GEOPHYSICS, VOL. 72,NO. 1 JANUARY-FEBRUARY 2007); P. S11-S18, 13 FIGS.
10.1190/1.2387139

High-resolution wave-equation amplitude-variation-with-ray-parameter
(AVP) imaging with sparseness constraints

Juefu Wang' and Mauricio D. Sacchi?

ABSTRACT

We propose a new scheme for high-resolution amplitude-
variation-with-ray-parameter (AVP) imaging that uses non-
quadratic regularization. We pose migration as an inverse
problem and propose a cost function that uses a priori infor-
mation about common-image gathers (CIGs). In particular,
we introduce two regularization constraints: smoothness
along the offset-ray-parameter axis and sparseness in depth.
The two-step regularization yields high-resolution CIGs with
robust estimates of AVP. We use an iterative reweighted least-
squares conjugate gradient algorithm to minimize the cost
function of the problem. We test the algorithm with synthetic
data (a wedge model and the Marmousi data set) and a real
data set (Erskine area, Alberta). Tests show our method helps
to enhance the vertical resolution of CIGs and improves am-
plitude accuracy along the ray-parameter direction.

INTRODUCTION

Ithas been shown (Nemeth et al., 1999; Duquet et al., 2000; Kuehl
and Sacchi, 2002, 2003) that seismic resolution can be improved by
inverting the demigration/migration kernel and by enforcing a regu-
larization constraint, for example, by introducing smoothness in the
solution. However, as the results of these methods show, there are
many artifacts present in the solution because of operator mismatch,
wavefield sampling, and noise.

One possible way to further enhance the resolution and attenuate
artifacts is by taking advantage of the solution itself. Iteratively us-
ing the result as a model-space regularization can lead to high-reso-
lution, artifact-free seismic images. This idea has been used in many
fields of signal and image processing (Sacchi and Ulrych, 1995;
Charbonnier et al., 1997; Youzwishen, 2001; Sacchi et al., 2003;
Trad et al., 2003; Downtown and Lines, 2004). In this paper, we uti-
lize a model-dependent sparse regularization and a model-indepen-

dent smoothing regularization to estimate amplitude-variation-
with-ray-parameter (AVP) common-image gathers (CIGs). Model-
dependent sparse regularization is introduced via a nonquadratic
norm (Cauchy norm). Smoothing, on the other hand, is implemented
via a convolutional operator applied to AVP CIGs along the ray-pa-
rameter direction. This idea is used to develop an algorithm to simul-
taneously improve the structural interpretability and amplitude ac-
curacy of seismic images.

It is important to point out the similarities between our algorithm
and methods for impedance inversion based on sparse spike decon-
volution of poststack cubes (Oldenburg et al., 1983; Debeye and van
Riel, 1990). In principle, we are using very similar concepts to find a
solution that exhibits predefined properties such as sparseness and
smoothness. The main difference of our method from sparse spike
inversion strategies is that our operator is a one-way wave-equation
forward-modeling operator rather than a convolutional kernel. In ad-
dition, our inversion results are in depth, and the input data are
prestack volumes as opposed to time-domain reflectivity estimates
and poststack volumes, respectively. We believe our method pro-
vides a unitying thread between convolution-based sparse spike in-
version and regularized migration/inversion methods.

METHODOLOGY

One advantage of imaging via regularized inversion is that we can
use a priori information about the unknown image model (Prucha
and Biondi, 2002). Robust inversion algorithms can be developed by
properly honoring such information. For example, Kuehl and Sacchi
(2002, 2003) show that applying smoothing regularization on the
ray-parameter axis helps to remove artifacts introduced by missing
information, aliasing, noise, and operator mismatch. The scheme is
based on minimizing a quadratic cost function. In addition, Sacchi et
al. (2003) show that higher resolution can be acquired by solving a
nonquadratic problem.

In this paper, we reformulate the cost function for the least-
squares wave-equation AVP/amplitude-variation-with-angle-of-in-
cidence (AVA) migration problem as follows:
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J(m) = [W(Lm - d)[5 + *F(SH(m)), (1)

where m is the earth model in terms of AVP CIGs, L is a 2D/3D
wave-equation modeling operator that transforms the model to
prestack seismic data, d is the seismic data, and W is a sampling ma-
trix used to accommodate missing data in the inversion. The model-
ing operator is synthesized via the double square root upward-con-
tinuation operator with split-step corrections in conjunction with a
radial transform that converts ray-parameter-dependent reflectivity
to local wavefields (Kuehl and Sacchi, 2003). The operator H is a
model-independent high-pass filter that we use to penalize non-
smooth solutions along ray-parameter direction, S is a stacking oper-
ator that converts CIGs to a stacked image, F is a model-dependent
functional used to enforce sparseness, and A is a trade-off parameter
that controls the amount of regularization. By using the Cauchy
norm (Sacchi and Ulrych, 1995), the sparse regularization operator
Fis given by

2
F(m) = 27:11n<1 + %), (2)

where o7 is a scale parameter of the Cauchy distribution, n is the
number of elements of the stacked image, and m; is the amplitude of
the ith element of the stacked image. By adopting a preconditioning
strategy (Prucha and Biondi, 2002; Fomel and Claerbout, 2003; Trad
etal.,2003; Wang et al., 2004), the cost function can be expressed as

J = |W(LPz - d)|} + A>F(Sz), (3)

where P is a preconditioning matrix and z is the model modified by
the preconditioner. It is clear that m = Pz. In our implementation,
we use a low-pass filter as the preconditioner operator P. In particu-
lar, applying P entails convolution along the ray-parameter axis with
aHamming window (Wang et al., 2004). The adjoint operator P’ is a
simple crosscorrelation procedure (Claerbout, 1992). To minimize
the cost function J, we solve the problem dJ/dm = 0. The latter
leads to the following nonlinear system of equations (proven in Ap-
pendix A):

(P'L'W'WLP + 4’S'QS)z = P'L'W'd, 4)

where © = A/o and Q is a diagonal matrix defined by a vector s
= Sz.The ith diagonal element of Q can be expressed as

1
0= T)z (5)
1+|—

o
where s; is the ith element of s
The nonlinear system given by expression 4 has been solved in the
context of high-resolution Radon transforms (Sacchi and Ulrych,
1995) using the iterative reweighted least-squares (IRLS) method
(Scales and Smith, 1994). The IRLS algorithm is generalized as be-
low:
1. Choose the hyperparameters w and o, and initialize the algo-
rithm withk = 0,z% = 0.
2. Fork=1,2,...
Compute Q = Q(Sz*")
Solve (P'L’W'WLP + u?S'Q*S)z = P'L’'W'd
m- = Pzt
Compute the predicted data d* = Lm* and residuals d — d* to
monitor convergence
End

This procedure requires about three or four updates (iterations) to
obtain a solution that is sparse in depth and smooth with respect to
the ray parameter. In addition, as discussed by Kuehl and Sacchi
(2003), the constrained linear system of equations at the second step
within the loop can be solved efficiently with the method of conju-
gate gradients (CG). In this method, we do not need to configure op-
erators in explicit matrix form.

Finally, it is important to define a strategy to provide the scale pa-
rameter o. We have obtained encouraging results by setting o to
some percentage of the maximum amplitude of the vector Sz*!. In
other words, we introduce a new parameter & such that o= &
X max(|Sz*'|). The problem is then reduced to finding two parame-
ters, 6 and u. Based on our experience, pairs of dand u with a con-
stant product lead to similar solutions. In addition, large values of &
yield low-resolution results (Wang, 2005). Therefore, we usually set
S'to an arbitrary small number (in our tests, we set it to 0.02) and ad-
just the trade-off parameter u to obtain a satisfactory fitting. We first
try s = 0.1. If the solution is not sparse enough, we increase the pa-
rameter ten times (u = 1.0). If the solution is too sparse, we decrease
the parameter ten times (u = 0.01). We repeat this trial-and-error
routine until we find a good trade-off parameter.

One may wonder why we can introduce sparseness in the solution
without destroying the AVA features of the CIGs. The reason is that
we apply the regularization in two steps. First, we smooth the CIGs
in the prestack ray-parameter direction. Then we apply diagonal
weighting operator Q to the stacked image. In other words, the
sparseness constraint is applied to the stacked image and not directly
to the prestack CIGs. In this way, image points at a given depth re-
ceive the same weight, thereby preserving the amplitude ratio of dif-
ferent ray parameters.

Note that when we turn off the sparse regularization by setting A to
zero in equation 3, the problem is reduced to the preconditioned
least-squares migration (PLSM) (Wang et al., 2004). To glean the
benefits and shortcomings of various imaging methods, we compare
their image quality and accuracy in the following synthetic and real
data examples.

EXAMPLES

Multichannel deconvolution

The combination of sparseness and smoothness constraints is an
interesting idea. Before applying it to least-squares (LS) migration,
we would rather validate its efficiency using a much cheaper opera-
tor — a multichannel deconvolution. This is an unrealistic scenario
in seismic deconvolution, yet it is a fast way to test the algorithm.
The procedure, however, may be used to deconvolve time-migrated
CIGs. Figure 1a is a time-domain model with 20 offsets. We con-
volve the model with a zero-phase wavelet and remove three offsets
(trace number equals 2, 6, and 9) to test the procedure in situations of
missing information. The data are portrayed in Figure 1b.

We compared two methods of inversion, preconditioned LS in-
version (Wang et al., 2004) and sparse LS inversion. Figure 1c is the
result of the preconditioned LS inversion after 50 iterations of the
CG algorithm. It is evident that the inversion successfully fills the
gaps in the incomplete data. However, the vertical resolution is un-
satisfactory. Spurious side lobes are present in the inverted reflectiv-
ity model. On the other hand, the sparse inversion provides a superi-
or result (Figure 1d). It is almost identical to the real reflectivity
model (Figure 1a); the wavelet is properly compressed. In addition,
the amplitude variation with offset (AVO) signature is preserved.
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Figure le compares the spectra of the results obtained via the LS
and sparse LS deconvolutions. The results are quite similar at low
and middle frequencies (0-80 Hz). The sparse inversion, however,
provides a much broader amplitude response with an important am-
plitude gain for frequencies above 80 Hz.

Figure 1f shows a potential shortcoming of sparse inversion meth-
ods. When the trade-off parameter w is too large, we may lose valu-
able information. In other words, if the solution becomes too sparse,
small reflections can be annihilated. This problem is also encoun-
tered in the application of sparse deconvolution (Oldenburg et al.,
1983) and high-resolution Radon transforms (Sacchi and Ulrych,
1995).

Wedge model

A 2D synthetic data set was used to test the algorithm. We pre-
pared the data by applying the forward operator L to a constant-ve-
locity wedge model, represented by a set of AVP CIGs. Ideally, the
inversion should be able to reconstruct the CIGs, and the stacked im-
age of these CIGs should clearly portray the modeled structure.

We processed the data by three methods: conventional migration
(the adjoint of the modeling operator), PLSM (Wang et al., 2004),
and sparse least-squares migration (SLSM) proposed in this paper.
Figure 2 shows the stacked images. The result of the adjoint is quite
blurry because the algorithm is incapable of reconstructing high fre-
quencies not present in the data. On the other hand, both PLSM and
SLSM are able to recover high frequencies in the structural images.
In addition, the SLSM algorithm produces a highly resolved CIG.
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Figure 1. A multichannel deconvolution example to compare the
preconditioned least-squares (LS) inversion and the sparse LS inver-
sion. (a) Reflectivity model. (b) Incomplete multichannel data. Ar-
rows mark the locations of the muted traces. (c) Result of the precon-
ditioned LS inversion. (d) Result of the sparse LS inversion (u
= 10.0). (e) Average spectra of (c) (thin curve) and (e) (bold curve).
(f) Result of the sparse LS inversion (u = 1000.0).

This is a consequence of using a sparseness constraint that attempts
to collapse the band-limited seismic wavelet into a broadband im-
pulsive signal.

Figure 3a—c displays a zoomed view of three CIGs produced by
these methods. The SLSM method has the ability of suppressing the
side lobes introduced by the band-limited wavelet. To complete our
analysis, we extracted the amplitude of the tilted event and plotted
AVA curves for the three methods in Figure 3d. Both PLSM and
SLSM are able to preserve the amplitude response of the reflection.

Figure 4 compares the data misfit of the two inversion methods.
The PLSM method starts to converge at the seventh iteration. As
shown in Figure 3d, the method provides accurate amplitude for an
angle range between 0° and 40°. However, the structural image is
unsatisfactory because of the tuning effects. The SLSM method con-
verges to a sparse solution in four iterations of the IRLS algorithm.
In this test, the estimated amplitude response completely fits the the-
oretical AVA curve. In addition, the SLSM method has completely
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Figure 2. Stacked images of the wedge model, obtained with (a) mi-
gration, (b) PLSM, and (c) SLSM.
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Figure 3. CIGs and AVA curves at x = 500 m for the wedge model.
(a) Migration. (b) PLSM. (c) SLSM. (d) AVA curves for the first
event: red dashed curve — the theoretical curve, green curve — mi-
gration, blue curve — PLSM. Black curve — SLSM.
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compressed the seismic wavelet. Figure 5 compares the original
data, the reconstructed data by PLSM, and the residual panel. The
data fitting for the SLSM method is portrayed in Figure 6. Both
methods fit the input data quite well.

Note that least-squares migration is much more expensive than
conventional migration. Each CG iteration involves one migration
and one forward modeling (demigration). Usually the PLSM algo-
rithm starts to converge in less than 10 CG iterations. The cost of the
SLSM algorithm is usually three or four times that of the PLSM al-
gorithm.

The Marmousi data set

We also applied the algorithm to the Marmousi data set. We ran-
domly removed 70% of the traces to simulate a sparse data acquisi-
tion. Figure 7 compares the stacked images obtained by migration,
PLSM, and SLSM. Both PLSM and SLSM provide images with
higher resolution than conventional migration. SLSM cleans up the
image further than PLSM because of the sparse regularization.
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Figure 4. Data misfit of two inversion methods. Red curve — PLSM.
Blue curves — SLSM. The four blue curves represent four iterations
of the IRLS algorithm. From left to right, the first blue curve repre-
sents the first iteration of the IRLS algorithm, the second represents
the second iteration, and so on. At the beginning of each IRLS itera-
tion, the model is initialized with zeros. Therefore, within each itera-
tion, the data misfit always decreases from the same maximum value
until convergence.
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Figure 5. (a) The original data, (b) data reconstructed by PLSM, and
(c) the residual at x = 500 m.
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Figure 6. (a) The original data, (b) data reconstructed by SLSM, and
(c) the residual at x = 500 m.
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Figure 7. Stacked images of the Marmousi model: (a) migration, (b)
PLSM (four iterations), (c) SLSM (three IRLS iterations). We use
the same clipping percentage for these figures.
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Figure 8 shows the CIGs calculated by these three methods. It is
clear that many artifacts are present in the CIG obtained with the mi-
gration algorithm. These artifacts are substantially removed from
the images obtained with PLSM and SLSM.

For comparison, we calculated the reflectivity series by using the
true velocity and density model. A side-by-side comparison con-
firms that the SLSM has properly reconstructed the model. We ob-
serve again, as in our previous examples, an important attenuation of
ringing arising from the band-limited wavelet in the data. To evalu-
ate the amplitude-preserving properties of our algorithm, we ob-
tained AVA curves for the event at depth z = 800 m. The amplitude
response obtained with the migrated image is difficult to extract be-
cause of sampling artifacts. The inverted AVA responses (PLSM and
SLSM), on the other hand, are in good agreement with the theoreti-
cal value.

Erskine data set (WCSB)

As an experiment, we also processed a field data set with the
SLSM algorithm. The data set corresponds to a 3D orthogonal sur-
vey acquired in the Erskine area (Alberta, Canada); the seismic data
are typical of exploratory plays in the Western Canadian Sedimenta-
ry Basin (WCSB). To save computing time and avoid overfitting the
noisy data, we only ran the IRLS program for three iterations.

A comparison of the stacked images of an inline of the data (see
Figure 9) shows that both PLSM and SLSM provide higher resolu-
tion than conventional migration. For example, PLSM and SLSM
help to separate the overlapping events above 1500-m depth. As a
benefit, SLSM provides higher resolution than PLSM. One example
is the event below 2000-m depth (marked with hollow arrows).
Clearly, the wavelet is suppressed better by SLSM.

Figure 10 compares the CIGs at midpoint position 1155 m. Both
PLSM and SLSM greatly improve the coherence of the CIG. Again,
we can see that SLSM resolves events better by suppressing the
wavelet.

To complete our analysis, we compare the spectra of the stacked
images in Figure 11. We observe that both PLSM and SLSM en-
hance the high-frequency components of the solution. As expected,
SLSM increases the amplitude response at large vertical wavenum-
bers (or high frequencies in the temporal-fre-
quency domain) better than the PLSM method.

S15

should compare the result obtained with SLSM to that with conven-
tional migration to avoid this problem. In the Marmousi and Erskine
examples, we tried different parameters u and chose a conservative
one to avoid overregularization.

INFLUENCE OF VELOCITY ERRORS

Providing a good velocity model is fundamental to achieving op-
timal migration results. In reality, one can never expect to have ac-
cess to the true velocity. The practical idea is to estimate a velocity
model close to the true one. Wave-equation migration techniques
still perform well when the input velocity is smoothed (Duquet et al.,
2002). To test whether this is also true for PLSM and SLSM, we use
the Marmousi data set (after removing 70% of the traces) to show
that our algorithm can tolerate reasonable velocity errors.

In the first test, we smoothed the velocity model using a 10-point
moving average. Then we ran migration, PLSM, and SLSM; the re-
sults are shown in Figure 12. Again, PLSM and SLSM improve the
quality of the CIGs. Smoothing the velocity field is acceptable not
only in standard migration techniques but also in least-squares mi-
gration methods.

In the second test, we perturbed the velocity field by 5%. Figure
13 portrays the results of migration. PLSM, and SLSM. As in the
previous example, the data were severely decimated (70% of the
trace were removed). The migrated CIG is dominated by artifacts.
On the other hand, these artifacts have been alleviated by PLSM and
SLSM. We notice, in addition, that residual moveout has not been
destroyed by PLSM and SLSM. However, we do not recommend re-
lying on PLSM or SLSM to handle velocity errors. Instead, one
should minimize velocity errors before migration. Our examples are
provided for the purpose of examining the robustness of PLSM and
SLSM when dealing with smooth and/or inaccurate velocity fields.

DISCUSSION

Our algorithm obtains high-resolution AVA gathers. The algo-
rithm removes spurious artifacts by constraining the solution to be
smooth in the ray-parameter direction and sparse in depth.

Our tests show that overregularization leads to loss of valuable in-
formation that is often contained in events with small amplitudes.

We need to clarify that if a full-band forward- a) 5003 \J.ags.gg b) 138133408 <) T d)rT7€)0.25 T
modeling operator is applied to t.he inverted ;%5'3’%;2’ ;’%%;‘g éi?i izzz ;jﬁ %E 3 i ;
sparse solution, the modeled data will not fit the Tt ? 333 § 143444 $i3iaiidl !
ar - eled : 1000t 233753358 333333331 PRI 0.2 h
original band-limited seismic data. However, in ii}l:”?;; isllliiii 2882088 !
EX5444 IS99 IISY 54 e L
our inversion, both the forward operator and its S i};{{:ﬂ §§§§é§§$§ ”}‘;(:;‘:-‘-S:; cq { '
adjoint (migration) are applied within a limited £ 1500 &2 ')3.>:-;;5' ‘}33; ;5» 133 18015
fre band = 337D b0 5»%"))44‘}- ‘;i L2
quency band. The latter allows us to honor the £ {333 )ii’ié 333 3 ;3 533 31 £ |2
observed data in a limited seismic bandwidth. & 2000 (’;zr;_}‘g"fggz 3 ﬁ? 1 aee 711504
The effects of wavelet mismatch within the limit- ‘??;;%;f* 5 i i - g
ed frequency band are examined by Wang (2005). ')E,-%fﬁ 313 3 : ;%i }"g‘i i:
His test thetic data show that when th 2500 S3233335 | Sesasannd | Smee _{ o005
is tests on synthetic data show that when the 33 i 2 f;ﬁ(?ﬁ(ﬁ EEEEEe T
wavelet is not precisely known, the SLSM algo- ‘)7‘,%); 3{; ﬁé%(;?;ii: %‘;: ){ %%){4%{ J
rithm can recover a highly resolved image of the 3000 32 ?; 2224 i%, 333333 qagladdd Ba
0 20 40 0 20 40 0 20 40 -02002 0 50

subsurface. However, the solution is not as good
as that inverted with a precisely known wavelet.
There is one caveat in the application of SLSM.
Overregularization can lead to too sparse solu-
tions and therefore loss of our ability to image
weak reflections. Processors and interpreters
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Figure 8. CIGs and AVA curves at x = 7500 m for the Marmousi data: (a) migration, (b)
PLSM, (c) SLSM, (d) zero-offset reflectivity from the density and velocity models, (e)
AVA curves for the event at 800-m depth (red dashed curve — theoretical curve, green
curve — migration, blue curve — PLSM, black curve — SLSM).



S16 Wang and Sacchi

a) Distance (m)

400 600 800 1000 1200 1400
TR T T T AT

BN W)

M)

1000

el 1
e

ST

1500 :
) mni
)

Depth (m)

2000"!

N

b) 1000
) ~ Wil

Lo L

I

(el

)'ii»»;‘»y}).!"iwi}ﬁi Db

Depth (m)

M
}),IDF. I»[ } :),l»)»

LCTL

it

Depth (m)

200041;"i['1])

Figure 9. Stacked images of the Erskine data set, obtained with (a)
migration, (b) PLSM, and (c) SLSM. Solid arrows mark where CIGs
are extracted and displayed in Figure 10. Open arrows point to the
event for vertical resolution comparison.
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Figure 10. CIGs calculated by (a) migration, (b) PLSM, and (c)
SLSM.

This problem is also encountered in techniques for poststack inver-
sion of seismic data that are based on the sparse reflectivity assump-
tion.

Imaging/inversion with the introduction of quadratic and nonqua-
dratic constraints could lead to a new class of imaging algorithms
where the resolution of the inverted image can be enhanced beyond
the limits imposed by the data (bandwidth and aperture). This is nota
completely new idea. Geophysicists have been using similar con-
cepts to invert poststack data (sparse spike inversion) to construct
highly resolved impedance profiles; in addition, similar concepts are
used in high-resolution Radon transforms for multiple elimination
and data reconstruction. What constitutes an optimal regularization
strategy for imaging problems is a topic of current study. Presently,

0 0.01 0.02 0.03 0.04 0.05
Wavenumber (m™)

Figure 11. Average spectra of the stacked images of the Erskine data
set, obtained with migration, PLSM, and SLSM. Dotted curve —
migration, dashed curve — PLSM, and solid curve — SLSM. The
migration depth step is 10 m; therefore, the Nyquist wavenumber is
0.05 m™.
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Figure 12. Results of migration, PLSM, and SLSM using a
smoothed velocity model: (a) Stacked image (migration), (b) CIG
(migration) at 7500 m, (c) stacked image (PLSM), (d) CIG (PLSM)
at 7500 m, (e) stacked image (SLSM), and (f) CIG (SLSM) at
7500 m.
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Figure 13. Results of migration, PLSM, and SLSM using a velocity
model with 5% error: (a) Stacked image (migration), (b) CIG (mi-
gration) at 7500 m, (c) stacked image (PLSM), (d) CIG (PLSM) at
7500 m, (e) stacked image (SLSM), and (f) CIG (SLSM) at 7500 m.

smoothing the CIGs (in the offset- or ray-parameter axis) plus verti-
cal sparseness appears to be a regularization goal that is simple and
consistent with the estimation of high-resolution CIGs for subse-
quent studies such as estimating AVO signatures.

In the current implementation of our SLSM, we are not consider-
ing the source wavelet. Therefore, operator mismatch exists in the
data domain. Some of our tests (Wang, 2005) show that including the
source wavelet in the modeling routine can help to acquire a sparser
solution. However, as we know, estimation of the source wavelet is a
difficult problem. For prestack data, the wavelet can be offset depen-
dent, which makes the problem more complicated (B. Biondi, 2005,
personal communication). An alternative approach is to use half-mi-
gration methods as proposed by Zhang and Wapenaar (2006). In this
method, the image is converted to the time domain, and the wavelet
can be handled in an easier way.

Future research directions call for methods to mitigate operator
mismatch, efficient numerical optimization methods for large-scale
problems, regularization methods capable of incorporating the re-
flectivity character (color) into our subsurface estimates, and exten-
sive field data tests to properly access the benefits of regularized mi-
gration.
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APPENDIX A

COST FUNCTION FOR LEAST-SQUARES
MIGRATION WITH SMOOTHNESS AND
SPARSENESS CONSTRAINTS

The transition from equation 3 to equation 4 is provided in this ap-
pendix. We first note that the cost function for sparse least-squares
migration is given by the expression

J=Jy + Ag, (A-1)
where the misfit and regularization terms are given by
Jy = [W(LPz - d)[; (A-2)

and

Ll

J=F(S1) =F(s)= 3 ln(l 43 ) (A-3)

The minimum of J satisfies
dJ dJ dJ
— =M 2=E_0 (A-4)
dz dz dz

The first term in the gradient can be shown to be

dJ
d—M =2(P'L'W'WLP)z - 2P'L'W'd.  (A-5)
Z

The second term requires a bit more work. We first express s = Sz in
element form, s; = XSz, and notice that

dJR 2 2Si dsi 2

de i 2( S?)dzk— 0'2 1
o’\1+—
o

<2 SiiniSil)Zl-

(A-6)

The latter is the kth element of the gradient of the regularization
term, which can be written in vector form as follows:

=R _ Z5'Qsz, (A7)

where the elements of the diagonal operator Q are given by equation
5. Combining equations A-4, A-5, and A-7 leads to

dJ , 20%
5, = 2(P'L'WWLP)z - 2P'L'W'd + —5§'QSz = 0.
z (o

(A-8)

After rearranging terms and defining u?> = A?/0°2, equation A-8 is
equal to expression 4 in the main text.
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