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Fourier reconstruction of nonuniformly sampled, aliased seismic data

P. M. Zwartjes' and M. D. Sacchi?

ABSTRACT

There are numerous methods for interpolating uniformly
sampled, aliased seismic data, but few can handle the combi-
nation of nonuniform sampling and aliasing. We combine the
principles of Fourier reconstruction of nonaliased, nonuni-
formly sampled data with the ideas of frequency-wavenum-
ber (f-k) interpolation of aliased, uniformly sampled data in a
new two-step algorithm. In the first step, we estimate the Fou-
rier coefficients at the lower nonaliased temporal frequencies
from the nonuniformly sampled data. The coefficients are
then used in the second step as an a priori model to distinguish
between aliased and nonaliased energy at the higher, aliased
temporal frequencies. By using a nonquadratic model penal-
ty in the inversion, both the artifacts in the Fourier domain
from nonuniform sampling and the aliased energy are sup-
pressed. The underlying assumption is that events are planar;
therefore, the algorithm is applied to seismic data in overlap-
ping spatiotemporal windows.

INTRODUCTION

In seismic data acquisition the spatial sampling is such that alias-
ing occurs often. Interpolation of uniformly sampled, nonaliased
seismic data is straightforward and can be performed by convolution
with a sinc filter in the spatial domain or by extending the Nyquist
wavenumber of a band-limited signal through zero padding in the
Fourier domain. If aliasing on seismic shot records can be removed
by reducing the spatial bandwidth with NMO, such simple interpola-
tion methods are sufficient for interpolation. However, coherent
noise such as multiples and groundroll may still be aliased after
NMO.

Interpolation of spatially aliased data is less trivial, but a variety of
methods has been published in the geophysical literature; see Gulu-
nay (2003) for an overview. Methods based on the dip scan or slant-

stack approach scan along a limited number of dips in a small win-
dow to identify the main events, which are then interpolated along
the identified dip to a finer grid [see, for instance, Bardan (1987);
Kao (1997)]. The frequency-space (f-x) interpolation method by
Spitz (1991) uses the predictability of stationary, nondispersive, pla-
nar events to interpolate aliased data at high temporal frequencies
with filters derived at the nonaliased lower frequencies. Closely re-
lated is the method of f-x projection filters, which differs in the defi-
nition of the noise model (Soubaras, 1997). The time-space (#-x) do-
main interpolation by Claerbout and Nichols (1991) also falls into
the category of filter-based interpolation techniques and uses 2D
prediction filters in the time-space domain to predict traces at a
smaller sampling interval. Crawely and Clapp (1999) extend the 7-x
domain prediction-error filtering approach to handle nonstationary
events.

More recently, Fomel (2002) has presented a #-x domain interpo-
lation technique based on plane-wave destruction filters that is an al-
ternative to the 7-x and f-x prediction filter approaches. Among the
benefits of this method are (1) it handles nonstationary events and (2)
the obtained coefficients are interpreted as local slope, which has a
range of applications. If convolution of aliased data along the spatial
axis with an appropriate filter yields nonaliased data, then the same
result can be achieved in the wavenumber domain by multiplication
of the aliased spectra with an appropriate mask. This is the approach
of Gulunay (2003), who also uses the nonaliased lower frequencies
to attack the aliases. In fact, the methods of Spitz and Gulunay are
equivalent but are implemented in different domains (Gulunay,
2003). The use of nonaliased lower temporal frequencies to dealias
higher frequencies has also been applied successfully by Herrmann
et al. (2000) for the high-resolution Radon transform.

Abma and Kabir (2003) compare various -x, f-x, and frequency-
wavenumber ( f-k) methods qualitatively and conclude that there are
some differences in speed and reconstruction quality, depending on
the trace density and complexity of the input data. The following as-
sumptions are common to these methods. First, the data are assumed
to consist of planar events. If this is not the case, the method must be
applied in small spatiotemporal windows in which the assumption of
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planar events approximately holds. Second, the range of dips in the
data is limited. Third, if the data consist of planar events, the lower
temporal frequencies in the f-k spectrum are nonaliased and can be
used to distinguish aliased from nonaliased energy at higher tempo-
ral frequencies. Fourth, the data are sampled uniformly. The last as-
sumption of uniform sampling is a requirement for the f-k and
t-x, f-x prediction filter algorithms. It is not a requirement for the
slant-stack/dip-scan methods Kao (1997).

Of the numerous methods for interpolating aliased seismic data,
very few can handle nonuniform sampling. The objective of this pa-
per, therefore, is to propose a method that can interpolate aliased
seismic data and is robust against sampling irregularities. We com-
bine the principles of Fourier reconstruction of nonaliased, nonuni-
formly sampled data, which can handle nonuniform sampling, with
the ideas of Gulunay’s f-k interpolation of aliased uniformly sam-
pled data in a new two-stage algorithm. In the first step of this algo-
rithm, only the Fourier coefficients of the nonaliased, lower tempo-
ral frequencies are estimated. These are then used to construct a ma-
trix with model weighting terms, similar to the principles of Gulu-
nay’s f-k-domain mask that suppress aliasing. This matrix is used in
the second step to discriminate between aliased and nonaliased ener-
gy in the entire spectrum. By using a nonquadratic model penalty in
the inversion, both Fourier domain artifacts from nonuniform sam-
pling and aliased energy are suppressed.

The underlying assumption is that events are planar; therefore, the
algorithm is applied to seismic data in overlapping spatiotemporal
windows. The maximum temporal frequency that can be corrected
for aliasing depends on the highest nonaliased temporal frequency.
As the aliasing becomes more severe, the nonaliased region shrinks.
So thereis a limit to how much aliasing can be handled. Additionally,
the algorithm only discriminates between aliased and nonaliased co-
efficients and cannot discriminate between aliased and nonaliased
energy for a single coefficient. For this reason, overlapping of
aliased and nonaliased energy still presents a challenge. As the sam-
pling becomes more nonuniform, the spectrum becomes more dis-
torted to the point where aliasing is no longer an issue. Therefore, for
randomly sampled data, both the new two-stage algorithm and the
standard Fourier reconstruction yield equally good results. For uni-
formly sampled and moderately nonuniformly sampled data, good
results have been obtained on 1D field data and on 1D and 2D syn-
thetic data.

Fourier reconstruction of nonuniformly sampled,
aliased seismic data

Fourier reconstruction Duijndam et al. (1999) is a method to inter-
polate nonuniformly sampled data, which can be uniform sampling
with missing traces, uniform sampling with random deviations, or
fully random sampling. It assumes band-limited data and therefore is
unsuited for aliased data. In this article, we discuss how Fourier re-
construction can be used on nonuniformly sampled, aliased data us-
ing the assumptions mentioned in the previous paragraph. With re-
spect to these assumptions, the following comments apply. We as-
sume the data to consist of a limited number of planar events, a valid
assumption when the algorithm is applied in small windows. We use

the nonaliased part of the spectrum to generate model weights for the
inversion in Fourier reconstruction, and we use these weights to sup-
press aliased energy. The generation of the weights is inspired by the
f-k interpolation method for aliased data Gulunay (2003). We do not
assume uniform sampling because nonuniform sampling artifacts
are taken care of by Fourier reconstruction. We first discuss nonuni-
form sampling and its effect on the discrete Fourier transform
(DFT).

Nonuniform discrete Fourier transform

When data p[x,] are nonuniformly sampled at locations
[xo, ..., Xy_1], we can use the nonuniform discrete Fourier transform
(NDFT) to compute the Fourier coefficients:

N-1

PnprrlmAk] = 2 P[xn]e‘i mAkx”Axm (1)
n=0

Trace weights are used to compensate for differences in sampling
density and are scaled such that 2, Ax, = Ak/2 7. The spatial band-
width is [-MAk/2, ..., MAk/2 — 1] with Ak = 27/ (xy_1 — Xo).
Now assume we have obtained discrete Fourier coefficients from
data sampled on a regular grid in the spatial domain. These coeffi-
cients are denoted by Pprr. The inverse transform from a uniformly
sampled k-space Ppyr to a nonuniformly sampled spatial grid is

M/2-1

Ak B .
plad =" 2 pprlmAkle ™Ak, (2)
27 i mn

Duijndam and Schonewille (1999) present a fast algorithm to com-
pute the NDFT. The NDFT coefficients equal the DFT coefficients
convolved with the NDFT of the sampling weights. This follows
from substituting of equation 2, the inverse NDFT, in equation 1, the
forward DFT:
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PrxprrlmAk] = ;2 > BorlgAk]e 1Ak ngimaki, Ay

noq

Ak ) _
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={PSF * pppri[mAk]. (4)

In equation 4, PSF stands for point-spread function and is defined as
the NDFT of the trace weights:

N-1

Ak :
PSF[mAk] = — >, Ax, /4%, (5)
27Tn=0

The distortion in the NDFT is determined by the PSF, which in turn is
influenced by the weights. As the PSF approaches a delta function,
the NDFT becomes more like the DFT.

Sampling-related problems: Aliasing
and sampling artifacts

Sampling involves multiplying a continuous signal with a discrete
sampling train s (Figure 1a). The analog in the Fourier domain is to
convolve the signal spectrum with the Fourier transform of s, i.e., §
(Figure 1b), which yields an infinite number of aliases of the original
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spectrum. The periodicity of the aliases in the Fourier domain is de-
termined by the spatial sampling interval. If the bandwidth of the sig-
nal exceeds the periodicity of 5, then spatial aliasing occurs, as
shown on the planar events in Figure 2a and b.

In the case of uniform sampling with missing samples, aliases still
occur in the Fourier domain, but now the periodicity is determined
by the smallest sampling interval (Figure 1c—f). Random sampling
can be thought of as uniform sampling with missing samples on a
very finely sampled underlying grid. The aliases in the Fourier do-
main are then so widely spaced that the aliasing effect is effectively
absent (Figure 1g—j).

Another effect of nonuniform sampling is that §'is no longer a per-
fect spike train but contains artifacts between its spikes. These arti-
facts indicate how much a single Fourier coefficient is distorted by
the PSF in equation 5. Convolution with this noisy spike train dis-
torts the Fourier coefficients. Figure 1c and 1e shows the case of uni-
form sampling where positions have been omitted such that, respec-
tively, 50 and 15 samples remain. Note the PSF and the periodicity in
5 (Figure 1d and f). Figure 1g—j shows s and § for random sampling
with 50 and 15 positions, respectively. Here, the spike series that
causes the aliases of the spectrum is absent.

Figure 2 shows the effect of spatial sampling on the estimate of the
spectrum for cross-dipping, aliased linear events. Figure 2a shows
the case of uniform samping; its spectrum in Figure 2b is aliased but
without artifacts. When the sampling is uniform with gaps caused by
missing traces (Figure 2c), the spectrum again shows aliasing but

Spatial domain Fourier domain

[T
i

Amplitude = Amplitude ¥ Amplitude B Amplitude & Amplitude &
Amplitude = Amplitude E Amplitude = Amplitude & Amplitude S

1A

Spatial position —2Knyg k=0 2ky, Wavenumber

Figure 1. A schematic sampling train in the spatial domain. (a) Uni-
form sampling. (c) and (¢) Nonuniform sampling with 50 and 15 po-
sitions. (g) and (i) Random sampling with 50 and 15 positions. The
figures in the right column (b), (d), (f), (h), and (j) show the spectra of
the figures in the left column, obtained using NDFT (equation 1).
The central spike denotes k = 0, and all other spikes are its replica-
tions that are the cause of aliasing. Note the lack of these replications
for random sampling in (h) and (j).

now also artifacts from sampling irregularities. This is explained by
the convolution of the true spectrum with a noisy spike train such as
in Figure 1d. In the case of random sampling (Figure 2e), the arti-
facts in the spectrum are still there; but because of the absence of rep-
licating spikes (see, for instance, Figure 1h), the spectrum is not
aliased.

In practice, sampling is not always uniform with missing samples
nor fully random. Starting from uniform sampling with or without
missing positions, the sampling locations can be perturbed more and
more to yield increasingly nonuniform sampling patterns. As sam-
pling of seismic data becomes more nonuniform, the aliasing be-
comes more and more diffuse until it disappears altogether for ran-
dom sampling.

FOURIER RECONSTRUCTION WITH
SPARSE INVERSION (FRSI)

The NDFT coefficients equal the DFT coefficients convolved
with the PSF of the nonuniform grid. A reconstruction procedure that
contains a deconvolution for the PSF is therefore a logical approach
to the problem (Feichtinger et al., 1995; Duijndam et al., 1999). This
is done with least-squares inversion per temporal frequency w as
Fourier reconstruction is applied to the nonuniformly sampled spa-
tial coordinates. Inversion requires a forward-modeling step, and for
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Figure 2. Linear events sampled (a) uniformly, (¢) uniformly with
missing traces and (e) randomly. (b), (d), and (f) Corresponding
spectra computed with NDFT (ky denotes Nyquist).
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Fourier reconstruction, this is equation 2, the inverse DFT to a non-
uniform grid. Instead of a quadratic penalty function that minimizes
the model norm and yields a smooth model, one could look for a
parsimonious model structure or sparse solution. Such models can
be obtained with nonquadratic regularization terms that penalize
smooth and favor sparse models. In robust regression, nonquadratic
penalties are imposed on the residual. In sparse inversion, they are
imposed on the model parameters. The damping factor that results
from a quadratic model penalty function penalizes all model param-
eters. A nonquadratic model penalty function penalizes (or weighs)
the large model parameters less than the smaller ones. Parameters
that receive more weight are damped more, and in this manner the
model penalty enforces sparseness in the model. This approach of
Fourier reconstruction with sparse inversion (FRSI) improves the
reconstruction result, as shown by Sacchi and Ulrych (1996),
Zwartjes and Duijndam (2000), and Liu and Sacchi (2001). The ef-
fect of the nonquadratic constraint is to suppress sampling and aper-
ture-related artifacts, which has also been used to great advantage in
the high-resolution Radon transform (Sacchi and Ulrych, 1995; Trad
etal.,2003).

One of the earliest applications of nonquadratic penalties in the
field of geophysics was for robust regression (Claerbout and Muir,
1973). Thorson and Claerbout (1985) use a mix of quadratic model
penalties to obtain a sparse hyperbolic Radon transform, and Sacchi
and Ulrych (1995) obtain similar results using a single nonquadratic
penalty in their high-resolution parabolic Radon transform. Other
applications are in crosshole tomography (Clippard et al., 1995), in
3D multiple prediction (van Dedem and Verschuur, 2000), and in
least-squares migration (Liu et al., 2003). The application of non-
quadratic model penalties for seismic data regularization with the
Fourier transform started with Sacchi and Ulrych (1996) and was ex-
tended by Zwartjes and Hindriks (2001) for sampling problems in
two spatial dimensions and by Liu (2004) for four spatial dimen-
sions. Similar algorithms have been presented by Wajer et al. (1998)
in the field of magnetic resonance imaging (MRI) for reconstructing
nonuniformly sampled Fourier space data.

Xu et al. (2005) discuss an alternative algorithm that uses only the
NDEFT for reconstruction and can be applied to nonuniformly sam-
pled data. In each iteration of the algorithm, only the largest NDFT
coefficient is inverse Fourier transformed to the original nonuniform
grid and subtracted from the data. This is repeated until there is no
signal left or until a user-specified threshold is reached. The coeffi-
cients retrieved at each iteration are stored, and from these the signal
is reconstructed on a uniformly spaced grid. This is very similar to
the so-called CLEAN algorithm by (Hégbom, 1974), but that con-
tains a least-squares fit for each retrieved coefficient, whereas Xu et
al. (2005) only uses the NDFT. The result of that method therefore
depends on the quality of the NDFT, which deteriorates as the sam-
pling becomes less uniform. Because of the repeated evaluation of
the forward and inverse NDFT, both algorithms can be quite slow for
random sampling grids, although on uniformly spaced grids with
missing samples the FFT can be used. Xu et al. (2005) claim the
method also works in the presence of aliasing, although no details
are given in the paper.

The goal in Fourier reconstruction with sparse inversion is to min-
imize the following objective function:

1 ~ ~
= SIW"p - AP + p(B). (6)

The first term on the right side of equation 6 is the data-fit term, and
the second term is the model penalty term. The symbols are defined
as

P = plx,l,
Ak .
Anm = _e—]mAkxn’
21T

DPm = ﬁDFr[mAk]-

W, = Ax

nn n»

1

~ ~2 I-a
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The term o7 is noise variance, and p and p are vectors. For recon-

struction in one spatial dimension, a simple weighting scheme, such

as

1
Axn = E(xn+l =Xy - 1)’ (7)

increases the convergence of the conjugate gradient scheme (Feich-
tinger et al., 1995). In two spatial dimensions, the choice of a trace
weighting scheme is less straightforward. One approach is to use
weights proportional to the area surrounding the nth trace, as deter-
mined by Voronoi cells (Hindriks and Duijndam, 2000). This ap-
proach to construction of weights is driven by considerations in the
spatial domain. Pipe and Menon (1999) present an alternative ap-
proach for constructing weights for sampling problems in the field of
MRI. Their method iteratively adjusts the weights such that the PSF
defined in equation 5 approaches a 2D delta function. Both ap-
proaches can be extended to higher spatial dimensions, although in
the presence of large gaps, one should be careful of assigning large
weights to bad traces.
The minimum of the objective function in equation 6 is given by

P = (A"WA + 02C;)'AWp, (8)
with
[Cﬁ]mm = (o-i + ﬁ;’kﬁi)a' (9)

The scalars o7 and o7 are related to the noise and signal variances,
whereas a describes the model parameter distribution. In practice,
these parameters are used as inversion tuning parameters. Including
the nonquadratic model penalty term in the objective function yields
a sparse inversion estimator. Any nonquadratic penalty function that
has been successfully used for robust regression of noisy data can be
used for sparse inversion. However, no penalty function is best for
all applications, and many different nonquadratic penalty functions
have appeared and will probably continue to appear in the literature.
Because of the ambiguity in choosing a model penalty function, we
use a new weighting function, defined in equation 9, which allow us
to tune the amount of sparseness through the scale parameters a and
o03. For a = 1/2, this corresponds to the derivative with respect to p
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of the convex ¢,_, function (a smooth approximation to the discon-
tinuous £;-norm). Fora = 1 and a = 2, it corresponds to the noncon-
vex Cauchy and Geman-McClure penalty functions, respectively.
See Zhang (1997) for a description of these and other penalty func-
tions. The matrix C; can be interpreted as the model covariance ma-
trix, with variances defined by equation 9, the model weighting func-
tion.

The inversion for the Fourier coefficients can be performed with
an efficient conjugate gradient scheme that takes advantage of the
Toeplitz matrix in the normal equations. Preconditioning is used to
reduce the number of iterations required for convergence and, hence,
to speed the inversion. Like many authors before us (Hansen, 1998;
Trad et al., 2003; Claerbout and Fomel, 2004 and references), we
bring the linear system to standard form. This is equivalent to using a
preconditioned conjugate gradient scheme with the weight matrix
C;as apreconditioner.

The objective function of penalized likelihood estimation,

1 - 12
J = =W - AD); + [1C5Bl5, (10)

o P
is brought to standard form by a coordinate transformation z

= C;'"p,

1
= SIW"(p - A2 + |z

n

3 (11)

where A’ = AC}?. The estimator obtained by minimizing equation
11is

7= (A"WA + o 1)'AWp, (12)

or, in terms of the original model,

P = CA(CYPATWACY” + o21) ' CY°AfWp.  (13)

IRLS with preconditioned conjugate gradient
for normal equations (CGNE)

We solve equation 13 via iteratively reweighted least squares
(IRLS), i.e., repeated application of the CGNE scheme to the linear-
ized problem, updating the nonlinear term after each IRLS iteration.
Claerbout and Fomel (2004) discuss preconditioned inversion in in-
terpolation with prediction-error filters and present quantitative
comparisons of convergence between regularized and precondi-
tioned inversion. They conclude that within the first few iterations of
the preconditioned CGNE scheme, the most important characteris-
tics of the model are obtained; small details added in later iterations
do not alter the model much. The CGNE scheme usually can be
stopped after these first few iterations. This means the term o2l in
equation 13 can be ignored because limiting the number of CGNE it-
erations (within the IRLS iterations) acts as regularization of the in-
version. This finding is supported by Trad et al. (2003) and Liu and
Sacchi (2004), and numerous examples performed for this research.

The algorithm we use is listed in Table 1. It requires a matrix H,
which equals the Toeplitz matrix multiplied on both sides by the pri-
or matrix C}?. The matrix Cj; destroys the Toeplitz structure; there-
fore, it is more efficient to evaluate multiplications with H in steps.
Multiplication by the Toeplitz matrix is performed with fast Fourier
transforms (FFTs), whereas multiplication by C}? requires only an

element-wise multiplication between vectors because itis a diagonal
matrix. The IRLS iterations are started with the initial model equal to
zero and the model weight matrix C; computed from the NDFT esti-
mate A¥ Wp. Each time CGNE inversion converges, the next IRLS
iteration starts. The model found by CGNE in the ith IRLS iteration
is used as the starting model in the CGNE algorithm in the IRLS iter-
ationi + 1 and s used to compute the matrix C; . Although conver-
gence criteria can be designed for IRLS (see, for instance, Trad et al.,
2003) we typically use a maximum of two to five IRLS iterations.

DOUBLE FRSI FOR INTERPOLATING
NONUNIFORMLY SAMPLED ALIASED DATA

FRSI cannot handle aliased data, and Gulunay’s method cannot
handle nonuniformly sampled data. Here, we present a hybrid meth-
od based on FRSI and inspired by Gulunay’s approach; it can handle
nonuniformly sampled, aliased data.

First, we introduce the following parameters:

e L, the interpolation factor, indicates that for uniformly sampled,
aliased data, L — 1 traces must be inserted between adjacent trac-
es toremove the aliasing.

*  fuis the frequency at which wraparound first occurs

*  fuax = L X fiis, the maximum frequency that can be corrected for
aliasing

e ky = 1/(2Ax), the Nyquist wavenumber corresponding to sam-
pling interval Ax of the coarsely sampled input data. The interpo-
lated data have a sampling interval Ax/L and a Nyquist wave-
number Lky.

Table 1. The algorithm for IRLS with CGNE used to invert
the Fourier coefficients.

i=0

pi=0
Calculate C;, from A¥Wp using equation 8
IRLS: while i =i

k=0

Z, =P

H = C}’A"WAC}?

r, = Cl'{zA”Wp — Hz,

dk =T
CGNE: while H > limit, k= k.
0
Il
di/Hd,

Ziy = Z; + ady
Iy = I; — aHd,

(L%
5= el
X
diy = —1py + Bd;
k=k+1
Pis1 = C}?fzzk

Calculate C;, from P,
i=i+1
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Gulunay’s f-k interpolation beyond aliasing

Interpolation of uniformly sampled, nonaliased data can be per-
formed in the f-k domain by zero padding beyond the Nyquist wave-
number (ky). When the data are aliased, replications of the nona-
liased spectrum occur periodically along the wavenumber axis and
fold into the desired wavenumber range, causing artifacts in the in-
terpolated data. Gulunay’s f-k interpolation for uniformly sampled,
aliased data derives a mask to mute out these replications and leave
only the nonaliased part of the spectrum.

When the data are spatially undersampled by a factor L, L — 1
traces need to be interpolated between existing traces to remove the
aliasing and to create a properly sampled data set. When, instead,
L — 1 zero traces are inserted between existing traces, the Nyquist
wavenumber is increased to Lky, but now the spectrum in the range
[—=Lky,Lky] contains the original spectrum as well as L — 1 aliases of
it because of the aliasing.

Gulunay uses the nonaliased part of the spectrum between wave-
numbers [ —ky,ky] and temporal frequencies [0, f,../L] to design a
mask that is applied to the aliased spectrum obtained by inserting
zero traces. To perform this element-wise multiplication, the nona-
liased spectrum is interpolated such that it contains L times as many
samples in each direction. This can be done by zero padding up to
Lky and f,« and performing an inverse FFT to the spatial domain
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v —* Lk,

Nonaliased |
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max alias
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- Ky 0 Ky —Lk, —k
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Figure 3. Schematic explanation of the double FRSI algorithm for
L = 3. (a) Division of spectrum in two parts. (b) Step 1: Estimation
of nonaliased spectrum. (c) The estimated spectrum is interpolated
to the size of the spectrum that will be estimated in the second step.
(d) Step 2: The prior C; for the inversion in step 2. (e) The prior sup-
presses all coefficients except those in black, which represent non-
aliased energy.

followed by an FFT back to the wavenumber domain. The mask fil-
ters out the aliases in the spectrum between wavenumbers
[ =Lky, Lky] and temporal frequencies [ 0, frax -

Double FRSI method

In the double FRSI method, FRSI is applied twice so that the coef-
ficients estimated in the first pass can be used to separate the aliased
from the nonaliased frequencies in the second pass. The spectrum is
divided in two parts, as in Figure 3a. The difference between step one
and step two is in the range of Fourier coefficients estimated and the
prior matrix Cj. In the first step the inversion is performed for the
nonaliased Fourier coefficients in the wavenumber range [—ky,ky],
and for frequencies [0, fui.] (shown in black in Figure 3b), where
faias 18 the frequency where the wrap-around first occurs. In the first
step the prior C; for sparse inversion is calculated from the NDFT
coefficients using equation 9, the model weighting function.

In the second pass, the inversion is performed for the frequency
range [ 0, fma] and wavenumber range [ — Lky, Lky]. The spectrum es-
timated in the first pass is interpolated and stored in a matrix D. The
interpolation is performed such that D has the same dimensions as
the spectrum estimated in the second pass, as indicated in Figure 3c.
The interpolation is performed by zero padding the nonaliased spec-
trum between ky and Lky and performing an inverse FFT to the spa-
tial domain followed by an FFT back to the wavenumber domain.
For each frequency f, in the second pass, the row with index f/Af
from D is used to construct the prior Cj for sparse inversion using
equation 9, the model weighting function. The matrix D, shown in
Figure 3d, is used to distinguish aliased energy from the nonaliased
spectrum, in Figure 3e, and acts as a parameter selection tool. For a
data set consisting of planar events, C; will suppress the aliases.
When aliased energy wraps around in the range of nonaliased ener-
gy, the method will still work. The method is designed to distinguish
between aliased and nonaliased energy. When aliased overlies nona-
liased energy, then remnants of aliased energy for that particular
wavenumber/frequency can be expected in the data.

To automatically detect where the aliasing starts in the case of reg-
ular sampling, one can think of monitoring the result of FRSI in the
first pass to detect the temporal frequency at which the spatial Fouri-
er coefficients near the Nyquist wavenumber become comparable in
magnitude to those of the desired signal; the desired signal can be de-
fined as the spatial Fourier coefficients within a wedge/cone defined
by a minimum apparent velocity. For nonuniform sampling, the phe-
nomenon of aliasing becomes more diffuse; hence, it becomes more
difficult to quantify and discriminate from sampling artifacts.

The idea to use coefficients obtained at low frequencies to con-
struct a model weighting matrix for the inversion at higher frequen-
cies is also used by Herrmann et al. (2000) for the high-resolution
Radon transform. Their method uses the coefficients obtained at the
previous frequency to construct the model weighting matrix for the
current frequency. This works for the Radon transform, where one
planar or parabolic event maps to the same location on the slope/cur-
vature axis in the Radon domain for all temporal frequencies.

EXAMPLES IN ONE SPATIAL DIMENSION

Aliased planar events: Uniform sampling with gaps

Figure 4 shows results of the double FRSI algorithm on four uni-
formly sampled planar events, but with missing traces. For the ex-
amples with planar events, all data were used at once, i.e., no spa-
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tiotemporal windows were used. We did constrain the spatial band-
width in the inversion with a symmetric, frequency-dependent spa-
tial bandwidth, determined by the maximum dip in the data. The
double FRSI algorithm works very well on aliased, planar events
with only positive or only negative dips that do not overlap in the
Fourier domain. A more difficult example is given in Figure 5a,
which shows a data set with eight planar events dipping in opposite
directions. Every other trace from the original 132 traces has been
omitted and an additional 11 traces have been killed. The result is
aliasing by a factor L = 2 and artifacts in the spectrum because of the
additional gaps (Figure 5b). The double FRSI reconstruction is
shown in Figure Sc. We use equation 9, the model weighting func-
tion, with @ = 2 and set 0% as 10% of the maximum of the squared
NDEFT coefficients. As discussed previously, the limited number of
iterations in the CGNE algorithm stabilizes the inversion; therefore,
o2 can be ignored. We also constrain the bandwidth with a minimum
apparent velocity cone of =120 m/s. We perform the inversion with
the (smoothed) model preconditioned conjugate gradient algorithm
using two IRLS iterations. The larger the value of 0%, the larger the
remaining aliased energy. On the other hand, the smaller the value of
0%, the more the desired signal is suppressed. Therefore, 0% must be
chosen with some care. An alternative way to set the model sparse-
ness is by varying the sparseness function through parameter @ in the
model weighting function (equation 9).

The difference between the reconstruction and the original noise
free data is shown in Figure Se (amplitude X 4). Figure 5d shows that
aliased energy which does not interfere with the desired spectrum
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Figure 4. (a) Noisy, aliased data with missing traces. (b) Its ampli-
tude spectrum. (c) Reconstruction with double FRSI algorithm. (d)
Estimated Fourier coefficients.

has been removed, but the estimation is suboptimal for frequencies
where aliased energy overlaps nonaliased energy. This is because the
prior C;used in the inversion of the second pass acts only as a param-
eter-selection mechanism and cannot separate aliased and nona-
liased energy where they overlap. The prior Cjitself is shown in Fig-
ure 5f.

Aliased marine shot record: Uniform sampling

Figure 6a shows an aliased marine shot record consisting of 45
traces. Because two out of three traces are missing (L = 3), the two
(L - 1) aliases are clearly visible in the amplitude spectrum in Fig-
ure 6¢. We applied the double FRSI algorithm in overlapping spa-
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Figure 5. (a) Noisy, aliased data with missing traces and (b) its ampli-
tude spectrum. (c) Reconstruction with double FRSI algorithm and
(d) estimated Fourier coefficients. (e) Difference between recon-
struction and correct data (amplitude X 4). (f) Prior C; used to sup-
press aliasing in the second pass.
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tiotemporal windows, in which the assumption of planar events ap-
proximately holds. The size of the overlapping windows was 64 time
samples with 16 samples overlap and 10 traces (375 m) with five
traces overlap. To further reduce aliasing, we constrained the spatial
bandwidth in the inversion by a velocity cone of ¢, = £1500 m/s
(kmax = f/cmin)- Although application of NMO is beneficial because
it reduces the spatial bandwidth by flattening the hyperbolic events,
it was not applied in this example to make the example a little more
difficult. We added some noise before the first break to stabilize the
inversion, which was removed by a first-break mute after recon-
struction. We used a = 2 in equation 9, the model weighting func-
tion, and set o as 1% of the maximum of the squared NDFT coeffi-
cients. We used the model preconditioned CGNE algorithm with two
IRLS iterations. Figure 6b shows the reconstruction, and Figure 6d
shows the amplitude spectrum of the reconstructed data. Figure 7a
shows the difference between the original and interpolated data,
with amplitude multiplied by a factor of four.

Aliased marine shot record:
Uniform sampling with gaps

In the previous example, the sampling is completely uniform;
therefore, Fourier reconstruction reduces to a band-limited sinc in-
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Figure 6. (a) Uniformly sampled, aliased marine shot record (Ax
=37.5 m) and (c) its amplitude spectrum. (b) Result of two-pass
FRSI reconstruction and (d) corresponding amplitude spectrum with
the aliases removed.

terpolation because A” A = I in equation 8. In this case, the double
FRSI algorithm becomes almost equivalent to Gulunay’s algorithm.
A more interesting problem (in the context of this article, at least) is
the reconstruction of aliased seismic data in case of uniform sam-
pling with gaps. Figure 8 shows the same aliased marine shot record
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Figure 7. Difference plot for reconstruction in (a) Figure 6b and (b)
Figure 8b. The amplitude in both difference plots is multiplied by a
factor of four.
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Figure 8. (a) Shot gather of Figure 6a with an additional randomly
selected 17 traces removed and (c) its amplitude spectrum. (b) Re-
sult of double FRSI reconstruction applied in overlapping windows
and (d) the estimated amplitude spectrum.
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as in Figure 6, only an additional randomly selected 17 traces have
been removed, resulting in a maximum gap size of eight traces. Fig-
ure 8c shows aliasing and the sampling related distortions of the
spectrum. The parameters for the double FRSI algorithm are the
same as in the previous example, except for the spatial window size,
which contained all traces within a 600-m sliding window with half
a window size overlap. Again, we did not use NMO to reduce the
bandwidth. The double FRSI has removed the aliasing and distortion
in the spectrum quite well, as seen in Figure 8b and d. Figure 7b
shows the difference between the original and interpolated data,
with amplitude multiplied by a factor of four. The difference plot
shows that the interpolation result is good but that at the positions of
the larger gaps the interpolation error is higher, as could be expected.

EXAMPLES IN TWO SPATIAL DIMENSIONS

Extension of Gulunay’s method and Fourier reconstruction to
higher dimensions is straightforward and is explained in detail in
Gulunay (2003) and Hindriks and Duijndam (2000). We refer the
reader to these two articles for implementation aspects. The 2D dou-
ble FRSI algorithm is analogous to the 1D case. But if the inversion
in the first pass is performed for M Fourier coeffi-
cients, the inversion in the second pass will re-

quire LPM parameters, where D is the dimension a)
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o%as 1% of the maximum of the squared NDFT coefficients. The re-
construction with the standard FRSI algorithm took 18 s, whereas
the double FRSI algorithm took 25 s on one SGI Origin 200 CPU to
invert 122 frequency slices.

As the sampling irregularity increases, the aliases become less
pronounced. Because of this, the standard FRSI reconstruction re-
sult improves with increasingly less uniform sampling (Figure
10d-f). The double FRSI algorithm correctly reconstructs the data
for all geometries.

Synthetic 2D seismic survey:
Uniform sampling with gaps

The geologic model for the synthetic data in this example is a tilt-
ed fault-block model, overlain by several horizontal reflectors and
simulating the situation in some parts of the North Sea. Wever and
Spetzler (2004) use this 2D synthetic data in a time-lapse experiment
to test the sensitivity of several time-lapse metrics to acquisition per-
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of the problem. This parameter increase does not 40
pose problems for the double FRSI algorithm in
two spatial dimensions, but in three spatial di-
mensions it becomes an issue for both the han-
dling of the aliasing as well as the efficiency of the

method.
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Figure 9a—c shows three 2D sampling geome-
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sampling interval. There are 196 traces (14 X 14)
with a sampling interval of Ax = Ay = 3, and the
data are undersampled by a factor L = 3. In the
first pass of FRSI, we estimate the nonaliased part
of the spectrum below 20 Hz for all the data at
once (no windowing). At each frequency, an in-
version is performed for 15X 15 Fourier coeffi-
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cients (7 positive + 7 negative + 0) in the 2D
wavenumber plane. In the second pass, the inver-
sion is performed up to 60 Hz for a wavenumber
plane consisting of 43 X 43 Fourier coefficients
(21 positive + 21 negative + 0), which means
there are nine times as many parameter as input
data. The reconstruction results for the standard
FRSI algorithm are shown in Figure 10a—c, with
corresponding spectra in Figure 10d—f. The re-
sults of the double FRSI algorithm are shown in
Figure 10g—i, with corresponding spectra in Fig-
ure 10j-1. For the prior Cj, we used equation 9,
the model weighting function, with a = 2 and set
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Figure 9. (a) Cartesian sampling with 196 traces and Ax = Ay = 3, and sampling geome-
tries with a maximum random error in sampling of (b) 0.25Ax and (c) 0.5Ax. (d) Gather
from (a) with y = 20 and (g) its amplitude spectrum. (e) and (f) Gather from (b) and (c),
respectively, with y between [19.5,20.5] and (h) and (i) their amplitude spectra.
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turbations and to show how 1D Fourier reconstruction can benefit
time-lapse processing. Here, we use it for a reconstruction experi-
ment in two spatial dimensions. The data set was generated through
finite-difference modeling, simulating a split-spread configuration.
The shot spacing was 25 m and receiver spacing was 24 m. Figure
11a shows the input data after additionally randomly removing 20%
of the remaining traces to introduce irregularity in the sampling. We
performed the reconstruction in the 2D shot-offset domain, but the
method can also be applied in the shot-receiver or midpoint-offset
domains.

The double FRSI algorithm was applied in overlapping spa-
tiotemporal windows that were 80 ms long with 20-ms overlap. In
the spatial directions, we used 20 shots simultaneously and all traces
within an offset window of approximately 300 m in length, corre-
sponding to approximately 12 traces. The overlap in offset direction
was 150 m. We used an interpolation factor L = 2 and a maximum
frequency of 60 Hz. In the previous examples, the planar events

x-coordinate (m)

10
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were all of approximately equal strength, but this example contains
both strong and weak reflections. A value of @ = 2 for Cjin the mod-
el weighting function (equation 9) attenuated the weaker events too
much, but a = 1 gave good results. We set the tuning parameter o3
again as 1% of the squared NDFT coefficients. The output shot and
offset intervals were both set to 12.5 m (Figure 12b). A gather from
the reconstructed data (Figure 12a) shows aliasing has been removed
from the flanks of the hyperbolas. The f-k spectrum in Figure 12b
also shows this gather is not aliased.

Cascade of FRSI and Gulunay’s method

An alternative algorithm to the double FRSI method is to use a
cascade of FRSI (Zwartjes and Duijndam, 2000) and Gulunay’s f-k
interpolation method (Gulunay, 2003), an idea suggested by Abma-
and Kabir (2003) under the name nonaliased FK method. We have
applied such a cascaded method successfully to
uniformly sampled data with and without sam-

20 30 40 ples missing (results not shown). However, a

problem with this method is that as the sampling
deviates from fully uniform with missing sam-
ples to sampling with positioning errors and miss-
ing samples, the aliasing becomes more diffuse
until it disappears in the sampling artifacts for
random sampling. The diffused nature of the
aliased energy makes it difficult for Fourier re-
construction to produce an aliased spectrum with-
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out sampling distortions. Gulunay’s algorithm
will not remove this dispersed aliased energy.
Therefore, as sampling becomes less uniform, the
cascaded approach becomes less successful. In
the extreme case of random sampling, this is no
longer an issue because of the absence of aliasing.
An advantage of the cascaded algorithm is that in
higher dimensions it does not suffer from the
strong increase of parameters as the double FRSI
method does.
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DISCUSSION

The underlying assumption for the interpola-
tion beyond aliasing with the double FRSI meth-
od is that the data consist of a limited number of
planar events. When the data do not consist of
planar events, the method can be applied in over-
lapping spatiotemporal windows. Window sizes
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Figure 10. Reconstruction of data in the corresponding columns in Figure 9. (a—f) Stan-

dard FRSI. (g-1) Double FRSI.
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are generally on the order of 100 ms and 10-15
traces in each spatial dimension. Because the spa-
tial bandwidth of the data increases with offset,
the application of time/space-variant sparseness
constraint may be beneficial when working with
overlapping windows, although we have not veri-
fied this. When no window can be designed in
which the data consist of planar events, a trans-
form with basis functions that better describe the
move-out of the data will be more suitable. A
good example of this is the application of the
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Figure 11. Synthetic data two times undersampled and a randomly
selected 20% of the remaining data removed. (a) Shot record from
the synthetic survey and (b) its amplitude spectrum. (c) Sampling
geometry of part of the survey, shot versus offset.

high-resolution parabolic and hyperbolic Radon transforms (Her-
rmann et al. 2000; van Dedem and Verschuur, 2000).

To suppress aliased energy adequately, the tuning parameters for
the model weighting matrix must be set properly. Choosing too
much sparseness may suppress weak energy; so in general, it is a
good idea to apply some form of gain to equalize amplitudes in the
data before reconstruction. The method has the following limita-
tions. First, the maximum temporal frequency that can be corrected
for aliasing depends on the highest nonaliased temporal frequency.
As the aliasing becomes more severe, the nonaliased region shrinks.
There is, therefore, a limit to how much aliasing can be handled. Sec-
ond, the algorithm only discriminates between aliased and nona-
liased coefficients and cannot discriminate between aliased and non-
aliased energy for a single coefficient. For this reason overlapping of
aliased and nonaliased energy still presents a challenge. Third, small
spatiotemporal windows are used to reconstruct nonplanar events.
When gap sizes are of the same order as the windows required to ob-
tain approximately planar events, the method will obviously be less
effective. In general, the reconstruction error increases with gap
size. Finally, if in the first step of the double FRSI algorithm the num-
ber of parameters estimated is M, then in the second step there are
MLP parameters, where L is the interpolation factor and D the num-
ber of spatial dimensions. For L=4 and D =2, good results have
been obtained in synthetic and real data tests. For D =3, the number
of parameters increases dramatically with respect to the available in-
put data. However, when applied to multidimensional aliased data,
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Figure 12. Synthetic data two times undersampled and a randomly
selected 20% of the remaining data removed. (a) Shot record from
the reconstructed survey and (b) its amplitude spectrum. (c) Sam-
pling geometry after reconstruction, shot versus offset.

the algorithm assumes aliasing along each spatial dimension. In
practice, this need not always be the case, and this may be exploited
by extending the wavenumber axis only along the aliased direction.

CONCLUSION

The double FRSI algorithm combines the principles of Fourier re-
construction with sparse inversion, which cannot handle aliasing,
and the f-k interpolation algorithm, which cannot handle nonuni-
form sampling, into a new method that can reconstruct nonuniform-
ly sampled aliased seismic data. As with many existing methods, we
assume the data consist of a limited number of planar events. There-
fore, the algorithm should be applied to seismic data in overlapping
spatiotemporal windows.

The use of the nonaliased part of the spectrum to help dealias the
data is inspired by Gulaney’s f-k interpolation method for uniformly
sampled, aliased data. How the prior is obtained from the nonaliased
part of the spectrum is similar to how the mask is obtained in Gulu-
nay’s method. However, in the double FRSI algorithm, the prior is
both estimated and applied in a least-squares manner, while Gulu-
nay’s mask is estimated and applied as an element-wise division and
multiplication only. This makes the double FRSI method able to han-
dle nonuniform sampling.

The method shows good results in the reconstruction of nonuni-
formly sampled, aliased seismic data in one and two spatial dimen-
sions. An interesting aspect is that as the sampling becomes less uni-
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form and approaches a more random sampling scheme, the effect of
aliasing disappears, leaving only artifacts in the Fourier domain
from the nonuniform sampling, which can be removed with the stan-
dard Fourier reconstruction algorithm.
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