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Latest views of the sparse Radon transform

Daniel Trad*, Tadeusz Ulrych*, and Mauricio Sacchi*

ABSTRACT

The Radon transform (RT) suffers from the typical
problems of loss of resolution and aliasing that arise
as a consequence of incomplete information, including
limited aperture and discretization. Sparseness in the
Radon domain is a valid and useful criterion for sup-
plying this missing information, equivalent somehow to
assuming smooth amplitude variation in the transition
between known and unknown (missing) data. Applying
this constraint while honoring the data can become a se-
rious challenge for routine seismic processing because
of the very limited processing time available, in general,
per common midpoint. To develop methods that are ro-
bust, easy to use and flexible to adapt to different prob-
lems we have to pay attention to a variety of algorithms,
operator design, and estimation of the hyperparame-

ters that are responsible for the regularization of the
solution.

In this paper, we discuss fast implementations for
several varieties of RT in the time and frequency do-
mains. An iterative conjugate gradient algorithm with
fast Fourier transform multiplication is used in all cases.
To preserve the important property of iterative subspace
methods of regularizing the solution by the number of
iterations, the model weights are incorporated into the
operators. This turns out to be of particular importance,
and it can be understood in terms of the singular vec-
tors of the weighted transform. The iterative algorithm
is stopped according to a general cross validation crite-
rion for subspaces. We apply this idea to several known
implementations and compare results in order to bet-
ter understand differences between, and merits of, these
algorithms.

INTRODUCTION

In contrast to other common transformations, like the
Fourier and orthogonal wavelet transforms, the Radon trans-
form (RT) operator is not orthogonal. As a consequence, the
problem of applying the forward and inverse transform without
loss of data is not trivial. Many different methods have been
developed for obtaining the RT, but the most commonly used
is that of inversion. The misfit between observed and predicted
data is minimized subject to a constraint of obtaining the small-
est model in a least-squares sense, an approach usually leading
to what is known as zero-order regularization. This procedure
constitutes the standard (nonsparse) RT, often used with linear
or parabolic basis functions (Hampson, 1986; Beylkin, 1987).

The decrease in resolution as a consequence of limited aper-
ture is somewhat attenuated by the use of stochastic inversion
in place of zero-order regularization, originally proposed by
Thorson and Claerbout (1985), leading to the high-resolution

time-domain RT. Sacchi and Ulrych (1995) implemented the
sparse RT in the frequency domain by means of Bayes rule
using a Cauchy form probability-density function (pdf), which
is now generally used in seismic processing. Since then, some
other variants of the sparse RT have been developed. Cary
(1998) noted the superiority of the time domain algorithms
because of their ability to enforce simultaneously time and
Radon parameter sparseness. Another important advantage is
the ability of time domain methods to deal with time variant
problems in the data and model by using time variant model
and data weights. Cary also proposed the use of frequency do-
main operators in the time domain algorithms to obtain a bet-
ter waveform conservation. K. Marfurt and T. Nemeth (un-
published work), following previous work from Stoffa et al.
(1981) and Yilmaz and Taner (1994), noted the capability of
time domain algorithms for the sparse RT to deal with alias-
ing. Herrmann et al. (1999) proposed the so-called dealiased
RT, which prevents aliasing by carrying model weights from
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low (nonaliased) frequencies to high (potentially aliased) fre-
quencies. This algorithm also improves efficiency by limiting
iterations. All these papers showed that not only resolution
but also aliasing problems can be attenuated to some degree
by the use of sparseness criteria.

Enforcing sparseness brings new problems and new possi-
bilities. The problems are the increase in computation time,
possibly the introduction of artifacts and the difficulty to set
inversion parameters. The possibilities arise because a sparse
RT can be used for other purposes that are not possible to im-
plement with the standard smooth RT, for example, improving
continuity and separation of events and removing some arti-
facts like aliasing that require a high degree of dispersion in
the model space.

In spite of the fact that the sparse RT is superior to the
standard RT in the sense that it represents a generalization,
sometimes the sparse RT is difficult to implement because of its
sensitivity to the hyperparameters required to regularize the in-
version. The problem is more serious in the frequency domain,
where one hyperparameter per frequency has to be automati-
cally chosen. If the hyperparameter for one single frequency is
incorrect, the results are affected in the whole Radon domain.

In this paper, we have applied to the RT a series of concepts
and ideas often used in optimization. We first give an interpre-
tation of sparseness in terms of tailoring the model space basis
functions to the expected model. Then we show how to de-
crease the sensitivity of the RT to the hyperparameters, while
still achieving sparseness in the solution. We do this by incor-
porating the model weights into the operators and using an
automatic stopping criterion in the iterative algorithms as a
regularizer. The solution is then built by a limited number of
basis functions in the model space, but it is still sparse because
these basis functions are tailored for a sparse representation
of the desired solution. We present applications and examples
of this implementation for different known RT algorithms in
frequency, time, and time-frequency domains, as well as some
other problems and solutions that can be addressed by opera-
tor design and sparseness.

SPARSE INVERSION

Given any transformation m on some data d [for example
the RT, m = RT(d)], the problem can be cast as the inversion
for the model that generates the data under the action of the
operator L (Claerbout, 1992):

d=Lm. (1)

This model does not need to be physical. It simply represents
the result of the transform applied on the data. Casting the
problem in this manner, the transform can be found by apply-
ing the vast arsenal of tools available from inverse theory. To
invert operators, we define a cost or objective function, which
is a mathematical expression that measures the undesired char-
acteristics of the model. There are many possibilities, but most
often we pursue a model that honors the data and has a mini-
mum of information not required by the data. This statement
of goals is commonly presented as

minimize |[Wmm]|p

subject to [|[Wqy(d — Lm)||] = ¢q, 2)

where ¢4 is some estimate of the noise level in the data plus a
residual due to the failure of the proposed model to explain the
data. Wy is a matrix of data weights, often a diagonal matrix
containing the inverse of the standard deviation of the data, and
W, is a matrix of model weights that we can design in order
to enhance our preference regarding the model, for example
resolution or smoothness. In equation (2), pand g indicate that
different norms can be applied to measure the norm of vectors.
A sparse model can be obtained by simply choosing a norm
that does not penalize very strongly large elements contained
by the model. Conversely, a norm that penalizes large elements
leads to smooth models. These model and data weights can be
related to model and data covariances matrices by means of a
Bayes formulation.

A common approach for obtaining a sparse transform is to
choose a ¢; norm for the model and a ¢, norm for the data
misfit. This mixed norm problem can be easily transformed
to a £, — ¢, problem by using model dependent model weight
matrices with elements proportional to

1
[Wnli = ok (3)

since

Imil} =) Imi| = m" Wy Wom = [Weml5. (4
i

To avoid division by zero, a minimum threshold has to be cho-
sen for Wp,. This threshold constitutes the first hyperparameter
and depends on the size of the model. As a robust measure of
the size of m, we have used with some success a quantile of the
distribution. The p quantile of m is the value of m where its
cumulative distribution takes the value p. It can be obtained
simply by sorting the data and then taking the value located at
the index p x N, where N is the number of elements [see for
example Lupton (1993)]. The smaller the quantile, the sparser
the transform. Hence, this number defines the trade-off be-
tween sparseness and smoothness. The same order of quantile
can be used for all frequencies. The actual values will be dif-
ferent, but all of them represent the same relative size of the
model.

We can now set the misfit and undesired characteristics of
the solution in a cost function and, by minimizing it, obtain the
model that better approximates the desired solution. Thus, the
model can be found by solving the system of equations

(AW Wp + LTWIWoL)m = LTW;Wed,  (5)

where A is the second trade-off hyperparameter that will allow
a different weight to be assigned to the misfit and model con-
straints. Most variants of the sparse RT share the same basic
system of nonlinear equations (5). Among the many differ-
ent methods of solution, the one most often used because of
its simplicity and efficiency is the iteratively re-weighted least
squares (IRLS) algorithm (Scales et al, 1988). In this method
the nonlinear system of equations is solved iteratively by fixing
the model weights to some previous estimation and applying a
linear minimization at every iteration (referred to from now on
as external iterations). The purpose of these external iterations
is to update the model weights, by using an approximated so-
lution to the problem in hand. Because the model weights are
fixed for every iteration, a simple algorithm for solving linear



388 Trad et al.

problems can be applied. A common choice is some subspace
method, in general a conjugate gradient (CG) algorithm. In
this case, there are also iterations for the linear solver, referred
to as internal iterations.

By applying a right preconditioning, the modeling
equation (1) becomes

d=LW,'W,m, (6)
and the optimization problem (2) is now
minimize |||
subject to |Wq(d — LW,,'fh) Hg = ¢, (7)

where m = W;,m. The minimization of the cost (7) produces
the following system of equations:

(M + W, TLTWIWGLW, )i = W, "LTW[Wad. (8)

Hence, the effect of the right preconditioning is to set the model
weights as part of the modeling rather than a penalizing factor
in the cost function.

The system (8) can be solved very efficiently by setting A =0
(noregularization) and letting the number of internal iterations
in the CG algorithm play the role of regularizer. The system
of equations is only partially solved at every external iteration,
because the conjugate gradient algorithm is stopped before the
solution is complete.

Note that the hyperparameter A is no longer used, but a good
stopping criterion for the CG algorithm is required instead. The
stopping criterion for the external iterations is less important
because in real data processing the minimum of the cost func-
tion is never achieved and generally only a few (2-4) iterations
are applied, with reasonable results. Hence, we will discuss only
the stopping criterion for the CG algorithm. A stopping crite-
ria based on generalized cross validation (GCV) for subspaces
(Haber, 1997) has proven to be very efficient, giving excellent
stability to the CG algorithm. The GCV function measures the
dependence of the solution on local information (for exam-
ple, one data point) rather than global information. Basically,
the GCV function is a weighted sum of the data misfits ob-
tained by solving the problem with successive elimination of
data points (one point eliminated at a time). The iterative algo-
rithm is stopped when the GCV function reaches a minimum.
The GCV function for the solution of d = LW, 'W,m can be
computed as

Y [d( — dgn T
S (1= Cyp)?

where Cy i are the diagonal elements of the resolution matrix,

GCV(.) = 9)

C=C(H)=LILTL+ADL", (10)

where Ii:LW;q1 and A is the regularization parameter that
controls the trade-off between the achieved misfit and the
minimization of the model norm. When the number of iter-
ations in the CG algorithm plays the role of the hyperparam-
eter A, however, the GCV function can be simplified. Because
of the connection between truncated CG and truncated sin-
gular value decomposition (SVD) through Ritz polynomials
(Hansen, 1998), the GCV function can be approximated by

(Haber, 1997)

YN [d(iter) — dgv ]

GCV(iter) = (N = iter?

(11)
This last approximation does not involve any extra operation
inside the CG algorithm other than a simple division per iter-
ation and is computationally much more tractable.

SPARSENESS AND SINGULAR VECTORS

The effect of the model weights on the final solution is to
transform the singular vectors of the kernel such that they ap-
proximate the desired solution. The similarity between the sin-
gular vectors of the kernel and the true or desired solution is
a very desirable property because it allows the iterative linear
solver to map the desired solution in the first few iterations,
leaving the noise and nondesired characteristic of the solution
to be mapped at a later stage. Therefore, regularization im-
posed by the number of iterations becomes very efficient.

Even though the kernel of the transformation is defined
uniquely, model weights have the highly appealing property of
transforming the kernel so that its right singular vectors (the
vectors that span the model space) become closer to the model
used to calculate the model weights. In fact, at every external
iteration, these singular vectors become better approximations
to the true model, and a smaller number of internal iterations is
required. This statement can be understood from the point of
view that the number of internal iterations in CG plays a sim-
ilar role in the solution as the number of significant singular
values used to build the solution in truncated SVD (Hansen,
1998).

We now illustrate this phenomenon by means of a simple
example. Two Ricker wavelets (Figure 1b) in the Radon space
generate two parabolic events by using the inverse parabolic
RT (PRT) (Figure 1a). The wavelets are located very closely
in the RT space, so that they produce events with very similar
curvature. The RT of these data was computed by using the
least-squares RT and the high-resolution RT (Figures 1f and
1g, respectively). We chose a particular frequency to compare
the singular vectors of the original kernel L and the singular
vectors for the weighted kernel LW;!. The model and the sin-
gular vectors are shown in Figure 1. Figure 1c displays the real
part of the true solution (i.e., the original events in the Radon
space). Figure 1d presents the real part of the third singular
vector of the RT kernel L. This singular vector is similar to a
harmonic function and, as such, is not suitable for a parsimo-
nious representation of the sparse model shown in Figure 1c.
Many singular vectors are required to construct the desired
sparse solution. Figure le presents the real part of the third
singular vector of the weighted RT kernel LW,!. The singular
vector has become a localized function, much better able to
represent sparse events with very few components. As a con-
sequence, a small number of iterations is required when using
iterative solvers like CG. For ideal clean large-aperture data,
both kernels should lead to the same solution, but the presence
of noise and other nonideal conditions make the final solutions
very different. In these conditions, either the iterative scheme
is stopped before completion or some regularization for the
system of equations is applied. In both situations, the final so-
lution is built by only some of the singular vectors. For the
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nonweighted kernel, this implies smoothing or lack of resolu-
tion. For the weighted kernel, the solution is basically the same
because the most important information is obtained in the first
few iterations.

The example shows that a more parsimonious solution can
be obtained by updating our knowledge about the model in
every iteration and incorporating this information into the op-
erator of the transform. Parsimony in the solution is impor-
tant because there is a limitation, due mainly to the noise, on
the number of singular vectors that we can use to build the

model. Therefore, parsimony leads not only to a more resolved
model but also allows us to decrease the influence of noise in
the solution. As a practical consequence, the number of inter-
nal iterations decreases as the number of external iterations
increases.

IMPLEMENTATIONS

Because, in general, very fast direct methods of solving equa-
tions (5) and (8) are not available, as there are for the standard
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FIG. 1. (a) Two parabolic events with very similar curvature. (b) The ideal PRT of (a). (c) The ideal solution
(real part) for a particular frequency. (d) Third right singular vector of the RT forward kernel (real part).
(e) Third right singular vector of the model weighted RT kernel (real part). (f) Nonsparse RT obtained with the
nonweighted kernel. (g) Sparse RT obtained with the weighted kernel.
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(nonsparse) RT, iterative methods are usually preferred to
solve these system of equations. CG is a common choice be-
cause of very well-known convergence properties, closely re-
lated to the nature of the SVD solution (Hansen, 1998). When
solving the system of equations (5), the cost of the CG method
is dominated by the action of the operator

A= (AW W, + LTWW4L) (12)

acting on a vector (A0 in general). In Sacchi and Porsani
(1999) and in Schonewille and Duijndam (2001), this opera-
tion is performed by circular convolutions in the Fourier do-
main. The same idea can be applied when solving the system
of equations (8), where it is necessary to apply the transformed
operator

A=W_TLTW]W4LW_!, (13)

where the hyperparameter A has been set to zero as mentioned
before because the number of iterations, given by GCV, can be
used instead to regularize. The required steps to compute the
action of the operator A on a vector are:

1) At a given iteration, multiply the residual vector by the
diagonal model weight matrix W\

2) Multiply the resulting vector by the matrix LTW] WyL
using fast Fourier transforms (FFTs), which requires first
the expansion of this matrix to make it circulant (Sacchi
and Porsani, 1999).

3) Multiply the resulting vector from the previous step by
the diagonal model weight matrix W1

The sparse RT calculated with this scheme in the frequency
domain is very fast. It has a disadvantage, however, because the
model weights computed in the frequency domain are coupled
for all times when, in fact they should not be. As a consequence,
the same weights are imposed for all events (at different times)
in a particular trace in the data and Radon spaces. One event
at one particular time in the Radon space favors events in that
trace for all times. As a result, artifacts are often generated for
traces with high-energy events. These artifacts can be seen in
the sparse RT in areas where the smooth RT shows no energy.
When the hyperparameters are properly set, this problem can
often be neglected, because the energy of the artifacts becomes
much smaller than the energy of the main events. This is, how-
ever, one of the causes for the sensitivity of the results to the
hyperparameters.

Cary (1998) recognized this weakness and proposed to com-
pute time-invariant RTs in the time domain but applying fre-
quency domain operators. Frequency domain operators have
two important advantages over their time domain counter-
parts. First, if the computation is done properly inside the band-
width of the signal, the waveforms are well preserved. Secondly,
the action of the forward and adjoint operators can be com-
puted by means of circular convolution in the Fourier domain.
Thus, this approach combines the best of both methods, flex-
ibility in the model and data weights, time sparseness, speed,
and good waveform preservation. Because it imposes sparse-
ness in the Radon coordinate and in time, the RT is very clean,
with few artifacts. The Radon frequency-domain operator is
applied in cascade with a forward and inverse FFT:

d=7F"'LFm. (14)

In this equation, d and m are vectors in the time domain, and F
and F~! are forward and inverse Fourier transforms. The same
CG method can be used, but every time the forward or adjoint
operators are required in the algorithm, the three operators
are applied in sequence. In particular, the weighted operator
A now becomes

A=W, TFTL'FTFr'LFW, ], (15)

where we have not included W] Wy for the sake of simplicity.
We can simplify equation (15) because, for the Fourier trans-
form with sampling Af =1/(NAt) (the commonly used FFT),

Fl=FlandF " =F. (16)
Hence,

A=W, TFILTLFW, . 17)
Thus, the CG matrix vector multiplication can be applied as

1) At a given iteration, multiply the residual vector by the
diagonal model weight matrix W, !.

2) Take the FFT of the result.

3) Multiply the resulting vector by the matrix LTW] WyL
using FFTs, which requires that LYW WyL be made
circulant.

4) Take the inverse FFT of the result.

5) Multiply the resulting vector from the previous step by
the diagonal model weight matrix W;,!.

Full sparseness in time, as well as in q (i.e., assuming that
events map to spikes in time), is an unrealistic constraint. Par-
tial sparseness can be imposed by applying another operator,
convolution with a wavelet in the forward operator, and corre-
lating with the same wavelet in the adjoint. This is equivalent to
assuming a nondiagonal covariance matrix because the model
parameters are correlated in time. Of course, this procedure re-
quires some knowledge of the wavelet. If this is not the case, an
approximated zero-phase and zero-mean wavelet can be used
with the purpose of band-filtering the RT space. However, this
is not a critical point because in practice we always impose
only partial sparseness by truncating the external iterations
before achieving the minimum of the originally proposed cost
function. Therefore, the convolution operator can be usually
neglected.

Hence, in every iteration of CG least squares (CGLS), it is
necessary to apply four operators for the forward sequence
(convolution, FFT, Radon transform, and inverse FFT) and
for the adjoint (FFT, Radon transform, inverse FFT, and cor-
relation). Results with this method are usually very clean and
artifact free. The price to pay is, of course, more computing
time. However, application of all these operators is very fast,
and the main burden is that the convergence of CG is slower
due to the large number of variables in the time domain. It
also requires some extra memory space for storing the three
dimensional Radon operator [L (w, h, ), where w is frequency,
h is offset, and q is the Radon parameter].

Time-variant RTs (hyperbolic, elliptical, and other variants)
require very large (and sparse) operators in the time domain.
The design of the operators makes a large difference in time do-
main methods because of their complexity and flexibility. Time
domain methods produce the most sparse results, because of
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the similarity of their basis functions to the seismic reflections.
Similar to what happens in migration methods, time domain al-
gorithms can compete very efficiently with frequency domain
algorithms when only part of the output space is required. For
example, multiple attenuation by RT becomes very fast for
deep marine data, as the required output space involves only
those events following the first multiples.

Another aspect that leads to different implementations is the
procedure used to estimate the model weights. A fairly sim-
ple and efficient procedure is to take the model information
not from a previous iteration but from previous frequencies
(Herrmann et al., 1999). This implementation avoids external
iterations (partially or completely, depending on the data) and
also attenuates alias artifacts because low frequencies are less
demanding in terms of offset sampling and are, in general,
not aliased. Therefore, if the model weights are transported
from low frequencies to high frequencies, it is less likely that
they will be affected by aliasing. The assumption behind this
method is that the spectrum of the traces in the Radon space
changes slowly. This may be true for the wavelet itself, but is
certainly not true after convolution with the reflectivity series.
Hence, some smoothing is required. Our implementation of
this method calculates the first 10-15 frequencies of the RT
using IRLS. For the following frequencies, the model weights
are computed as a function of an average of the model space
inside a sliding window that extends from the last computed
frequency toward low frequencies. Therefore, external itera-
tions are required only for the first frequencies. The degree of
sparseness can be controlled by the number of external itera-
tions over the first frequencies, by the number of frequencies
computed using IRLS, and/or by the length of the window used
for the model weights. A combination of all these methods
seems to work fine in general.

Avoiding external iterations is very important for time do-
main methods because of the already large computation time.
When the CMPs are computed along a seismic line, it is usually
a good approximation to carry the model weights from CMP
to CMP. A semblance function also produces a good approx-
imation to the model weights (Stoffa et al., 1981; Yilmaz and
Taner 1994).

APPLICATIONS AND EXAMPLES

Although the achievement of high resolution in the RT has
many applications, facilitation of multiple removal is probably
the most important. In the first example, we test the improve-
ment in resolution for the previously discussed algorithms in
a very simple synthetic gather. Figure 2 shows an example of
multiple attenuation using sparse RT. The synthetic gather for
the resolution tests consists of four events following a given
velocity trend, simulating primaries, and three events with the
velocity of the first primary, simulating multiples. Similar to
what happens in surface reverberations, one of these multiples
has its polarity reversed. The destructive interference of this
event with a primary located at the same two-way traveltime
produces almost zero amplitude at near offsets and a change
of shape of the wavelet as the difference in moveout increases
with offset. In all the examples we apply a simple (time in-
variant) automatic muting in the Radon space to eliminate the
primaries, and from this filtered space we recover the multi-
ples. These multiples are subtracted from the data. Events with

residual moveout smaller than 0.9 x 1078 s/m? (the units rep-
resent residual moveout per offset square) have been removed
by the mute process. Figure 3 shows the RTs for this synthetic
gather, computed using the nonsparse RT (Figure 3a), the fre-
quency domain CG algorithm (Figure 3b), the time domain
CG with frequency domain operators (Figure 3c), and the hy-
perbolic time-domain RT (HRT) (Figure 3d). In the time do-
main examples (Figures 3c-d) the RT mapping contains spikes
rather than wavelets because the convolution with the wavelet
has been included into the operators. In all the CG algorithms,
the operators were applied using the FFT circular convolu-
tion method. The gain in resolution is considerable because
the data are almost noise free and very simple in nature. In this
situation, it is possible to tune the hyperparameters to obtain
very high resolution without generating noticeable artifacts.
In all the sparse transforms, we have used a quantile of 10%
as a robust measure of the data and five external iterations.
The number of internal iterations, automatically determined
by GCV, decreases as the model weights become closer to the
sparse solution, but for this example ranges from 30 to 10.

With real data, however, other aspects come into play. Dif-
ferent ways to implementing a sparse RT sometimes yield very
different results. Figure 4 shows an example of multiple at-
tenuation on a CMP gather from the Gulf of Mexico. In this
example, we have used the fast frequency-domain CG. Figure 5
presents the same example but using the HRT. Because of the
flexibility of the time domain algorithm, the RT space could
have been computed only below 3.5 s (there are no multiples
above this time). The HRT suffers from moveout stretching
as normal moveout (NMO) correction (and hence PRT) does.
Therefore, we apply a stretching filter to the data before the
transformation. The separation of primaries and multiples has
been performed efficiently by both methods. The PRT pre-
served the waveform and complicated nature of the events in
a better manner, demanding less time as well. Yet, the HRT
has separated more clearly the primaries and multiples and
achieved more sparseness in the RT space.

We have obtained similar separation of primaries and mul-
tiples by using all the discussed methods. However, a closer
examination of the RT space shows differences between differ-
ent implementations. Figure 6 presents a comparison between
the RT of the same gather computed by the standard RT using
Levinson algorithm (Figure 6a), the fast frequency-domain CG
(Figure 6b), the time domain CG (Figure 6c), and the hyper-
bolic RT with irregular RT space (Figure 6d) as discussed in
Trad et al. (2002). The standard RT is very clean (sparse) in the
vertical direction (along time), but shows the typical truncation
artifacts (Kabir and Marfurt, 1999) and reduced lateral resolu-
tion (along q). The result with the fast sparse RT in Figure (6b)
shows high lateral resolution, but the frequency dependence
of the model weights gives rise to artifacts in the vertical di-
rection. These artifacts become more evident when a clip less
than 100% is used in the displays, otherwise they are difficult to
note. This problem can be attenuated by the relaxation of the
sparseness constraint, although that approach also decreases
the lateral resolution. The time-domain sparse PRT approach
overcomes this problem (Figure 6¢). The RT looks very clean
in both directions, in particular when the iterative algorithm is
stopped at early stages, giving mainly a reconstruction of the
strongest events that have to be attenuated. The computation
time increases by about four times, even though FFT matrix
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vector multiplication is used. Whether this improvementin ver-
tical resolution pays off the extra time required is data and goal
dependent. The HRT (Figure 6d) shows a better separation of
the events, mainly because the similarity of the basis functions
and the seismic events leads to better resolution. Note that the
parameter along the horizontal axis has different meaning for
the HRT than for the PRTs.

These differences between multiple removal in different
implementations are not easy to note in a final section, af-
ter NMO and stack. Differences between PRT and HRT are
more evident. Figure 7a contains the NMO + stack section of

Trad et al.

the Mississippi Canyon data set, without multiple attenuation.
Figures 7b and 7c show the same section with multiple atten-
uation using PRT and HRT, respectively. Some improvements
can be seen using the HRT, because of the large moveout dif-
ference between primaries and multiples in this data set. The
differences in the shallow part are due to the fact that the HRT
has been used to predict multiples below 3 s only, because the
surface multiples are mainly in depth. In the PRT, we have used
a quantile of 50%, three external iterations, and a maximum of
30 external iterations. For the HRT, we changed the quantile
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PROBLEMS AND SOLUTIONS

Aliasing in the RT due to poor offset sampling is frequency
dependent. As a consequence, aliasing yields artifacts that
seem uncoherent in the time domain representation of the RT.
This characteristic makes sparse time-domain algorithms capa-
ble of attenuating aliasing (Yilmaz and Taner, 1994). Also, the
distance between aliased versions of a true event is larger for
the low frequencies than for the high frequencies. Therefore, as
mentioned previously, frequency domain methods where the
model weights are carried out from frequency to frequency are
also successful in attenuating aliasing (Herrmann et al., 1999).
Figure 8a shows a gather with two parabolic events. The alias
of the first event at 0.4 s will map into the same range of q
values as the second event at 0.8 s. As a result of the frequency
dependency of aliasing, the RT contains a series of artifacts
when normal frequency domains methods are used (Figure 8b).
Time domain algorithms can, when the sparseness constraint
is enforced, yield aliasing free RTs (Figure 8c). The same good
results can be obtained by a frequency-domain dealiased RT
(Figure 8d).

(c}
FiG.3. (a) Nonsparse PRT. (b) Frequency-domain sparse RT. (¢c) Mixed frequency-time domain PRT
(d) HRT.

Another serious problem in the RT is the existence of the
null space of the transform (i.e., when part of the data has a
zero mapping into the transformed domain). This null space
arises mainly when the range of spanned basis functions, given
by the sampling and aperture in the RT space, is insufficient
to synthesize some of the data events, either noise or sig-
nal. From this point of view, it is interesting that a combined
linear—pseudohyperbolic Radon transform (Trad et al., 2001)
decreases the size of the model space without increasing the
nullspace of the transform. An advantage of using a dual RT
operator is the freedom to choose different parameters for the
two parts of the model space (e.g., sampling interval in the
Radon domain, maximum frequency to use, regular or irreg-
ular Radon sampling, etc.). If the data contain linear and hy-
perbolic events, the sampling for the hyperbolic space cannot
fulfill the aliasing condition for linear and hyperbolic events
simultaneously. The dual RT does not have this problem; each
part of the model space fulfills the aliasing condition for the
events that it is expected to map. To show its capability, we re-
move ground roll in a real data set: shot gather number 25 from
Yilmaz (1987) (Figure 9a, reprinted from Trad et al., 2001).
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Because a shot gather is in general asymmetric, the PRT re-
quires a different model for negative and positive offsets (this
is another problem where a RT with two different operators
can be used). Figure 9b shows 320 traces in the Radon domain.
The first 160 traces correspond to the negative offsets, traces
161-320 correspond to the positive offsets. Each half shows
the two spaces side by side; the linear RT is on the left, the
pseudohyperbolic is on the right. Applying again a mute in the
pseudohyperbolic space or, equivalently, using only the linear
operator of the hybrid RT, the linear ground roll can be mod-
eled (Figure 9c) and separated by subtraction (Figure 9d). In
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this example, we used a quantile of 10%, three external itera-
tions, and a maximum of 50 internal iterations. The bandwidth
for the parabolic RT was 80 Hz, but for the linear RT it was
only 40 Hz because the ground roll has mainly low frequencies.
A very small part of the ground roll remains in the small offset
traces and can perhaps be removed using additional filtering.
This part of the data has not been predicted for two reasons:
the slopes become very large (approaching infinity), and the
linear events are heavily aliased. In fact, f-k filtering has simi-
lar difficulty in removing the ground roll in the near zero-offset
traces.
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CONCLUSIONS

Problems in the RT appear as a result of limited information,
including discrete sampling in offset and time, discrete veloc-
ity parameterization, finite aperture in offset and velocities,
and missing data, in particular due to low fold. As a conse-
quence, the conventional RT suffers from low resolution, arti-
facts, aliasing, and a nontrivial null space. Even though none
of these problems can be completely solved because they arise
from the character of discrete signals, many of them can be
attenuated by means of the sparse RT. From the examples
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considered in this paper, we can conclude that the performance
of the sparse RT in separating primaries from multiples and in-
terpolating gaps, is superior to the performance of the standard
RT. Nonetheless, its application to real data is nontrivial, and
well-designed algorithms are required. Not only must the al-
gorithms be fast and robust, they must also be easy to apply.
Many different implementations have been developed for
the sparse RT. Differences arise due to the domains where
the RT is computed, how the model weights are obtained, and
how the operators are designed. One problem common to all
of them is the difficulty in choosing the hyperparameters. This
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is indeed a very difficult problem because the computation
time must be kept low, and hence many well-known (and slow)
methods of estimating the hyperparameters cannot be used.
A simple but partial solution to this problem resides in incor-
porating the model weights into the operators and using the
number of iterations as a regularizer. If a good stopping crite-
rion is applied, the effect of the hyperparameters is less critical.
A combined GCV algorithm appears to be very practical. The
GCV function stops the inner iterations, acting as a filter for
the mapping of poorly resolved events in the data. The number
of external iterations acts as a tradeoff between sparseness and
smoothness. A good stopping criterion for the external itera-
tions is less of a problem, because the IRLS algorithm tends
to converge to a stable solution and the minimum of the cost
function is never reached in practical applications.

In this paper, we have used the ideas of fast conjugate gra-
dient algorithms, IRLS method, inversion by transformation
to standard form and GCV to implement several known vari-
eties of the RT and have compared results. Frequency-domain
sparse RTs provide a robust fast tool for interpolation and sep-
aration of events. The main weakness of these implementations

Tau(s)

21l

is the introduction of artifacts, a problem that is efficiently ad-
dressed by time domain methods. Time domain methods allow
the enforcement of time sparseness, leading to cleaner trans-
forms, but some price has to be paid in terms of computation
time.

Operator design and computation of the model weights are
two wide areas of research. We have discussed some practical
aspects of both topics. We have also exemplified how the flex-
ibility of the RT to separate events with different shape can
be extended by creating hybrid transforms with more than one
operator. This implementation leads to a very flexible trans-
form, in the sense that two different sets of basis functions can
be used and the two Radon spaces can be designed with dif-
ferent characteristics to avoid aliasing and other artifacts. One
application of this hybrid approach that we have illustrated is
the separation of coherent noise.
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