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ourier reconstruction of nonuniformly sampled, aliased seismic data
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ABSTRACT

There are numerous methods for interpolating uniformly
sampled, aliased seismic data, but few can handle the combi-
nation of nonuniform sampling and aliasing. We combine the
principles of Fourier reconstruction of nonaliased, nonuni-
formly sampled data with the ideas of frequency-wavenum-
ber � f-k� interpolation of aliased, uniformly sampled data in a
new two-step algorithm. In the first step, we estimate the Fou-
rier coefficients at the lower nonaliased temporal frequencies
from the nonuniformly sampled data. The coefficients are
then used in the second step as an a priori model to distinguish
between aliased and nonaliased energy at the higher, aliased
temporal frequencies. By using a nonquadratic model penal-
ty in the inversion, both the artifacts in the Fourier domain
from nonuniform sampling and the aliased energy are sup-
pressed. The underlying assumption is that events are planar;
therefore, the algorithm is applied to seismic data in overlap-
ping spatiotemporal windows.

INTRODUCTION

In seismic data acquisition the spatial sampling is such that alias-
ng occurs often. Interpolation of uniformly sampled, nonaliased
eismic data is straightforward and can be performed by convolution
ith a sinc filter in the spatial domain or by extending the Nyquist
avenumber of a band-limited signal through zero padding in the
ourier domain. If aliasing on seismic shot records can be removed
y reducing the spatial bandwidth with NMO, such simple interpola-
ion methods are sufficient for interpolation. However, coherent
oise such as multiples and groundroll may still be aliased after
MO.
Interpolation of spatially aliased data is less trivial, but a variety of
ethods has been published in the geophysical literature; see Gulu-

ay �2003� for an overview. Methods based on the dip scan or slant-
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tack approach scan along a limited number of dips in a small win-
ow to identify the main events, which are then interpolated along
he identified dip to a finer grid �see, for instance, Bardan �1987�;
ao �1997��. The frequency-space � f-x� interpolation method by
pitz �1991� uses the predictability of stationary, nondispersive, pla-
ar events to interpolate aliased data at high temporal frequencies
ith filters derived at the nonaliased lower frequencies. Closely re-

ated is the method of f-x projection filters, which differs in the defi-
ition of the noise model �Soubaras, 1997�. The time-space �t-x� do-
ain interpolation by Claerbout and Nichols �1991� also falls into

he category of filter-based interpolation techniques and uses 2D
rediction filters in the time-space domain to predict traces at a
maller sampling interval. Crawely and Clapp �1999� extend the t-x
omain prediction-error filtering approach to handle nonstationary
vents.

More recently, Fomel �2002� has presented a t-x domain interpo-
ation technique based on plane-wave destruction filters that is an al-
ernative to the t-x and f-x prediction filter approaches. Among the
enefits of this method are �1� it handles nonstationary events and �2�
he obtained coefficients are interpreted as local slope, which has a
ange of applications. If convolution of aliased data along the spatial
xis with an appropriate filter yields nonaliased data, then the same
esult can be achieved in the wavenumber domain by multiplication
f the aliased spectra with an appropriate mask. This is the approach
f Gulunay �2003�, who also uses the nonaliased lower frequencies
o attack the aliases. In fact, the methods of Spitz and Gulunay are
quivalent but are implemented in different domains �Gulunay,
003�. The use of nonaliased lower temporal frequencies to dealias
igher frequencies has also been applied successfully by Herrmann
t al. �2000� for the high-resolution Radon transform.

Abma and Kabir �2003� compare various t-x, f-x, and frequency-
avenumber � f-k� methods qualitatively and conclude that there are

ome differences in speed and reconstruction quality, depending on
he trace density and complexity of the input data. The following as-
umptions are common to these methods. First, the data are assumed
o consist of planar events. If this is not the case, the method must be
pplied in small spatiotemporal windows in which the assumption of

ly 13, 2006; published online December 29, 2006.
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V22 Zwartjes and Sacchi
lanar events approximately holds. Second, the range of dips in the
ata is limited. Third, if the data consist of planar events, the lower
emporal frequencies in the f-k spectrum are nonaliased and can be
sed to distinguish aliased from nonaliased energy at higher tempo-
al frequencies. Fourth, the data are sampled uniformly. The last as-
umption of uniform sampling is a requirement for the f-k and
-x, f-x prediction filter algorithms. It is not a requirement for the
lant-stack/dip-scan methods Kao �1997�.

Of the numerous methods for interpolating aliased seismic data,
ery few can handle nonuniform sampling. The objective of this pa-
er, therefore, is to propose a method that can interpolate aliased
eismic data and is robust against sampling irregularities. We com-
ine the principles of Fourier reconstruction of nonaliased, nonuni-
ormly sampled data, which can handle nonuniform sampling, with
he ideas of Gulunay’s f-k interpolation of aliased uniformly sam-
led data in a new two-stage algorithm. In the first step of this algo-
ithm, only the Fourier coefficients of the nonaliased, lower tempo-
al frequencies are estimated. These are then used to construct a ma-
rix with model weighting terms, similar to the principles of Gulu-
ay’s f-k-domain mask that suppress aliasing. This matrix is used in
he second step to discriminate between aliased and nonaliased ener-
y in the entire spectrum. By using a nonquadratic model penalty in
he inversion, both Fourier domain artifacts from nonuniform sam-
ling and aliased energy are suppressed.

The underlying assumption is that events are planar; therefore, the
lgorithm is applied to seismic data in overlapping spatiotemporal
indows. The maximum temporal frequency that can be corrected

or aliasing depends on the highest nonaliased temporal frequency.
s the aliasing becomes more severe, the nonaliased region shrinks.
o there is a limit to how much aliasing can be handled.Additionally,

he algorithm only discriminates between aliased and nonaliased co-
fficients and cannot discriminate between aliased and nonaliased
nergy for a single coefficient. For this reason, overlapping of
liased and nonaliased energy still presents a challenge. As the sam-
ling becomes more nonuniform, the spectrum becomes more dis-
orted to the point where aliasing is no longer an issue. Therefore, for
andomly sampled data, both the new two-stage algorithm and the
tandard Fourier reconstruction yield equally good results. For uni-
ormly sampled and moderately nonuniformly sampled data, good
esults have been obtained on 1D field data and on 1D and 2D syn-
hetic data.

ourier reconstruction of nonuniformly sampled,
liased seismic data

Fourier reconstruction Duijndam et al. �1999� is a method to inter-
olate nonuniformly sampled data, which can be uniform sampling
ith missing traces, uniform sampling with random deviations, or

ully random sampling. It assumes band-limited data and therefore is
nsuited for aliased data. In this article, we discuss how Fourier re-
onstruction can be used on nonuniformly sampled, aliased data us-
ng the assumptions mentioned in the previous paragraph. With re-
pect to these assumptions, the following comments apply. We as-
ume the data to consist of a limited number of planar events, a valid
ssumption when the algorithm is applied in small windows. We use
he nonaliased part of the spectrum to generate model weights for the
nversion in Fourier reconstruction, and we use these weights to sup-
ress aliased energy. The generation of the weights is inspired by the

f-k interpolation method for aliased data Gulunay �2003�. We do not
ssume uniform sampling because nonuniform sampling artifacts
re taken care of by Fourier reconstruction. We first discuss nonuni-
orm sampling and its effect on the discrete Fourier transform
DFT�.

onuniform discrete Fourier transform

When data p�xn� are nonuniformly sampled at locations
x0, . . . , xN−1�, we can use the nonuniform discrete Fourier transform
NDFT� to compute the Fourier coefficients:

p̃NDFT�m�k� = �
n=0

N−1

p�xn�ejm�kxn�xn. �1�

race weights are used to compensate for differences in sampling
ensity and are scaled such that �n�xn = �k/2�. The spatial band-
idth is �−M�k/2, . . . , M�k/2 − 1� with �k = 2�/�xN−1 − x0�.
ow assume we have obtained discrete Fourier coefficients from
ata sampled on a regular grid in the spatial domain. These coeffi-
ients are denoted by p̃DFT. The inverse transform from a uniformly
ampled k-space p̃DFT to a nonuniformly sampled spatial grid is

p�xn� =
�k

2�
�

m=−M/2

M/2−1

p̃DFT�m�k�e−jm�kxn. �2�

uijndam and Schonewille �1999� present a fast algorithm to com-
ute the NDFT. The NDFT coefficients equal the DFT coefficients
onvolved with the NDFT of the sampling weights. This follows
rom substituting of equation 2, the inverse NDFT, in equation 1, the
orward DFT:

p̃NDFT�m�k� =
�k

2�
�

n
�

q

p̃DFT�q�k�e−jq�kxnejm�kxn�xn

=
�k

2�
�

q
�

n

�xnej�m−q��kxnp̃DFT�q�k� �3�

=�PSF � p̃DFT��m�k� . �4�

n equation 4, PSF stands for point-spread function and is defined as
he NDFT of the trace weights:

PSF�m�k� =
�k

2�
�
n=0

N−1

�xnejm�kxn. �5�

he distortion in the NDFT is determined by the PSF, which in turn is
nfluenced by the weights. As the PSF approaches a delta function,
he NDFT becomes more like the DFT.

ampling-related problems: Aliasing
nd sampling artifacts

Sampling involves multiplying a continuous signal with a discrete
ampling train s �Figure 1a�. The analog in the Fourier domain is to
onvolve the signal spectrum with the Fourier transform of s, i.e., s̃
Figure 1b�, which yields an infinite number of aliases of the original
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Fourier reconstruction of aliased data V23
pectrum. The periodicity of the aliases in the Fourier domain is de-
ermined by the spatial sampling interval. If the bandwidth of the sig-
al exceeds the periodicity of s̃, then spatial aliasing occurs, as
hown on the planar events in Figure 2a and b.

In the case of uniform sampling with missing samples, aliases still
ccur in the Fourier domain, but now the periodicity is determined
y the smallest sampling interval �Figure 1c–f�. Random sampling
an be thought of as uniform sampling with missing samples on a
ery finely sampled underlying grid. The aliases in the Fourier do-
ain are then so widely spaced that the aliasing effect is effectively

bsent �Figure 1g–j�.
Another effect of nonuniform sampling is that s̃ is no longer a per-

ect spike train but contains artifacts between its spikes. These arti-
acts indicate how much a single Fourier coefficient is distorted by
he PSF in equation 5. Convolution with this noisy spike train dis-
orts the Fourier coefficients. Figure 1c and 1e shows the case of uni-
orm sampling where positions have been omitted such that, respec-
ively, 50 and 15 samples remain. Note the PSF and the periodicity in
�Figure 1d and f�. Figure 1g–j shows s and s̃ for random sampling
ith 50 and 15 positions, respectively. Here, the spike series that

auses the aliases of the spectrum is absent.
Figure 2 shows the effect of spatial sampling on the estimate of the

pectrum for cross-dipping, aliased linear events. Figure 2a shows
he case of uniform samping; its spectrum in Figure 2b is aliased but
ithout artifacts. When the sampling is uniform with gaps caused by
issing traces �Figure 2c�, the spectrum again shows aliasing but
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igure 1. A schematic sampling train in the spatial domain. �a� Uni-
orm sampling. �c� and �e� Nonuniform sampling with 50 and 15 po-
itions. �g� and �i� Random sampling with 50 and 15 positions. The
gures in the right column �b�, �d�, �f�, �h�, and �j� show the spectra of

he figures in the left column, obtained using NDFT �equation 1�.
he central spike denotes k = 0, and all other spikes are its replica-

ions that are the cause of aliasing. Note the lack of these replications
or random sampling in �h� and �j�.
ow also artifacts from sampling irregularities. This is explained by
he convolution of the true spectrum with a noisy spike train such as
n Figure 1d. In the case of random sampling �Figure 2e�, the arti-
acts in the spectrum are still there; but because of the absence of rep-
icating spikes �see, for instance, Figure 1h�, the spectrum is not
liased.

In practice, sampling is not always uniform with missing samples
or fully random. Starting from uniform sampling with or without
issing positions, the sampling locations can be perturbed more and
ore to yield increasingly nonuniform sampling patterns. As sam-

ling of seismic data becomes more nonuniform, the aliasing be-
omes more and more diffuse until it disappears altogether for ran-
om sampling.

FOURIER RECONSTRUCTION WITH
SPARSE INVERSION (FRSI)

The NDFT coefficients equal the DFT coefficients convolved
ith the PSF of the nonuniform grid.Areconstruction procedure that

ontains a deconvolution for the PSF is therefore a logical approach
o the problem �Feichtinger et al., 1995; Duijndam et al., 1999�. This
s done with least-squares inversion per temporal frequency � as
ourier reconstruction is applied to the nonuniformly sampled spa-

ial coordinates. Inversion requires a forward-modeling step, and for
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igure 2. Linear events sampled �a� uniformly, �c� uniformly with
issing traces and �e� randomly. �b�, �d�, and �f� Corresponding

pectra computed with NDFT �k denotes Nyquist�.
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V24 Zwartjes and Sacchi
ourier reconstruction, this is equation 2, the inverse DFT to a non-
niform grid. Instead of a quadratic penalty function that minimizes
he model norm and yields a smooth model, one could look for a
arsimonious model structure or sparse solution. Such models can
e obtained with nonquadratic regularization terms that penalize
mooth and favor sparse models. In robust regression, nonquadratic
enalties are imposed on the residual. In sparse inversion, they are
mposed on the model parameters. The damping factor that results
rom a quadratic model penalty function penalizes all model param-
ters. A nonquadratic model penalty function penalizes �or weighs�
he large model parameters less than the smaller ones. Parameters
hat receive more weight are damped more, and in this manner the

odel penalty enforces sparseness in the model. This approach of
ourier reconstruction with sparse inversion �FRSI� improves the
econstruction result, as shown by Sacchi and Ulrych �1996�,
wartjes and Duijndam �2000�, and Liu and Sacchi �2001�. The ef-

ect of the nonquadratic constraint is to suppress sampling and aper-
ure-related artifacts, which has also been used to great advantage in
he high-resolution Radon transform �Sacchi and Ulrych, 1995; Trad
t al., 2003�.

One of the earliest applications of nonquadratic penalties in the
eld of geophysics was for robust regression �Claerbout and Muir,
973�. Thorson and Claerbout �1985� use a mix of quadratic model
enalties to obtain a sparse hyperbolic Radon transform, and Sacchi
nd Ulrych �1995� obtain similar results using a single nonquadratic
enalty in their high-resolution parabolic Radon transform. Other
pplications are in crosshole tomography �Clippard et al., 1995�, in
D multiple prediction �van Dedem and Verschuur, 2000�, and in
east-squares migration �Liu et al., 2003�. The application of non-
uadratic model penalties for seismic data regularization with the
ourier transform started with Sacchi and Ulrych �1996� and was ex-

ended by Zwartjes and Hindriks �2001� for sampling problems in
wo spatial dimensions and by Liu �2004� for four spatial dimen-
ions. Similar algorithms have been presented by Wajer et al. �1998�

n the field of magnetic resonance imaging �MRI� for reconstructing
onuniformly sampled Fourier space data.

Xu et al. �2005� discuss an alternative algorithm that uses only the
DFT for reconstruction and can be applied to nonuniformly sam-
led data. In each iteration of the algorithm, only the largest NDFT
oefficient is inverse Fourier transformed to the original nonuniform
rid and subtracted from the data. This is repeated until there is no
ignal left or until a user-specified threshold is reached. The coeffi-
ients retrieved at each iteration are stored, and from these the signal
s reconstructed on a uniformly spaced grid. This is very similar to
he so-called CLEAN algorithm by �Högbom, 1974�, but that con-
ains a least-squares fit for each retrieved coefficient, whereas Xu et
l. �2005� only uses the NDFT. The result of that method therefore
epends on the quality of the NDFT, which deteriorates as the sam-
ling becomes less uniform. Because of the repeated evaluation of
he forward and inverse NDFT, both algorithms can be quite slow for
andom sampling grids, although on uniformly spaced grids with
issing samples the FFT can be used. Xu et al. �2005� claim the
ethod also works in the presence of aliasing, although no details

re given in the paper.
The goal in Fourier reconstruction with sparse inversion is to min-

mize the following objective function:
J =
1

�n
2 �W1/2�p − Ap̃��2

2 + ��p̃� . �6�

he first term on the right side of equation 6 is the data-fit term, and
he second term is the model penalty term. The symbols are defined
s

pn = p�xn� ,

Anm =
�k

2�
e−jm�kxn,

p̃m = p̃DFT�m�k� .

Wnn = �xn,

��p̃m� =
1

2�1 − a�
�p̃m

2 + 1�1−a.

he term �n
2 is noise variance, and p and p̃ are vectors. For recon-

truction in one spatial dimension, a simple weighting scheme, such
s

�xn =
1

2
�xn+1 − xn − 1� , �7�

ncreases the convergence of the conjugate gradient scheme �Feich-
inger et al., 1995�. In two spatial dimensions, the choice of a trace
eighting scheme is less straightforward. One approach is to use
eights proportional to the area surrounding the nth trace, as deter-
ined by Voronoi cells �Hindriks and Duijndam, 2000�. This ap-

roach to construction of weights is driven by considerations in the
patial domain. Pipe and Menon �1999� present an alternative ap-
roach for constructing weights for sampling problems in the field of
RI. Their method iteratively adjusts the weights such that the PSF

efined in equation 5 approaches a 2D delta function. Both ap-
roaches can be extended to higher spatial dimensions, although in
he presence of large gaps, one should be careful of assigning large
eights to bad traces.
The minimum of the objective function in equation 6 is given by

p̂̃ = �AHWA + �n
2Cp̃�−1AHWp , �8�

ith

�Cp̃�mm = ��p
2 + p̃i

*p̃i�a. �9�

he scalars �n
2 and �p̃

2 are related to the noise and signal variances,
hereas a describes the model parameter distribution. In practice,

hese parameters are used as inversion tuning parameters. Including
he nonquadratic model penalty term in the objective function yields
sparse inversion estimator.Any nonquadratic penalty function that
as been successfully used for robust regression of noisy data can be
sed for sparse inversion. However, no penalty function is best for
ll applications, and many different nonquadratic penalty functions
ave appeared and will probably continue to appear in the literature.
ecause of the ambiguity in choosing a model penalty function, we
se a new weighting function, defined in equation 9, which allow us
o tune the amount of sparseness through the scale parameters a and

2. For a = 1/2, this corresponds to the derivative with respect to p̃
p
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f the convex �1−2 function �a smooth approximation to the discon-
inuous �1-norm�. For a = 1 and a = 2, it corresponds to the noncon-
ex Cauchy and Geman-McClure penalty functions, respectively.
ee Zhang �1997� for a description of these and other penalty func-

ions. The matrix Cp̃ can be interpreted as the model covariance ma-
rix, with variances defined by equation 9, the model weighting func-
ion.

The inversion for the Fourier coefficients can be performed with
n efficient conjugate gradient scheme that takes advantage of the
oeplitz matrix in the normal equations. Preconditioning is used to
educe the number of iterations required for convergence and, hence,
o speed the inversion. Like many authors before us �Hansen, 1998;
rad et al., 2003; Claerbout and Fomel, 2004 and references�, we
ring the linear system to standard form. This is equivalent to using a
reconditioned conjugate gradient scheme with the weight matrix
p̃ as a preconditioner.
The objective function of penalized likelihood estimation,

J =
1

�n
2 �W1/2�p − Ap̃��2

2 + �Cp̃
−1/2p̃�2

2, �10�

s brought to standard form by a coordinate transformation z
Cp̃

−1/2p̃,

J =
1

�n
2 �W1/2�p − A�z��2

2 + �z�2
2, �11�

here A� = ACp̃
1/2. The estimator obtained by minimizing equation

1 is

z̃ = �A�HWA� + �n
2I�−1A�HWp , �12�

r, in terms of the original model,

p̂̃ = Cp̃
1/2�Cp̃

1/2AHWACp̃
1/2 + �n

2I�−1Cp̃
1/2AHWp . �13�

RLS with preconditioned conjugate gradient
or normal equations (CGNE)

We solve equation 13 via iteratively reweighted least squares
IRLS�, i.e., repeated application of the CGNE scheme to the linear-
zed problem, updating the nonlinear term after each IRLS iteration.
laerbout and Fomel �2004� discuss preconditioned inversion in in-

erpolation with prediction-error filters and present quantitative
omparisons of convergence between regularized and precondi-
ioned inversion. They conclude that within the first few iterations of
he preconditioned CGNE scheme, the most important characteris-
ics of the model are obtained; small details added in later iterations
o not alter the model much. The CGNE scheme usually can be
topped after these first few iterations. This means the term �n

2I in
quation 13 can be ignored because limiting the number of CGNE it-
rations �within the IRLS iterations� acts as regularization of the in-
ersion. This finding is supported by Trad et al. �2003� and Liu and
acchi �2004�, and numerous examples performed for this research.
The algorithm we use is listed in Table 1. It requires a matrix H,

hich equals the Toeplitz matrix multiplied on both sides by the pri-
r matrix Cp̃i

1/2. The matrix Cp̃i destroys the Toeplitz structure; there-
ore, it is more efficient to evaluate multiplications with H in steps.

ultiplication by the Toeplitz matrix is performed with fast Fourier
ransforms �FFTs�, whereas multiplication by C1/2 requires only an
p̃i
lement-wise multiplication between vectors because it is a diagonal
atrix. The IRLS iterations are started with the initial model equal to

ero and the model weight matrix Cp̃ computed from the NDFT esti-
ate AH Wp. Each time CGNE inversion converges, the next IRLS

teration starts. The model found by CGNE in the ith IRLS iteration
s used as the starting model in the CGNE algorithm in the IRLS iter-
tion i + 1 and is used to compute the matrix Cp̃i+1

.Although conver-
ence criteria can be designed for IRLS �see, for instance, Trad et al.,
003� we typically use a maximum of two to five IRLS iterations.

DOUBLE FRSI FOR INTERPOLATING
NONUNIFORMLY SAMPLED ALIASED DATA

FRSI cannot handle aliased data, and Gulunay’s method cannot
andle nonuniformly sampled data. Here, we present a hybrid meth-
d based on FRSI and inspired by Gulunay’s approach; it can handle
onuniformly sampled, aliased data.

First, we introduce the following parameters:

L, the interpolation factor, indicates that for uniformly sampled,
aliased data, L − 1 traces must be inserted between adjacent trac-
es to remove the aliasing.
falias, the frequency at which wraparound first occurs
fmax = L� falias, the maximum frequency that can be corrected for
aliasing
kN = 1/�2�x�, the Nyquist wavenumber corresponding to sam-
pling interval �x of the coarsely sampled input data. The interpo-
lated data have a sampling interval �x/L and a Nyquist wave-
number LkN.

able 1. The algorithm for IRLS with CGNE used to invert
he Fourier coefficients.

i = 0

p̃i = 0

Calculate Cp̃i
from AHWp using equation 8

IRLS: while i� imax

k = 0

zk = p̃i

H = Cp̃i

1/2AHWACp̃i

1/2

rk = Cp̃i

1/2AHWp − Hzk

dk = rk

CGNE: while
�rk�
�r0�

� limit, k�kmax

	 =
�rk�

dk
HHdk

zk+1 = zi + 	dk

rk+1 = ri − 	Hdk


 =
�rk+1�
�rk�

dk+1 = −rk+1 + 
dk

k = k + 1

p̃i+1 = Cp̃i

1/2zk

Calculate Cp̃i+1
from p̃i+1

i = i + 1
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V26 Zwartjes and Sacchi
ulunay’s f-k interpolation beyond aliasing

Interpolation of uniformly sampled, nonaliased data can be per-
ormed in the f-k domain by zero padding beyond the Nyquist wave-
umber �kN�. When the data are aliased, replications of the nona-
iased spectrum occur periodically along the wavenumber axis and
old into the desired wavenumber range, causing artifacts in the in-
erpolated data. Gulunay’s f-k interpolation for uniformly sampled,
liased data derives a mask to mute out these replications and leave
nly the nonaliased part of the spectrum.

When the data are spatially undersampled by a factor L, L − 1
races need to be interpolated between existing traces to remove the
liasing and to create a properly sampled data set. When, instead,
− 1 zero traces are inserted between existing traces, the Nyquist
avenumber is increased to LkN, but now the spectrum in the range

−LkN,LkN� contains the original spectrum as well as L − 1 aliases of
t because of the aliasing.

Gulunay uses the nonaliased part of the spectrum between wave-
umbers �−kN,kN� and temporal frequencies �0, fmax/L� to design a
ask that is applied to the aliased spectrum obtained by inserting

ero traces. To perform this element-wise multiplication, the nona-
iased spectrum is interpolated such that it contains L times as many
amples in each direction. This can be done by zero padding up to
kN and fmax and performing an inverse FFT to the spatial domain

0 –kN–LkN LkN0 –kN kN

0 –kN kN

–kN

0 

l 

l l 

–kN–LkN LkN–kN

falias

fmax

falias

falias

0

falias

0 –kN kN
0

falias

falias

0

falias

fmax

fmax =

Aliased

Nonaliased

L

L

a)

First Step

b)

Second Step

d)

c)

e)

L

igure 3. Schematic explanation of the double FRSI algorithm for
= 3. �a� Division of spectrum in two parts. �b� Step 1: Estimation

f nonaliased spectrum. �c� The estimated spectrum is interpolated
o the size of the spectrum that will be estimated in the second step.
d� Step 2: The prior Cp̃ for the inversion in step 2. �e� The prior sup-
resses all coefficients except those in black, which represent non-
liased energy.
ollowed by an FFT back to the wavenumber domain. The mask fil-
ers out the aliases in the spectrum between wavenumbers
−LkN,LkN� and temporal frequencies �0, fmax�.

ouble FRSI method

In the double FRSI method, FRSI is applied twice so that the coef-
cients estimated in the first pass can be used to separate the aliased
rom the nonaliased frequencies in the second pass. The spectrum is
ivided in two parts, as in Figure 3a. The difference between step one
nd step two is in the range of Fourier coefficients estimated and the
rior matrix Cp̃. In the first step the inversion is performed for the
onaliased Fourier coefficients in the wavenumber range �−kN,kN�,
nd for frequencies �0, falias� �shown in black in Figure 3b�, where

falias is the frequency where the wrap-around first occurs. In the first
tep the prior Cp̃ for sparse inversion is calculated from the NDFT
oefficients using equation 9, the model weighting function.

In the second pass, the inversion is performed for the frequency
ange �0, fmax� and wavenumber range �−LkN,LkN�. The spectrum es-
imated in the first pass is interpolated and stored in a matrix D. The
nterpolation is performed such that D has the same dimensions as
he spectrum estimated in the second pass, as indicated in Figure 3c.
he interpolation is performed by zero padding the nonaliased spec-

rum between kN and LkN and performing an inverse FFT to the spa-
ial domain followed by an FFT back to the wavenumber domain.
or each frequency f , in the second pass, the row with index f /�f
rom D is used to construct the prior Cp̃ for sparse inversion using
quation 9, the model weighting function. The matrix D, shown in
igure 3d, is used to distinguish aliased energy from the nonaliased
pectrum, in Figure 3e, and acts as a parameter selection tool. For a
ata set consisting of planar events, Cp̃ will suppress the aliases.
hen aliased energy wraps around in the range of nonaliased ener-

y, the method will still work. The method is designed to distinguish
etween aliased and nonaliased energy. When aliased overlies nona-
iased energy, then remnants of aliased energy for that particular
avenumber/frequency can be expected in the data.
To automatically detect where the aliasing starts in the case of reg-

lar sampling, one can think of monitoring the result of FRSI in the
rst pass to detect the temporal frequency at which the spatial Fouri-
r coefficients near the Nyquist wavenumber become comparable in
agnitude to those of the desired signal; the desired signal can be de-
ned as the spatial Fourier coefficients within a wedge/cone defined
y a minimum apparent velocity. For nonuniform sampling, the phe-
omenon of aliasing becomes more diffuse; hence, it becomes more
ifficult to quantify and discriminate from sampling artifacts.

The idea to use coefficients obtained at low frequencies to con-
truct a model weighting matrix for the inversion at higher frequen-
ies is also used by Herrmann et al. �2000� for the high-resolution
adon transform. Their method uses the coefficients obtained at the
revious frequency to construct the model weighting matrix for the
urrent frequency. This works for the Radon transform, where one
lanar or parabolic event maps to the same location on the slope/cur-
ature axis in the Radon domain for all temporal frequencies.

EXAMPLES IN ONE SPATIAL DIMENSION

liased planar events: Uniform sampling with gaps

Figure 4 shows results of the double FRSI algorithm on four uni-
ormly sampled planar events, but with missing traces. For the ex-
mples with planar events, all data were used at once, i.e., no spa-
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Fourier reconstruction of aliased data V27
iotemporal windows were used. We did constrain the spatial band-
idth in the inversion with a symmetric, frequency-dependent spa-

ial bandwidth, determined by the maximum dip in the data. The
ouble FRSI algorithm works very well on aliased, planar events
ith only positive or only negative dips that do not overlap in the
ourier domain. A more difficult example is given in Figure 5a,
hich shows a data set with eight planar events dipping in opposite
irections. Every other trace from the original 132 traces has been
mitted and an additional 11 traces have been killed. The result is
liasing by a factor L = 2 and artifacts in the spectrum because of the
dditional gaps �Figure 5b�. The double FRSI reconstruction is
hown in Figure 5c. We use equation 9, the model weighting func-
ion, with a = 2 and set �p̃

2 as 10% of the maximum of the squared
DFT coefficients. As discussed previously, the limited number of

terations in the CGNE algorithm stabilizes the inversion; therefore,

n
2 can be ignored. We also constrain the bandwidth with a minimum
pparent velocity cone of ±120 m/s. We perform the inversion with
he �smoothed� model preconditioned conjugate gradient algorithm
sing two IRLS iterations. The larger the value of �p̃

2, the larger the
emaining aliased energy. On the other hand, the smaller the value of

p̃
2, the more the desired signal is suppressed. Therefore, �p̃

2 must be
hosen with some care. An alternative way to set the model sparse-
ess is by varying the sparseness function through parameter a in the
odel weighting function �equation 9�.
The difference between the reconstruction and the original noise

ree data is shown in Figure 5e �amplitude �4�. Figure 5d shows that
liased energy which does not interfere with the desired spectrum
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igure 4. �a� Noisy, aliased data with missing traces. �b� Its ampli-
ude spectrum. �c� Reconstruction with double FRSI algorithm. �d�
stimated Fourier coefficients.
as been removed, but the estimation is suboptimal for frequencies
here aliased energy overlaps nonaliased energy. This is because the
rior Cp̃ used in the inversion of the second pass acts only as a param-
ter-selection mechanism and cannot separate aliased and nona-
iased energy where they overlap. The prior Cp̃ itself is shown in Fig-
re 5f.

liased marine shot record: Uniform sampling

Figure 6a shows an aliased marine shot record consisting of 45
races. Because two out of three traces are missing �L = 3�, the two
L − 1� aliases are clearly visible in the amplitude spectrum in Fig-
re 6c. We applied the double FRSI algorithm in overlapping spa-
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igure 5. �a� Noisy, aliased data with missing traces and �b� its ampli-
ude spectrum. �c� Reconstruction with double FRSI algorithm and
d� estimated Fourier coefficients. �e� Difference between recon-
truction and correct data �amplitude� 4�. �f� Prior Cp̃ used to sup-
ress aliasing in the second pass.
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V28 Zwartjes and Sacchi
iotemporal windows, in which the assumption of planar events ap-
roximately holds. The size of the overlapping windows was 64 time
amples with 16 samples overlap and 10 traces �375 m� with five
races overlap. To further reduce aliasing, we constrained the spatial
andwidth in the inversion by a velocity cone of cmin = ±1500 m/s
kmax = f /cmin�. Although application of NMO is beneficial because
t reduces the spatial bandwidth by flattening the hyperbolic events,
t was not applied in this example to make the example a little more
ifficult. We added some noise before the first break to stabilize the
nversion, which was removed by a first-break mute after recon-
truction. We used a = 2 in equation 9, the model weighting func-
ion, and set �p̃

2 as 1% of the maximum of the squared NDFT coeffi-
ients. We used the model preconditioned CGNE algorithm with two
RLS iterations. Figure 6b shows the reconstruction, and Figure 6d
hows the amplitude spectrum of the reconstructed data. Figure 7a
hows the difference between the original and interpolated data,
ith amplitude multiplied by a factor of four.

liased marine shot record:
niform sampling with gaps

In the previous example, the sampling is completely uniform;
herefore, Fourier reconstruction reduces to a band-limited sinc in-
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igure 6. �a� Uniformly sampled, aliased marine shot record ��x
37.5 m� and �c� its amplitude spectrum. �b� Result of two-pass

RSI reconstruction and �d� corresponding amplitude spectrum with

a

erpolation because AH A = I in equation 8. In this case, the double
RSI algorithm becomes almost equivalent to Gulunay’s algorithm.
more interesting problem �in the context of this article, at least� is

he reconstruction of aliased seismic data in case of uniform sam-
ling with gaps. Figure 8 shows the same aliased marine shot record
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igure 7. Difference plot for reconstruction in �a� Figure 6b and �b�
igure 8b. The amplitude in both difference plots is multiplied by a
actor of four.
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igure 8. �a� Shot gather of Figure 6a with an additional randomly
elected 17 traces removed and �c� its amplitude spectrum. �b� Re-
ult of double FRSI reconstruction applied in overlapping windows
he aliases removed.
 nd �d� the estimated amplitude spectrum.
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Fourier reconstruction of aliased data V29
s in Figure 6, only an additional randomly selected 17 traces have
een removed, resulting in a maximum gap size of eight traces. Fig-
re 8c shows aliasing and the sampling related distortions of the
pectrum. The parameters for the double FRSI algorithm are the
ame as in the previous example, except for the spatial window size,
hich contained all traces within a 600-m sliding window with half
window size overlap. Again, we did not use NMO to reduce the
andwidth. The double FRSI has removed the aliasing and distortion
n the spectrum quite well, as seen in Figure 8b and d. Figure 7b
hows the difference between the original and interpolated data,
ith amplitude multiplied by a factor of four. The difference plot

hows that the interpolation result is good but that at the positions of
he larger gaps the interpolation error is higher, as could be expected.

EXAMPLES IN TWO SPATIAL DIMENSIONS

Extension of Gulunay’s method and Fourier reconstruction to
igher dimensions is straightforward and is explained in detail in
ulunay �2003� and Hindriks and Duijndam �2000�. We refer the

eader to these two articles for implementation aspects. The 2D dou-
le FRSI algorithm is analogous to the 1D case. But if the inversion
n the first pass is performed for M Fourier coeffi-
ients, the inversion in the second pass will re-
uire LDM parameters, where D is the dimension
f the problem. This parameter increase does not
ose problems for the double FRSI algorithm in
wo spatial dimensions, but in three spatial di-

ensions it becomes an issue for both the han-
ling of the aliasing as well as the efficiency of the
ethod.

liased planar events: Uniform
ampling with and without random
erturbations

Figure 9a–c shows three 2D sampling geome-
ries, one of which is completely uniform and two
hat are uniform with a random deviation in the
oordinates of maximum 25% and 50% of the
ampling interval. There are 196 traces �14�14�
ith a sampling interval of �x = �y = 3, and the
ata are undersampled by a factor L = 3. In the
rst pass of FRSI, we estimate the nonaliased part
f the spectrum below 20 Hz for all the data at
nce �no windowing�. At each frequency, an in-
ersion is performed for 15�15 Fourier coeffi-
ients �7 positive + 7 negative + 0� in the 2D
avenumber plane. In the second pass, the inver-

ion is performed up to 60 Hz for a wavenumber
lane consisting of 43�43 Fourier coefficients
21 positive + 21 negative + 0�, which means
here are nine times as many parameter as input
ata. The reconstruction results for the standard
RSI algorithm are shown in Figure 10a–c, with
orresponding spectra in Figure 10d–f. The re-
ults of the double FRSI algorithm are shown in
igure 10g–i, with corresponding spectra in Fig-
re 10j–l. For the prior Cp̃, we used equation 9,
he model weighting function, with a = 2 and set
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Figure 9. �a� C
tries with a m
from �a� with
respectively, w
p̃
2 as 1% of the maximum of the squared NDFT coefficients. The re-
onstruction with the standard FRSI algorithm took 18 s, whereas
he double FRSI algorithm took 25 s on one SGI Origin 200 CPU to
nvert 122 frequency slices.

As the sampling irregularity increases, the aliases become less
ronounced. Because of this, the standard FRSI reconstruction re-
ult improves with increasingly less uniform sampling �Figure
0d–f�. The double FRSI algorithm correctly reconstructs the data
or all geometries.

ynthetic 2D seismic survey:
niform sampling with gaps

The geologic model for the synthetic data in this example is a tilt-
d fault-block model, overlain by several horizontal reflectors and
imulating the situation in some parts of the North Sea. Wever and
petzler �2004� use this 2D synthetic data in a time-lapse experiment

o test the sensitivity of several time-lapse metrics to acquisition per-
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n sampling with 196 traces and �x = �y = 3, and sampling geome-
random error in sampling of �b� 0.25�x and �c� 0.5�x. �d� Gather

and �g� its amplitude spectrum. �e� and �f� Gather from �b� and �c�,
etween �19.5, 20.5� and �h� and �i� their amplitude spectra.
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V30 Zwartjes and Sacchi
urbations and to show how 1D Fourier reconstruction can benefit
ime-lapse processing. Here, we use it for a reconstruction experi-

ent in two spatial dimensions. The data set was generated through
nite-difference modeling, simulating a split-spread configuration.
he shot spacing was 25 m and receiver spacing was 24 m. Figure
1a shows the input data after additionally randomly removing 20%
f the remaining traces to introduce irregularity in the sampling. We
erformed the reconstruction in the 2D shot-offset domain, but the
ethod can also be applied in the shot-receiver or midpoint-offset

omains.
The double FRSI algorithm was applied in overlapping spa-

iotemporal windows that were 80 ms long with 20-ms overlap. In
he spatial directions, we used 20 shots simultaneously and all traces
ithin an offset window of approximately 300 m in length, corre-

ponding to approximately 12 traces. The overlap in offset direction
as 150 m. We used an interpolation factor L = 2 and a maximum

requency of 60 Hz. In the previous examples, the planar events
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igure 10. Reconstruction of data in the corresponding columns in F
ard FRSI. �g–l� Double FRSI.
ere all of approximately equal strength, but this example contains
oth strong and weak reflections.Avalue of a = 2 for Cp̃ in the mod-
l weighting function �equation 9� attenuated the weaker events too
uch, but a = 1 gave good results. We set the tuning parameter �p̃

2

gain as 1% of the squared NDFT coefficients. The output shot and
ffset intervals were both set to 12.5 m �Figure 12b�. A gather from
he reconstructed data �Figure 12a� shows aliasing has been removed
rom the flanks of the hyperbolas. The f-k spectrum in Figure 12b
lso shows this gather is not aliased.

ascade of FRSI and Gulunay’s method

An alternative algorithm to the double FRSI method is to use a
ascade of FRSI �Zwartjes and Duijndam, 2000� and Gulunay’s f-k
nterpolation method �Gulunay, 2003�, an idea suggested by Abma-
nd Kabir �2003� under the name nonaliased FK method. We have

applied such a cascaded method successfully to
uniformly sampled data with and without sam-
ples missing �results not shown�. However, a
problem with this method is that as the sampling
deviates from fully uniform with missing sam-
ples to sampling with positioning errors and miss-
ing samples, the aliasing becomes more diffuse
until it disappears in the sampling artifacts for
random sampling. The diffused nature of the
aliased energy makes it difficult for Fourier re-
construction to produce an aliased spectrum with-
out sampling distortions. Gulunay’s algorithm
will not remove this dispersed aliased energy.
Therefore, as sampling becomes less uniform, the
cascaded approach becomes less successful. In
the extreme case of random sampling, this is no
longer an issue because of the absence of aliasing.
An advantage of the cascaded algorithm is that in
higher dimensions it does not suffer from the
strong increase of parameters as the double FRSI
method does.

DISCUSSION

The underlying assumption for the interpola-
tion beyond aliasing with the double FRSI meth-
od is that the data consist of a limited number of
planar events. When the data do not consist of
planar events, the method can be applied in over-
lapping spatiotemporal windows. Window sizes
are generally on the order of 100 ms and 10–15
traces in each spatial dimension. Because the spa-
tial bandwidth of the data increases with offset,
the application of time/space-variant sparseness
constraint may be beneficial when working with
overlapping windows, although we have not veri-
fied this. When no window can be designed in
which the data consist of planar events, a trans-
form with basis functions that better describe the
move-out of the data will be more suitable. A
good example of this is the application of the
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igh-resolution parabolic and hyperbolic Radon transforms �Her-
mann et al. 2000; van Dedem and Verschuur, 2000�.

To suppress aliased energy adequately, the tuning parameters for
he model weighting matrix must be set properly. Choosing too

uch sparseness may suppress weak energy; so in general, it is a
ood idea to apply some form of gain to equalize amplitudes in the
ata before reconstruction. The method has the following limita-
ions. First, the maximum temporal frequency that can be corrected
or aliasing depends on the highest nonaliased temporal frequency.
s the aliasing becomes more severe, the nonaliased region shrinks.
here is, therefore, a limit to how much aliasing can be handled. Sec-
nd, the algorithm only discriminates between aliased and nona-
iased coefficients and cannot discriminate between aliased and non-
liased energy for a single coefficient. For this reason overlapping of
liased and nonaliased energy still presents a challenge. Third, small
patiotemporal windows are used to reconstruct nonplanar events.

hen gap sizes are of the same order as the windows required to ob-
ain approximately planar events, the method will obviously be less
ffective. In general, the reconstruction error increases with gap
ize. Finally, if in the first step of the double FRSI algorithm the num-
er of parameters estimated is M, then in the second step there are
LD parameters, where L is the interpolation factor and D the num-

er of spatial dimensions. For L�4 and D�2, good results have
een obtained in synthetic and real data tests. For D�3, the number
f parameters increases dramatically with respect to the available in-
ut data. However, when applied to multidimensional aliased data,
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igure 11. Synthetic data two times undersampled and a randomly
elected 20% of the remaining data removed. �a� Shot record from
he synthetic survey and �b� its amplitude spectrum. �c� Sampling
eometry of part of the survey, shot versus offset.
he algorithm assumes aliasing along each spatial dimension. In
ractice, this need not always be the case, and this may be exploited
y extending the wavenumber axis only along the aliased direction.

CONCLUSION

The double FRSI algorithm combines the principles of Fourier re-
onstruction with sparse inversion, which cannot handle aliasing,
nd the f-k interpolation algorithm, which cannot handle nonuni-
orm sampling, into a new method that can reconstruct nonuniform-
y sampled aliased seismic data. As with many existing methods, we
ssume the data consist of a limited number of planar events. There-
ore, the algorithm should be applied to seismic data in overlapping
patiotemporal windows.

The use of the nonaliased part of the spectrum to help dealias the
ata is inspired by Gulaney’s f-k interpolation method for uniformly
ampled, aliased data. How the prior is obtained from the nonaliased
art of the spectrum is similar to how the mask is obtained in Gulu-
ay’s method. However, in the double FRSI algorithm, the prior is
oth estimated and applied in a least-squares manner, while Gulu-
ay’s mask is estimated and applied as an element-wise division and
ultiplication only. This makes the double FRSI method able to han-

le nonuniform sampling.
The method shows good results in the reconstruction of nonuni-

ormly sampled, aliased seismic data in one and two spatial dimen-
ions.An interesting aspect is that as the sampling becomes less uni-
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igure 12. Synthetic data two times undersampled and a randomly
elected 20% of the remaining data removed. �a� Shot record from
he reconstructed survey and �b� its amplitude spectrum. �c� Sam-
ling geometry after reconstruction, shot versus offset.
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orm and approaches a more random sampling scheme, the effect of
liasing disappears, leaving only artifacts in the Fourier domain
rom the nonuniform sampling, which can be removed with the stan-
ard Fourier reconstruction algorithm.
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