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When it comes to the evaluation of stratigraphic plays,
the issue of lateral wavelet stability ranks as an important
concern. Interpreters accustomed to working complex struc-
tural plays may be inclined to relegate this type of concern
to “background noise” status, but the reality is that when
decisions to drill hinge on extremely subtle changes in wave-
form character (“when this front-loaded trough begins to
show signs of splitting into a doublet, we’ve got porosity,”
etc.), one cannot afford to be confusing geology with lateral
changes in the embedded wavelet. In this short article we
describe, and provide a mathematical justification for, a
very simple technique which can help detect lateral changes
in wavelet phase. The method entails first identifying a
regionally stable and geologically “isolated” seismic event,
then computing the instantaneous phase at the peak of the
instantaneous amplitude (i.e., envelope) of the associated
seismic waveform. Under certain restrictive conditions
described below, the instantaneous phase evaluated at the
peak of the instantaneous amplitude can be a good estimate
of the wavelet phase.

In the first part of our paper, we describe the technique.
Then we provide a mathematical foundation by showing
the equivalence between Fourier phase and instantaneous
phase at the envelope peak for the special case of a constant-
phase band-pass wavelet with a boxcar amplitude spec-
trum. Next, we show that when the analysis window
contains two overlapping wavelets, the instantaneous phase
and the Fourier phase of the wavelet do not always coin-
cide. We use a simple numerical example to explore the mag-
nitude of the error introduced by the technique under such
circumstances.

Background. Interestingly, instantaneous phase isn’t usu-
ally discussed in the context of “phase” in the usual sense
of the word (i.e., in the sense of Fourier phase of some por-
tion of the seismic signal). Instead, most literature seems to
focus on the fact that the instantaneous phase tends to
emphasize event continuity. However, there are at least two
notable exceptions: Bodine (1984) showed an interesting
result on synthetic data, namely that instantaneous phase
evaluated at the envelope peak is equal to Fourier phase for
a constant-phase trapezoidal-band-pass wavelet. Also, White
(1991) exploited this intuitively-rooted property in an inter-
esting paper illustrating a technique (which he credited to
Turhan Taner) to estimate wavelet phase from a seismic
trace via histogram analysis of instantaneous phase values
measured at the envelope maxima.

Clearly this property that Fourier phase equals instan-
taneous phase at envelope peak for an isolated band-lim-
ited wavelet doesn’t represent some new discovery. So why
revisit it in the present paper? Well, aside from the fact that
this property serves as the foundation for the aforemen-
tioned lateral wavelet stability tool, it seems to be somewhat
overlooked by the seismic community at large (at least,
according to our informal polling), so we hope to rekindle
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Figure 1. Seven “trace bundles,” each consisting of 12 identical
zero-phase traces rotated in steps of 30°.
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Figure 2. Instantaneous amplitude of the zero-phase traces rotated in
steps of 30°. Pick is on peak of amplitude envelope.

awareness of its existence. Moreover, to our knowledge it
has never been validated via formal mathematical proof
(which we present below); rather, its existence seems to
have been inferred from intuition and numerical experi-
ments.

It’s interesting to note that our following proof that
instantaneous phase evaluated at envelope peak is equal to
Fourier phase for a constant-phase boxcar/band-pass
wavelet has a counterpart in the context of instantaneous
frequency. Barnes (1991) proved that for any constant phase
wavelet (this amounts to a somewhat broader class of
wavelets than the boxcar/band-pass wavelets we are
presently studying), the instantaneous frequency evaluated
at the envelope peak is equal to the average Fourier spec-
tral frequency weighted by its amplitude spectrum.
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Figure 3. Instantaneous phase of the zero-phase traces rotated in steps
of 30°, with pick on peak of amplitude envelope.
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Figure 4. Instantaneous phase from Figure 3, extracted at the pick time
(i.e., at the envelope peak).
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Figure 5. An analytic low-pass wavelet with constant phase rotation.
The upper diagram displays the real and imaginary parts as well as the
complex envelope. The lower diagram shows the instantaneous phase.
Notice that the instantaneous phase at t = 0 (i.e., at the peak of the
envelope) coincides with the true phase rotation.

We use a synthetic example to illustrate our methodol-
ogy to compute phase variations along a seismic reflector.
Figure 1 shows twelve band-pass wavelets rotated in steps
of 30° from zero (no rotation) to 180°. Figures 2 and 3 show
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the instantaneous amplitude (envelope) and instantaneous
phase, respectively. Figure 4 displays the instantaneous
phase measured at the peak of the envelope and we observe
a perfect agreement with true phase of the wavelet. Thus,
real-world implementation of the technique entails:

1) identification of a regionally stable, “isolated” seismic
reflector;

computation of both instantaneous amplitude and phase
along the reflector;

picking the peak of the instantaneous amplitude;
extracting (and displaying) the instantaneous phase at
the pick time.

2)

3)
4)

Technique limitations (read: disclaimer!) The technique’s
most attractive feature is that it’s easy to use from the inter-
preter’s viewpoint. This ease of use stems from the fact that
many commercial interpretation packages allow ready com-
putation of the requisite complex trace attributes, and of
course by design they also offer good horizon pickers and
easy result visualization. However, along with the tech-
nique’s ease of use comes a rather limited realm of applic-
ability (isn’t that always the way of the world...). Specifically,
the data must conform to a couple of rather restrictive
assumptions.

First, the data set must contain an isolated, regionally
stable seismic reflector. Although this might seem like a
hopelessly restrictive requirement, it turns out that in many
parts of the world such reflectors do exist—take for exam-
ple, the reflection from the top of Wabamun Formation in
many parts of the Western Canadian Sedimentary Basin.
Still, violation of this assumption can lead to gross errors in
wavelet phase estimation, as we'll see in a subsequent sec-
tion where we apply the technique on a synthetic data set
consisting of two overlapping wavelets (those who don’t
feel like wading through the ensuing math can fast track to
Figure 6 to see this effect).

Second, the method assumes that the real-world embed-
ded wavelet can be modeled as a constant-phase box-
car/band-pass wavelet. In reality, some wave propagation
effects known to induce lateral variations in wavelet phase
produce frequency-dependent phase and amplitude varia-
tions (e.g., the physical processes of stratigraphic filtering
and anelastic attenuation), and such variations will not be
properly modeled by the proposed technique.

Because of the above limitations, we are not touting the
above technique as some sophisticated approach for deriv-
ing accurate measurements of wavelet phase; rather we see
it as a “quick-and-dirty” red-flagging tool capable of iden-
tifying potential wavelet stability problems on many data
sets. There are other more sophisticated lateral phase analy-
sis techniques out there, including the popular technique of
tracking lateral changes in phase rotation along several
regionally stable, independent windows, and also mixed
phase wavelet estimation via the use of third- or fourth-order
statistics (e.g., Lazear, 1993).

Proof. We assume a constant-phase, band-pass wavelet
where the amplitude spectrum is a boxcar function with
upper and lower frequencies given by fy; and f;, respec-
tively, and corresponding upper and lower angular fre-
quencies B = 2nf; and b = 27f;. The constant phase rotation
is equal to c. The frequency domain expression for the ana-
lytic signal associated with this wavelet is obtained by dou-
bling the Fourier components for non-negative frequencies,
and zeroing them for negative frequencies. Thus, in the time
domain we can write the analytic signal as:
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This complex analytic signal (Taner et al., 1979) can be
written in terms of its real (the wavelet) and imaginary
parts:

f.(t)=R(t)+iG(t) ()

After evaluating the integral in equation 1, we arrive at
the following expressions:

R(t)= %[sin(c+Bt)—sin(c+bt)] (3a)

1
G(t)= ;[cos(c+bt)—cos(c+Bt)] (3b)
The above expressions can be used to determine the
instantaneous amplitude (envelope), e(t), and the instanta-
neous phase, ¢(t):

2[1—cos((B=b)t)
gt

e(t)=G(t)* + R(t)* = (4a)

G(t) _ cos(c+bt)—cos(c + Bt)

tan[ p(t)] = R(t)  sin(c+ Bt)—sin(c+bt)

(4b)

It is interesting that the above expressions can also be
used to rewrite the seismic wavelet in terms of a slow vary-
ing component, e(t), and a time-dependent phase function,
¢(t), as follows:

where we have used the fact (from equation 4b) that
cos(p(t)) = R(H/AG(H)* + R(1)*

We see from equation 4a the well-known fact that the
envelope does not depend on the phase rotation c. In other
words, wavelets with different constant phase rotations will
share the same envelope. It can also be shown that the
envelope reaches its maximum at t = 0 with value

e(t=0)= B=b (6)
T

We can use 'Hopital’s rule to evaluate the instantaneous
phase at the maximum of the envelope:
sin(c)

ltllqoi tan[p(t)] = P 7)

This last expression clearly shows that ¢(t =0) =c. In
other words, for the special case of an isolated band-pass
wavelet characterized by a boxcar amplitude spectrum and
a constant phase rotation, the instantaneous phase evalu-
ated at the peak of the envelope function is equal to the con-
stant phase rotation.

Figure 5 shows a single low-pass wavelet with phase
rotation ¢ = 50° and maximum and minimum frequencies
fu="50Hz and f; = 0 Hz, respectively. In the upper part of
the diagram we display the real and imaginary parts of the
analytic signal and also the associated envelope function.
In the lower part we display the instantaneous phase. The
instantaneous phase measured at the peak of the envelope
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coincides with the true phase rotation of the wavelet, in har-
mony with our above mathematical analysis. It’s interest-
ing that the instantaneous phase is a periodic function (phase
wraps as time progresses) with period given by T = 2z / B
=1/fy (Figure 5, bottom). In our example the period is T =
0.02 s. This rapid variation in instantaneous phase with time
has some negative implications for the robustness of the lat-
eral phase analysis technique proposed in this paper, for it
implies that the phase estimates will be very sensitive to
errors in the envelope peak time. We'll explore this prob-
lem further in the following section.

Case of two overlapping wavelets. We will now analyze
the error associated with estimating the phase rotation by
using the instantaneous phase extracted at the peak of the
envelope in the case of two partially overlapping wavelets.
Specifically, we assume that the seismogram is composed
of the superposition of two wavelets separated by an amount
t =1, where the first wavelet is a scaled version of the
second:
s(t) = R(t) + aR(t—17) (8)
Because of the linearity of the Hilbert transform, it is easy
to show that the analytic seismogram can be written as

s,(t) = R(t)+aR(t —7) +i[G(t) + aG(t — 7)]
and the corresponding instantaneous phase, ¢,, as

G(t) +aG(t—7)
R(t)+aR(t—7)

tan[g, (1)] = ©)

where the functional forms of G(f) and R(t) are given in equa-
tions 3a and 3b.

Now let’s assume for the moment that the wavelet super-
position effect does not “confuse” the picking of the enve-
lope peaks. In other words, let’s assume the envelope
function contains two maxima, one at f = 0 and the other at
t = 7. We'll explore the validity of this assumption shortly.
In this idealized case we would designate ¢,(0) to be the
phase rotation estimated from the first wavelet and ¢,(z) to
be the phase rotation estimated from the second wavelet.
Then from equation 9 it is clear that the instantaneous phase
evaluated at the peak of the envelope of the first wavelet is
a good approximation to the true phase rotation, c, if and
only if the contributions from the real and imaginary part
of the second wavelet are negligible. Specifically, if G(t-7),
R(t-r) have decayed sufficiently in the neighborhood of t =
0, then

G(0)+aG(~7) _G(0)
R(0)+aR(-7) R(0)

tan[ g, (t =0)] = (10)

and from the first equality in equation 4b, it follows that

tan(g,(t = 0))=tan(p(t = 0)) (11)
and from equation 7, we see that ¢(t = 0) = ¢ . The same
analysis is valid for the instantaneous phase extracted at
t = 7. Thus it is clear that when 7 is large enough, the two
estimates, ¢,(0) and ¢,(r), will coincide with the true phase
rotation of the wavelet.

Figure 6a shows the proposed seismogram model for
variable 7 and a = 1, where both of the wavelets are identi-
cal in shape to the single wavelet we analyzed in the pre-
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vious section. The associated envelope traces are shown in
Figure 6b. We have extracted the instantaneous phase at
t=0and t =7 (red curves in Figures 6c and 6d, respectively),
corresponding to this idealized situation where the enve-
lope peaks are not distorted due to sidelobe interference
effects associated with the tuning of the two wavelets. Note
that the error in the phase estimate is acceptably small for
all the 7 values we investigated, reaching a maximum value
of approximately + 15°at t = 0.02 s (we arrived at this happy
conclusion based on the interpreter’s rule of thumb that says
that phase rotations up to 30° don’t typically impact the
visual appearance of stratigraphic character plays). Also
note that the error diminishes asymptotically as v grows, and
that the instantaneous phase exhibits an oscillatory behav-
iour (when plotted as a function of 7), owing to the sinu-
soidal nature of both the real and imaginary parts in equation
10.

Of course in reality, the envelope maxima will not nec-
essarily occur at t = 0 and t =7 if the wavelets are sufficiently
close together. To what degree does this effect hinder our
analysis? In an effort to investigate this question, we por-
tray the more realistic situation in which the instantaneous
phase is extracted at the first and second envelope maxima
(green curves in Figures 6¢ and 6d, respectively), rather
than at t = 0 and f = 7. Now the error in the phase estimate
is significantly worse, with acceptable phase estimates being
obtained only for values of 7 greater than 0.1 s (it must be
noted that for 7 < 0.1 s, there do exist piecewise continuous
regions in 7 where the error is small—more about this strange
pattern later—but these regions are proximal to regions in
which the error is large, so one must conclude that for prac-
tical purposes the error is large for 7 < 0.1 s). Clearly, the
technique suffers from the cascading of two errors; one due
to the interplay between sidelobe interference and the loca-
tion of the envelope peaks, and the other due to the inter-
play between sidelobe interference and the instantaneous
phase attribute itself. In the case of this specific synthetic
test, the majority of the error is due to the envelope peak
“mispositioning” effect.

The fact that the error associated with the misposition-
ing effect is large is consistent with our observation for the
single wavelet study that the time derivative of the instan-
taneous phase is large (Figure 5, bottom). From this figure,
it’s clear that a change in ¢(t) of merely 0.002 ms (one sam-
ple) implies a 20° change in the instantaneous phase. This
helps to explain the “sparse sawtooth” appearance of the
green curves in Figures 6¢ and 6d. The “teeth” correspond
to regions where the envelope peak deviates from ¢ = 0 (or
t=r) by merely one sample.

Finally, it’s important to note that our quantitative infer-
ences about reliable phase estimates as a function of wavelet
separation are drawn from the specialized case of two noise-
free overlapping equal-amplitude, constant-phase, box-
car/band-pass wavelets. In the real world, the best we can
do is to qualitatively caution against using this technique
on noisy data, or in cases where the analysis horizon shows
contamination by events which “fade in and out” of the
analysis window as a function of lateral position.

Conclusions. We provide a mathematical proof of a known
property (which to date appears to have been inferred from
numerical experiments), namely that the instantaneous
phase evaluated at the envelope peak is equal to the Fourier
phase in the case of a constant-phase, band-pass wavelet
with a boxcar amplitude spectrum. We also describe a sim-
ple lateral wavelet stability analysis tool which exploits this
property. The tool is capable of producing reliable estimates



of wavelet phase if the data set contains a reasonably noise-
free, regionally stable, lithologically isolated event, and
moreover, if the wavelet can be accurately modeled via a
constant-phase boxcar/band-pass wavelet. In the case where
more than one reflector encroaches on the analysis window,
the technique will produce erroneous results. TjE
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