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Minimum weighted norm wavefield reconstruction for AVA imaging
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ABSTRACT
Seismic wavefield reconstruction is posed as an inversion problem where, from inad-
equate and incomplete data, we attempt to recover the data we would have acquired
with a denser distribution of sources and receivers. A minimum weighted norm inter-
polation method is proposed to interpolate prestack volumes before wave-equation
amplitude versus angle imaging.

Synthetic and real data were used to investigate the effectiveness of our wavefield re-
construction scheme when preconditioning seismic data for wave-equation amplitude
versus angle imaging.

I N T R O D U C T I O N

Robust inversion of prestack seismic data is an important
step towards the estimation of rock properties and fluid in-
dicators. Recent developments have demonstrated that wave-
equation amplitude versus angle (AVA) imaging is an emerg-
ing and powerful methodology for the accurate estimation
of AVA gathers (Mosher, Foster and Hassanzadeh 1997;
Prucha, Biondi and Symes 1999). It is well known that wave-
equation imaging methods require regularly acquired wave-
fields. In order to maximize the benefits of wave-equation AVA
imaging when working with irregularly sampled data, Kuehl
and Sacchi (2003) and Wang, Kuehl and Sacchi (2003) pro-
posed least-squares migration methods to account for miss-
ing observations in the prestack volume. A more economical
alternative entails the reconstruction of the acquired wave-
field before wave-equation AVA imaging. In this case, the
interpolation/resampling problem can be posed as an inver-
sion problem where, from inadequate and incomplete data,
an attempt is made to recover a properly sampled version
of the original seismic wavefield. The problem, however, is
underdetermined and, as is well known, the solution is not
unique. Missing observations lie in the null space of the sam-
pling operator and therefore a regularization strategy is re-
quired to retrieve a unique and stable data reconstruction.
Regularization methods are used not only to retrieve stable
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and unique data reconstructions but also to impose desirable
features on the spectrum of the reconstructed wavefield. For
example, minimum norm spectral regularization can be used
when we assume that seismic data are band-limited in the spa-
tial wavenumber domain (Cary 1997; Duijndam, Schonewille
and Hindriks 1999; Hindriks and Duijndam 2000). Similarly,
a regularization derived using the Cauchy criterion can be used
to obtain a high-resolution (sparse) discrete Fourier transform
that can be used to perform the synthesis of the data at new
spatial positions (Sacchi, Ulrych and Walker 1998; Zwartjes
and Duijndam 2000). In the minimum weighted norm inter-
polation (MWNI) method (Liu and Sacchi 2001, 2003), we
have used a spectral weighted norm regularization term that
incorporates a priori knowledge of the energy distribution of
the signal to be interpolated. The technique can be used to
interpolate large portions of data simultaneously, along any
number of spatial dimensions. It is important to stress that the
MWNI algorithm is quite efficient; the computational cost
of the interpolation relies on fast Fourier transforms (FFTs) in
conjunction with a preconditioned conjugate-gradient scheme
to accelerate convergence.

We present examples that illustrate the application of the
MWNI algorithm to 2D/3D prestack seismic data regular-
ization. We also test the effectiveness of our interpolation
strategy at the time of reconstructing data before 2D/3D
wave-equation AVA imaging (Mosher et al. 1997; Prucha
et al. 1999). It is important to stress that rather than per-
forming the classical comparison of data before and after
interpolation, we have preferred to compare migrated images
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and to extract AVA curves obtained from common-image gath-
ers before and after interpolation.

Interpolation strategies based on prediction error filters
have been shown to yield excellent results in problems where
there is enough information to predict the missing data prop-
erly (Claerbout 1991; Spitz 1991). However, prediction error
filters are unable to handle situations where there are large
gaps in the data. In this case, methods that exploit data mul-
tidimensionality should be preferred. The type of algorithm
proposed in this paper can handle large segments of missing
information by using spatial data from as many coordinates
as possible.

In the first part of this paper, we introduce the interpolation
problem as an inverse problem where a wavenumber-domain
norm is used to regularize the inverse problem. Then we briefly
review the problem of estimating AVA gathers using wave-
equation migration methods. The final part of the paper is
devoted to numerical and real data examples. We first exam-
ine the 2D problem with a simple synthetic model and with
the Marmousi model. Then the 3D reconstruction problem is
studied with a simple 3D synthetic data set and a field data set
from the Western Canadian Sedimentary Basin. These exam-
ples are used to highlight the strengths of our algorithm when
preconditioning data for wave-equation AVA imaging.

P R O B L E M F O R M U L AT I O N

The multidimensional or N-dimensional (ND) interpolation is
carried out along the vector of spatial coordinates u for each
temporal frequency ω. In other words, we denote the seismic
data at one monochromatic temporal frequency component
as D(u, ω), where, for instance, u = [xs, xr] denotes a 2D
data volume defined in terms of source and receiver positions;
similarly, u = [mx, my, hx] defines a constant azimuth 3D data
volume in terms of the two midpoint positions mx, my and the
in-line offset hx. It should be remembered that ND refers to the
number of spatial dimensions of the reconstruction problem.
The methodology presented in this paper can be easily adapted
to handle the following cases:

N = 1 : interpolation of one single gather;
N = 2 : prestack 2D interpolation or 3D post-stack

interpolation;
N = 3 : interpolation of 3D prestack common-azimuth

volumes;
N = 4 : full spatial interpolation (multi-azimuth

interpolation).

The multidimensional wavefield D(u, ω) at a monochromatic
frequency component ω can be organized via lexicographic

ordering in a length-M vector x = [x1, x2, . . . xM]T. The
vector x defines the desired observations on the regular grid.
The actual observations (recorded data) are given by the el-
ements of the vector y = [xn(1), xn(2), xn(3), . . . xn(N)]T, where
the set N = {n(1), n(2), n(3), . . . , n(N)} is used to indicate the
position of the known samples or observations in the regular
grid. It is clear that with this type of sampling, one is assigning
recorded traces to the nearest spatial position in the desired
grid (binning). We now define the sampling matrix T with
elements Ti,j = δn(i),j, where δ denotes the Kronecker opera-
tor. It is quite simple to show that the complete data and the
observations are connected by the following linear system of
equations:

y = Tx . (1)

For example, if we assume that the complete data consist of
M = 5 consecutive samples x = [x1, x2, x3, x4, x5]T, whereas
the observations (available data) are given by samples at posi-
tions N = {2, 3, 5}, that is y = [x2, x3, x5]T, then (1) becomes




x2

x3

x5


 =




0 1 0 0 0

0 0 1 0 0

0 0 0 0 1


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


x1

x2

x3

x4

x5




. (2)

The complete data x can be retrieved by minimizing the cost
function,

J = ‖Tx − y‖2
2 + µxT Q† x, (3)

where the matrix of weights Q† is given by the expression,

Q† = FH
ND Λ† FND . (4)

FND and FH
ND denote the forward and inverse ND Fourier trans-

forms, respectively, and the superscript H is used to indicate
the complex conjugate transpose. The band-limiting operator
Λ† is given by

Λ†(k) =
{

[S(k)]−1 k ∈ �(k)

0 k �∈ �(k)
(5)

where S(k) is the unknown spectral density of the multidi-
mensional prestack data cube at wavenumber element k. It
is clear that in the above expression, the symbol † is also
used to indicate the pseudo-inverse of the spectral density. We
will assume that the data are band-limited. In other words,
S(k) = 0 , k ∈ �̄(k), the complement of �(k).

The cost function given by (3) is minimized using the
method of conjugate gradients. In the numerical implemen-
tation we have reduced the cost function to its standard form
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(Hansen 1998) and used the so-called regularization by itera-

tion method (Hanke 1995). For this purpose, we first define
a new variable,

x = W z , (6)

where W = FH
NDΛ1/2. It can be shown that the cost function

in the standard form becomes

J = ‖TWz − y‖2
2 + µzT z, (7)

where the elements of the diagonal form Λ1/2 are given by

�(k) =
{

[S(k)]1/2 k ∈ �(k)

0 k �∈ �(k)
. (8)

Equation (7) is solved using conjugate gradients with regular-
ization by iteration (Hanke 1995). This is equivalent to finding
the smallest number of iterations k that satisfies the discrep-
ancy principle,

‖TWzk − y‖2
2 ≈ ε , (9)

where ε defines an approximate fitting goal. The conjugate-
gradient method (Hestenes and Stiefel 1952) is used to min-
imize expression (9). In this case we define the following
compound operator T̂ = TW and proceed with the following
conjugate-gradient solver for the variable z:
Initialization z0 = 0;

s0 = y − T̂z0 = y; r0 = p0 = T̂H(y − T̂z0) = T̂Hy;
q0 = T̂p0;
γ0 = (r0, r0);

for i = 0: niter

αi+1 = γ0/(qi , qi );

zi+1 = zi + αi+1pi ;

si+1 = si − αi+1qi ;

ri+1 = T̂Hsi+1;

γi+1 = (ri+1, ri+1);

if γi+1 < tol ∗ ‖y‖2
2

break;

end;

βi+1 = γi+1/γi ;

pi+1 = ri + βi+1pi ;

qi+1 = T̂pi+1;

end

Note that the matrix-time-vector multiplication steps in the
conjugate-gradient algorithm are implemented on the fly us-
ing N-dimensional FFTs. In other words, there is no need to
construct and save the operator T̂ as a matrix.

Estimation of S(k)

The algorithm outlined above requires knowledge of the
power spectral density of the complete (unknown) data x. We
propose to bootstrap the spectral density from the available
data using the following procedure:
1 Define W as an initial multidimensional band-limiting op-
erator (Duijndam et al. 1999).
2 Use the conjugate-gradient method to solve TWz ≈ y, and
obtain an initial reconstruction of the data x = Wz.
3 Re-estimate the spectral density from the reconstructed data
x, and compute W(k) using (8).
4 Repeat steps 2 and 3 until convergence is achieved.
The power spectral density is estimated by means of the data
periodogram (the squared-amplitude of the Fourier transform
of the data) followed by smoothing (Priestly 1981). Smoothing
is required to decrease the variance of the periodogram and
obtain the power spectral density of the data. At this point, it
must be stressed that other methods of spectral analysis could
have been used (see e.g. Marple 1987). However, given the
fact that we are dealing with multidimensional problems, we
preferred the periodogram followed by smoothing since it can
be computed efficiently using the FFT.

It is clear that the above algorithm requires an extra iteration
to update the spectral density. Fortunately, since the interpola-
tion is always performed at one temporal frequency at a time
(ω − x type interpolation), we found that the power spectral
density used to interpolate the spatial signal at temporal fre-
quency ω can be derived from already interpolated data at
frequency ω − 	ω. All our examples were computed with this
strategy. Note that Hugonnet, Herrmann and Ribeiro (2001)
described a similar scheme to estimate the weights required by
the high-resolution Radon transform.

WAV E E Q U AT I O N AVA I M A G I N G

We briefly describe the methodology used to estimate angle-
domain common-image gathers. Recorded 2D and 3D data
are first organized in the midpoint–offset (m−h) domain. The
measured data at the surface (z = 0) is downward continued
recursively using the double-square-root operator (Claerbout
1985). Once the complete wavefield has been reconstructed
within the target volume, the imaging condition is applied to
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compute the subsurface structural image. This procedure can
be summarized by the following workflow:

Downward Continuation: P(ω, m, h, z + 	z)

= DSR P(ω, m, h, z),

Imaging: I(m, z) = IP(ω, m, h, z),

where I synthesizes the imaging condition as an operator that
entails integration over frequency and offset. The application
of this method to 3D migration involves a fairly demanding
computational task. It is also clear that regularly sampled data
along the offset and midpoint vectors (m = (mx, my) and h =
(hx, hy)) is required. Biondi and Palacharla (1996) presented a
reformulation of the double-square-root operator that is valid
for common-azimuth data. This method permits 3D data to
be handled in a more efficient manner. In this case, the double-
square-root downward operator requires 3D FFTs rather than
4D FFTs per frequency slice, like the more demanding full
double-square-root operator.

The procedure outlined above is only valid for computing
structural images of the subsurface. In order to estimate angle-
dependent gathers, we combine common-azimuth double-
square-root downward continuation with a ray-parameter-
domain imaging transformation (Mosher et al. 1997; Prucha
et al. 1999; Kuehl and Sacchi 2003):

Downward Continuation: P(ω, m, hx, z + 	z)

= DSRCAP(ω, m, hx, z),

Imaging: I(m, phx, z) = AP(ω, m, hx, z),

where A synthesizes the slant-stack operator (summation
along lines of constant ray parameter phx = khx/ω).

It is clear that spatial interpolation is needed to render the
data to a form that makes Fourier methods applicable. In
our examples we have utilized the MWNI method to resam-
ple the data to a regular geometry before double-square-root
(common-azimuth) AVA imaging. Rather than attempting to
interpolate the data before migration, Wang et al. (2003) used
least-squares migration to fit the migrated image to the obser-
vations (recorded traces).

Finally, it is important to stress that the resulting gathers
in the midpoint–offset ray-parameter domain can be trans-
formed to angle-domain common-image gathers by a simple
expression (Prucha et al. 1999),

phx = 2 sin(θ ) cos(φ)
c(z, m)

,

where θ is the angle of incidence, φ denotes the structural
dip in the in-line direction and c(z, m) is the migration

velocity. Note that with the aid of the above expression
p-gathers can be converted to angle-gathers for subsequent
AVA analysis.

E X A M P L E S

2D synthetic data set

We first test our algorithm on a simple, horizontally layered
model. The horizontally layered model consists of four re-
flecting interfaces. The acoustic model parameters, in terms of
compressional velocities and densities, range from 1900 m/s to
2500 m/s and from 1.6 g/cm3 to 2.25 g/cm3, respectively. All
interfaces are well separated. A ray-tracing technique is used
to generate the synthetic data set. The ray-tracer takes advan-
tage of the fact that, in a stratified medium, the ray parameter
is constant for a particular ray. The geometrical spreading has
been calculated assuming a cylindrical wavefront resulting in
a 1/

√
r amplitude scaling, where r is the distance travelled by

the ray. Note that transmission losses are neglected in the syn-
thetics. In Fig. 1(a), we show the common-midpoint (CMP)
data at 750 m, which exhibit a clear amplitude variation ver-
sus offset (AVO). The offsets for the CMP range from 0 to
1280 m in increments of 20 m. Figure 1(b) shows the same
CMP after randomly removing 90% of the traces. The incom-
plete CMPs are used as the input for the reconstruction. We
first perform a Fourier transform along the time axis. Recon-
structions are then carried at temporal frequencies along two
spatial (midpoint and offset) coordinates simultaneously. The
output offset ranges from 0 m to 1200 m for each CMP in in-
crements of 10 m. Figure 1(c) shows the reconstructed CMP at
750 m using minimum weighted norm interpolation (MWNI).
Note that MWNI uses not only the four existing traces in this
gather but also all the other traces in the data set. Since the
model in this case is flat, global information is a very powerful
means of obtaining complete local information.

Next, we migrate the complete, incomplete and recon-
structed data sets with a wave-equation double-square-root
AVA migration algorithm (Prucha et al. 1999; Kuehl and
Sacchi 2003). Figures 2(a,b,c) show common-image gathers at
750 m, obtained with the original data, the incomplete data
and the reconstructed data, respectively. We have extracted
AVA curves for the four reflectors (Figs 3a–d). For all four
reflectors, the AVA curves obtained from reconstructed data
match the curve obtained from the completed data quite well.
In addition, they all agree with the theoretical AVA trend for
a large range of angles of incidence.
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Figure 1 (a) CMP gather at midpoint position 750 m generated by
a ray-tracing code. The program models (cylindrical) geometrical
spreading but no transmission effects. The offset for the particular
CMP ranges from 0 m to 1280 m in increments of 20 m. (b) The same
CMP after randomly removing 90% of the data. (c) The reconstructed
CMP using MWNI. The reconstructed offset ranges from 0 m to
1200 m in increments of 10 m.
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Figure 2 (a) CIG gather at midpoint 750 m migrated with the original
data. (b) The same CIG gather obtained with the incomplete data.
(c) The same CIG gather obtained with the reconstructed data.
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Figure 3 (a) Theoretical (green/dotted)
and extracted AVA curves from the mi-
grated angle gather for the first reflec-
tor. Migration with the original com-
plete data (black/dot-dash), incomplete data
(blue/dashed), and incomplete data after re-
construction (red/solid). (b) Theoretical and
extracted AVA curves for the second reflec-
tor. (c) Theoretical and extracted AVA curves
for the third reflector. (d) Theoretical and ex-
tracted AVA curves for the fourth reflector.
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Figure 4 Source and receiver position map
where the crosses indicate the positions of
the available traces; the dots indicate the po-
sitions to be interpolated.

Marmousi data set

The performance of the 2D MWNI algorithm is now demon-
strated with the Marmousi data set. The original Marmousi
shot and receiver sampling intervals are both 25 m. We sim-
ulate a new survey with 75 m shot and receiver intervals.
Figure 4 shows a comparison between the original and the

new sampling geometry, where the crosses indicate the po-
sitions of available traces and the dots indicate the posi-
tions of the traces to be interpolated. The seismic traces from
the new survey are the input to our interpolation algorithm.
We first transform the data to the frequency domain. Data
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Figure 5 (a) Decimated shot gathers at 3075 m, 3100 m and 3125 m.
(b) The reconstructed shot gathers. (c) The reconstruction error.

reconstruction is then carried at each temporal frequency
along two spatial (shot and receiver) coordinates simultane-
ously. All the missing traces have been reconstructed. The data
reconstructions at shot positions 3075 m, 3100 m and 3125 m
are shown in Figs 5(a,b,c). Figure 5(a) shows the incomplete

shots, Figs 5(b,c) show the reconstructed shot records and
reconstruction error, respectively. The f–k spectra of the orig-
inal, decimated and reconstructed shot gathers at 3125 m are
shown in Figs 6(a,b,c), respectively. Note that the decimated
shot gather has been filled with zero traces at the missing trace
positions.

We then migrate the complete, incomplete and recon-
structed data sets. Figures 7(a–c) show both the stacked im-
age and the migrated common-image gather at CMP loca-
tion 7500 m using the three different data sets. The migration
with the complete data set yields the stacked and common-
image-gather images shown in Fig. 7(a). The coarse sampling
of the decimated wavefield results in severely aliased events
in both the stacked image and the common-image gather
(Fig. 7b). In Fig. 7(c), we observe that the migration with the
reconstructed wavefield yields an overall better-stacked image
without visible signs of aliasing. The continuity of events in
the common-image gather is also improved. To study the im-
pact of wavefield interpolation on AVA analysis, a depth point
located in the upper half of the model is chosen for AVA inver-
sion. Note that the picked target phase in the common-image
gather corresponds to a depth of 880 m in Figs 7(a–c). In
Fig. 8, the reflection coefficient based on the acoustic approx-
imation shows an increasing trend with the angle of incidence
on the theoretical AVA curve. Despite its roughness, the AVA
curve picked on the migrated common-image gathers obtained
with the complete data agrees with the theoretical AVA trend.
The AVA curve picked on the migrated common-image gather
from the reconstructed wavefield is much closer to the original
curve, compared with the AVA curve picked on the migrated
common-image gather.

In this example the maximum number of conjugate-gradient
iterations was set at 30; the algorithm will proceed to recon-
struct the next frequency slice if the mean squared error of the
reconstruction is below a predefined tolerance or the maxi-
mum number of iterations is reached. The tolerance was set
at 1.e-6. The reconstruction of the Marmousi data set took
41 minutes using a 1 GHz Pentium III computer.

Finally, we should point out that normal-moveout (NMO)
correction could have been used to decrease the spectral band-
width and therefore stabilize the inversion. However, the
Marmousi model is too complex and therefore the NMO cor-
rection was not effective in compressing the spatial bandwidth
of the data.

3D common-azimuth synthetic data set

The MWNI algorithm has also been tested on a 3D common-
azimuth synthetic data set. The data set is modelled with a
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Figure 6 (a) The f–k spectrum of the original shot gather at
3125 m. (b) The f–k spectrum of the same shot gather after deci-
mation (note that the missing data after decimation have been filled
with zero traces). (c) The f–k spectrum of the same shot gather after
interpolation.

constant (compressional) velocity model (v = 2500 m/s). The
density model consists of a single interface where the densities
above and below the interface are 1.7 g/cm3 and 2.0 g/cm3,
respectively. A ray-tracing technique is used to generate the
synthetic data set. The geometrical spreading has been calcu-
lated assuming a spherical wavefront, resulting in a 1/r ampli-
tude scaling where r is the distance travelled by the ray. The
synthetic data includes a total of 40 cross-line CMPs and 301
in-line CMPs. The cross-line and in-line CMP intervals are
10 m and 5 m, respectively. The CMPs have a non-uniform
distribution of offsets ranging from 0 to 1000 m. Figure 10(a)
shows a CMP at position (in-line 750 m, cross-line 30 m). The
amplitude variation is due to the geometrical spreading effect
only. Ninety per cent of the traces in the synthetic data set
have been randomly removed. (The incomplete CMP at the
same position is shown in Fig. 10(b).) The offset distribution
in each CMP bin of the incomplete data is illustrated in Fig. 9.
The incomplete data are used as the input for the reconstruc-
tion. We first perform a Fourier transform along the time axis.
Reconstructions are then carried at temporal frequencies along
three spatial coordinates (cross-line CMP, in-line CMP and
offset), simultaneously. The reconstructed offset ranges from
0 m to 1000 m in increments of 10 m. Figure 10(c) shows the
reconstructed CMP at the same position using MWNI.

Next, we migrate the complete, incomplete and recon-
structed data sets with our 3D common-azimuth wave-
equation double-square-root AVA migration algorithm. The
stacked images for cross-line CMP 30 m (in-line CMP ranges
from 750 m to 1000 m), obtained with the original data,
incomplete data and reconstructed data, are shown in
Figs 11(a,b,c), respectively. Note that both Figs 11(a and c)
show uniform reflection strength at the target reflector. In
Figs 12(a–c), we show common-image gathers at (in-line CMP
750 m, cross-line CMP 30 m), obtained with the original data,
incomplete data and the reconstructed data, respectively. We
have extracted AVA curves for the reflector from the above
common-image gathers (Fig. 13). Note that the AVA curve
obtained from incomplete data (Fig. 13b) does not agree with
the theoretical AVA trend. The AVA curve obtained from the
reconstructed data (Fig. 13c) matches the one obtained from
original data (Fig. 13a) and agrees with the theoretical AVA
trend for a large range of angles of incidence.

3D common-azimuth field data: Erskine (WCSB)

Finally, we applied the MWNI prestack interpolation to a 3D
real seismic data set. The data were obtained from a 3D survey
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Figure 7 (a) Migrated image of the Marmousi model and common-image gather at CMP location 7500 m. All the data were used in the migration.
(b) Migration of the Marmousi model using the decimated data. (c) Migration of the Marmousi model using the reconstructed data.
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Figure 8 (a) Theoretical (green/dotted) and extracted AVA curves from
the migrated angle gather (black/dot-dash: original complete data;
blue/dashed: decimated data; red/solid: data after reconstruction).

Figure 9 Distribution of offsets for the 3D field data used to test our
interpolation algorithm.

carried out in the Erskine (Alberta) area in the Western Cana-
dian Sedimentary Basin (WCSB). The complete data set con-
tains 150 in-lines and 40 cross-lines with offsets aligned along
the in-line direction. The offset distribution in each CMP bin
is illustrated in Fig. 14. Figure 15(a) shows the sparse sam-
pling geometry in the cross-line midpoint–offset for in-line
#6 (only parts of the cross-line midpoints are shown) and
Fig. 15(b) shows the spatial positions after interpolation.
Prestack interpolation is applied simultaneously along three
dimensions, namely: in-line midpoint, cross-line midpoint and
offset. Figure 16(a) shows the original CMPs for in-line #6
and cross-lines #15–18. The reconstructed result is shown in
Fig. 16(b). Note that all the gaps have been filled.

3D common-azimuth wave-equation double-square-root
AVA migration is applied to both the original and interpo-
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Figure 10 The CMP at position (in-line 750 m, cross-line 30 m) of
(a) the original data, (b) the incomplete data and (c) the reconstructed
data.

lated data sets. Figures 17(a,b) show the migrated images for
cross-line #36 and in-line #71; in both cases, data before in-
terpolation were used in the migration. Note that the irregu-
lar and sparse data sampling results in images of poor qual-
ity. Migrated images obtained with the interpolated data are
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Figure 11 The stacked image for cross-line 30 m obtained with (a) the
original data, (b) the incomplete data and (c) the reconstructed data.

shown in Figs 17(c,d). The impact of interpolation before AVA
imaging can also be seen in the ray-parameter common-image-
gather domain. Common-image gathers for cross-line #36 and
in-line #71 are shown in Figs 18(a and b), respectively. The mi-
gration with the interpolated data as input yields a common-

Figure 12 The migrated common-image gather at position (cross-line
30 m, in-line 750 m) obtained with (a) the original data, (b) the in-
complete data and (c) the reconstructed data.

image gather (Fig. 18b) with reduced artefacts and better event
continuity.

Again, we would stress that although a single cross-line is
shown, most of the information necessary to create the missing
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(a)

(b)

(c)

Figure 13 The AVA curves extracted from the migrated CIG at po-
sition (cross-line 30 m, in-line 750 m) obtained with (a) the original
data, (b) the incomplete data and (c) the reconstructed data.

traces comes from the in-line direction where the data set
is more densely sampled. In a standard single-dimension ap-
proach, the data would be interpolated first along in-lines and
then along cross-lines. The latter would make the interpolation
totally dependent on information along the in-line direction.
The proposed method, minimum weighted norm interpola-

Figure 14 Distribution of offsets for the 3D field data used to test our
interpolation algorithm.

tion, has the capability to combine information from both
directions.

C O N C L U S I O N S

We have applied the MWNI reconstruction algorithm to
prestack seismic data before wave-equation AVA migration.
The method enables us to incorporate both the band-width
and the signal spectrum shape in the interpolation problem
and, therefore, it often yields optimal reconstructions. The
method is extremely efficient since all computations are carried
out via a preconditioned conjugate-gradient algorithm where
the computational cost is dominated by the FFT algorithm.
It is important to mention that the method can be applied to
seismic data in any domain with multiple spatial coordinates.
Finally, examples with synthetic and real 3D data show an im-
portant reduction of sampling artefacts, both in the stacked
image and in individual AVA gathers.

The proposed method can also be implemented using the
non-uniform discrete Fourier transform to deal with irregu-
lar sampling (Duijndam et al. 1999); all the examples shown
in this paper have used regular sampling with missing traces.
There are many situations where this is applicable. An im-
plementation using non-uniform discrete Fourier transforms
could be too expensive to apply in three or four dimensions
simultaneously. If the non-uniform discrete Fourier transform
were required, a better approach would be to work with indi-
vidual gathers.

C© 2005 European Association of Geoscientists & Engineers, Geophysical Prospecting, 53, 787–801



Minimum weighted norm wavefield reconstruction 799

Figure 15 (a) The map of the incomplete geometry for in-line #6 (note that only parts of the cross-line midpoints are shown). (b) The complete
geometry after interpolation for in-line #6.

Figure 16 (a) The original traces in four ad-
jacent CMPs corresponding to in-line #6 and
cross-lines #15–18. (b) CMPs after interpo-
lation.
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Figure 17 (a) Cross-line #36 and (b) in-line #71 images of migrated 3D common-azimuth data without interpolation. (c) Cross-line #36 and (d)
in-line #71 images of migrated 3D common azimuth data with interpolation.

Figure 18 The common-image gathers ob-
tained with (a) the undersampled data (orig-
inal prestack volume) and (b) the recon-
structed data.
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