) ⊗ w(t) ⊗ r(t) +
f(t) ⊗ n(t) (2)

The last equation says that decon-
volution can be successfully carried
out if and only if two conditions are
satisfied:

f(t) ⊗ w(t) ≈ δ (t) (3)
f(t) ⊗ n(t) = e(t) ≈ 0. (4)

When these two conditions are simul-
taneously satisfied, one can write: 

f(t) ⊗ s(t) ≈ r(t). (5)

Equations (3) and (4) define a fil-
ter-design problem. However, in order
to design f(t), one must first know the
wavelet, w(t). Unfortunately, in most
exploration scenarios, w(t) is not
known and, therefore, needs to be esti-
mated.

This article focuses on estimating
a wavelet with unknown amplitude
and phase spectrum. Explicitly, the
problem has one noisy observation
(the seismogram) and two unknowns
(the reflectivity and the seismic
wavelet). We will examine how
under certain conditions the sto-
chastic nature of the reflectivity
sequence can be exploited to estimate
the wavelet.

Stochastic wavelet estimation. Sto-
chastic wavelet estimation is often
divided into two distinct problems:

Problem 1 (estimation): Under proper
assumptions, we can compute a func-
tional of the wavelet directly from

s(t), the observed data. The functional
must be capable of reducing the
unknown random r(t) to a tractable
quantity. It is also desirable to have
a functional that annihilates the addi-
tive random noise n(t). In mathe-
matical terms, we seek an operator F
such that

F[s(t)] = kr•G[w(t)] (6)

where kr is a constant and G
another functional to determine.

Problem 2 (spectral factorization): This
can be summarized as: Given an esti-
mate of G[w(t)], how do we estimate
w(t)? The latter leads to a new prob-
lem: Is w(t) uniquely determined by
G[w(t)]?

The importance of non-Gaussianity.
The idea of exploiting non-Gaus-
sianity dates to Wiggins’ MED (min-
imum entropy deconvolution) which
assumes that the reflectivity is a
sparse time series. In this context,
sparseness can be associated with
non-Gaussianity. In MED, an inverse
operator is iteratively retrieved by
maximizing a measure of sparseness.
This is also a metric that measures
departure from Gaussianity. The final
estimator of the wavelet is computed
by inverting the MED operator.

Our analysis assumes that the
reflectivity is a white noise time series
with either a Gaussian or non-
Gaussian distribution and that the
seismic trace can be represented by
the linear system given in equation
(1). The validity of equation (1) can
be challenged. In fact, the reflectivity
is not always a white-noise process,
and the wavelet might not be time
invariant. These effects can be quite
important in real data problems 
but that is beyond the scope of this
article.

The following three postulates,
which we shall not try to prove,
accentuate the importance of non-
Gaussianity in nonminimum-phase
wavelet estimation:

1) If r(t) is Gaussian and w(t) is a
minimum-phase sequence, auto-
correlation-based methods (sec-

ond-order statistics) will correctly
identify the amplitude and phase
of the wavelet.

2) If r(t) is Gaussian and w(t) is non-
minimum phase, no technique
will correctly identify the phase
of the wavelet.

3) If r(t) is non-Gaussian and w(t) is
nonminimum phase, the ampli-
tude and phase of the wavelet can
be recovered if we know the actual
distribution of r(t).

Statement 3 clearly suggests that
non-Gaussianity plays an important
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Figure 1. (a) A non-Gaussian
reflectivity. (b) Seismic trace. 
(c) True wavelet and wavelet esti-
mated by bispectral factorization.



role in nonminimum-phase wavelet
estimation. Higher-order spectra are
defined in terms of higher-order
cumulants and are useful to describe
non-Gaussian processes. Quite con-
trary to power spectral density esti-
mates (second-order statistics),
higher-order spectra are capable of
retaining phase information and,
therefore, are useful for estimating
nonminimum-phase wavelets.

In our approach to stochastic
wavelet estimation, F is the nth order
cumulant of the data, and G is the nth

order moment of the wavelet (cumu-
lants and moments are defined in the
appendix). It is easy to show that, for
a non-Gaussian white reflectivity, the
nth order cumulant of the seismic
trace is given by

cn
s(τ1, τ2, ... τ{n-1}) = 

γn
r Σ

k
w(k)w(k+τ1)...

w(k+τ{n-1}), (7)

where the variable γn
r is the central 

lag of the nth order cumulant of the
reflectivity (the other lags having
vanished). The term lag implies,
essentially, the time shift of the time
series with respect to itself.

The term on the right is also the
nth order moment of the seismic
wavelet multiplied by the scalar γn

r.
We will examine only the cases when
n = 2,3,4. The second-order cumulant
c2

s(τ) is also called the autocorrelation
function of the trace. In this case, γn

r

is the variance of the reflectivity
series, and the term under the sum-
mation symbol is the second-order
moment of the wavelet. For n = 3
(third-order statistics), c3

s(τ1,τ2) is the
third-order cumulant, γ3

r is the skew-
ness of the reflectivity, and the term
under the summation symbol is the
third-order moment of the data.
Similarly, the fourth-order cumulant
is obtained for n = 4; in this case, γ4

r

is the kurtosis of the reflectivity (vari-
ance, skewness, and kurtosis are
defined both mathematically and
semantically in the appendix).

At this point some comments are
in order. For Gaussian processes, the
higher-order cumulants n = 3,4...
vanish for all lags, i.e., γn

r = 0 for 
n = 3,4 ... On the other hand, if the
process is Gaussian, the central lag of
the second-order cumulant does not
vanish (γ2

r ≠ 0). As already mentioned,
the latter is the variance of the white
noise reflectivity.

The z-transform of the nth order
cumulant of the wavelet is

Cn
s(z1, z2, ... z{n-1}) = 

γn
r W(z1)W(z2)...

W(z1
-1 z2

-1...z-1
{n-1}) (8)

If this equation is evaluated on
the unit circle (|z|=1), we obtain the
expressions for the amplitude spec-
trum, n = 2, and for higher-order
spectra n = 3,4..., respectively.

Let us consider the second-order
statistics case, n = 2, 

C2
s(z) = γ2

r W(z)W(z-1) 

= γ2
r|W(z)|2 (9)

In this case, the amplitude spec-
trum of the trace is equal to the ampli-
tude spectrum of the wavelet
multiplied by a scale factor. It is
important to stress that the wavelet
phase is lost. The phase needs to be
imposed via an extra assumption. In
general, the wavelet is assumed to
be a minimum-phase signal. It is
interesting to note that for higher-
order cumulants the phase of the
wavelet is retained, and therefore it
can be estimated. The expressions for
the higher spectra obtained from the
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Figure 2. (a) Third-order cumulant of the data in Figure 1b. (b) The third-
order moment of the true wavelet.



third and fourth-order cumulants are
given by:

C3
s(z1,z2) 

= γ3
r W(z1)W(z2)W(z1

-1z2
-1) (10)

C4
s(z1,z2,z3) 

= γ4
r W(z1)W(z2)W(z3)W(z1

-1z2
-1z3

-1) (11) 

The spectrum of the third-order
cumulant is the bispectrum [equa-
tion (10)], and the spectrum of the
fourth-order cumulant is the trispec-
trum. As an exercise, one can substi-
tute into the previous expressions
W(z) = |W(z)|eiφ(z) and prove that the
phase information is not annihilated.

Afew words about the differences
between third- and fourth-order sta-
tistics are needed. The skewness is
zero except for asymmetrically dis-
tributed processes. This might not be

a good assumption on which to
model seismic reflectivity. In short
windows, one might expect a bias in
the amplitude of the reflectors and,
therefore, the skewness should not
vanish. On the other hand, the fourth-
order cumulant preserves phase
information for both non-Gaussian
symmetrically and nonsymmetrically
distributed reflectivities. This is why
we often prefer the fourth-order
cumulant over the third-order for
wavelet estimation.

Spectral factorization. Many time
series have a given autocorrelation
function. Spectral factorization, in the
context of second-order statistics, is
done to find one time series that is
also minimum phase. When higher-
order statistics is invoked, the mini-
mum phase assumption is not
required. In our approach to wavelet
estimation, the spectral factorization
for second- and higher-order statis-
tics uses the Kolmogoroff technique
(see Claerbout, 1985). In this method,
we take natural logarithm of the nth

order cumulant 

ln [Cn
s(z1,z2,... z{n-1}] = 

ln[γn
r] + ln [W(z1)] + ln[W(z2)]... 

+ ln [W(z1
-1z2

-1...z-1
{n-1}] (12)

By expanding the logarithm in a
Laurent series, it is easy to obtain an
expression that allows us to compute
the minimum-phase wavelet when 
n = 2 or a mixed-phase wavelet when
n = 3,4. For the higher-order case, the
minimum- and maximum-phase
components of the wavelet can be
estimated separately. In the numeri-
cal algorithm, the z-transform is eval-
uated on the unit circle using FFTs
(see Sacchi et al, 1998).

We illustrate the wavelet-estima-
tion problem with synthetic exam-
ples. We first estimate the wavelet
from a non-Gaussian process with

nonzero skewness using the third-
order cumulant. In this case, the 
seismic trace was simulated by con-
volving a wavelet with a sparse
reflectivity generated by randomly
setting to zero samples from a
Gaussian distribution. A different
probability was given according to
the sign of the sample. This is to guar-
antee a non-Gaussian process with
nonzero skewness. This example
used 128 points to estimate the third-
order cumulant. Figures 1a and 1b
show the seismic reflectivity and the
seismic trace. The resulting wavelet
is Figure 1c. Figure 2a shows the
third-order cumulant of the trace.
Figure 2b is an estimate of the third-
order moment of the wavelet.

Asimilar analysis was carried out
with the fourth-order cumulant
(Figures 3 and 4). In this case, a time
series of 256 points was used. In gen-
eral, estimation of the fourth-order
cumulant from the data is not easy.
The procedure is computationally
intensive and also requires long data
records. This requirement cannot
always be satisfied when working
with real data.

Cumulant matching. Another way
to estimate the wavelet is by cumu-
lant matching, i.e., finding a wavelet
that matches the cumulant of the
trace. The problem entails optimiza-
tion of a nonlinear misfit function
that can be minimized by linearized
inversion (Lazear, 1993) or global
optimization (Velis and Ulrych, 1996).

A hybrid strategy that combines
second- and higher-order statistics is
also plausible. The autocorrelation of
the trace can be used to retrieve a
minimum-phase wavelet. The roots
of the minimum-phase wavelet,
which lie outside the unit circle, can
be mapped inside the unit circle to
explore the space of plausible
wavelets with the same autocorrela-
tion function. A cumulant-matching
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Figure 4. (a) A slice of the fourth-order cumulant of the data in Figure 3a.
(b) A slice of the fourth-order moment of the true wavelet.

Figure 3. (A) A non-Gaussian
reflectivity. (b) Seismic trace. (c)
True wavelet and wavelet
estimated by trispectral factoriza-
tion.



criterion based on third- or fourth-
order statistics is then used to esti-
mate the nonminimum-phase
wavelet that honors the second-order
constraint (the autocorrelation) and
the higher-order constraints (the
third- or fourth-order cumulant). This
technique has been applied to real
data with encouraging results in the
case of wavelets with well defined
maximum-phase components (see
Sacchi, 1999).

Conclusions. Second-order statistics
answer the problem of wavelet esti-
mation when the reflectivity is white
and the wavelet is considered mini-
mum phase. By imposing an extra
assumption, non-Gaussian reflectiv-
ity, higher-order statistics can be 
used to extract nonminimum-phase
wavelets. The problem of estimating
a nonminimum-phase wavelet from
a higher-order cumulant is analogous
to the problem of estimating a mini-
mum-phase wavelet from the 
autocorrelation. In particular, the 
celebrated Kolmogoroff spectral fac-
torization, which is implemented via
the Hilbert transform, can be gener-
alized to the factorization of higher-
order spectra.
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Appendix. Sample estimates of sec-
ond-order and higher-order cumu-
lants can be estimated as follows:

c2
s(τ) = {1/N}∑

n
s(n)s(n + τ), 

c3
s(τ1,τ2) = {1/N}∑

n 
s(n)s(n + 

τ1)s(n + τ2),

c4
s(τ1,τ2,τ3) = {1/N}∑

n
s(n)s(n + τ1),

s(n + τ2)s(n + τ3) - 
c2

s(τ1)c2
s(τ3 – τ2) – 

c2
s(τ2)c2

s(τ3 – τ1) – 
c2

s(τ3)c2
s(τ2 – τ1)

For a zero mean process, the sec-
ond- and third-order cumulants are
equivalent to second- and third-order
moments, respectively. This is not the
case for the fourth-order moment
which is defined as 

m4
s(τ1,τ2,τ3) = {1/N}∑

n
s(n)s(n + 

τ
1)s(n + τ2)s(n + τ3).

The zero lag coefficient of the sec-
ond-order cumulant, c2

s(0), is the vari-
ance of the time series. The variance
is a measure of the energy in a time
series.

The zero lag coefficient of the
third-order cumulant, c3

s(0,0), is an
estimate of the skewness. This is a
measure of the asymmetry of the
associated probability distribution.
Similarly, an estimate of the kurtosis
is given by c4

s(0,0,0). The kurtosis of
a Gaussian distribution is zero. The
kurtosis is a measure of the contri-
bution of the tails of a distribution to
the total area under the distribution
curve.

0000 THE LEADING EDGE JANUARY 2000 JANUARY 2000 THE LEADING EDGE 83


