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ABSTRACT
Linear prediction filters are an effective tool for reducing random noise from seismic
records. Unfortunately, the ability of prediction filters to enhance seismic records de-
teriorates when the data are contaminated by erratic noise. Erratic noise in this article
designates non-Gaussian noise that consists of large isolated events with known or
unknown distribution. We propose a robust f -x projection filtering scheme for si-
multaneous erratic noise and Gaussian random noise attenuation. Instead of adopting
the �2-norm, as commonly used in the conventional design of f -x filters, we utilize
the hybrid �1/�2-norm to penalize the energy of the additive noise. The estimation of
the prediction error filter and the additive noise sequence are performed in an alternat-
ing fashion. First, the additive noise sequence is fixed, and the prediction error filter
is estimated via the least-squares solution of a system of linear equations. Then, the
prediction error filter is fixed, and the additive noise sequence is estimated through a
cost function containing a hybrid �1/�2-norm that prevents erratic noise to influence
the final solution. In other words, we proposed and designed a robust M-estimate of
a special autoregressive moving-average model in the f -x domain. Synthetic and field
data examples are used to evaluate the performance of the proposed algorithm.
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INTRODUCTIO N

The f -x prediction filtering methods for random seismic noise
reduction have been widely adopted by the industry. Canales
(1984) proposed the f -x prediction technique for seismic ran-
dom noise reduction. This method implicitly utilizes the au-
toregressive (AR) model (Yule 1927) to represent data in the
f -x domain. The method is often named f -x deconvolution
(Gulunay 1986). f -x deconvolution is known to damage the
signal if the signal-to-noise ratio (SNR) is low because the
AR model is only an approximation to the true process. A
large-order AR model can be used to better represent the data
(Ulrych and Sacchi 2005). However, long AR filters will also
model the noise, and therefore, one will not be able to at-
tenuate random noise. Harris and White (1997) suggest to
“clean up” the linear prediction data matrix that is required
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to estimate the prediction error filter via truncated singular
value decomposition and use relatively large filter length, a
methodology first described in Tufts and Kumaresan (1982).

Soubaras (1994, 1995) proposed the f -x projection
filtering technique. The latter utilizes the additive noise
model and the concept of quasi-predictability to estimate
additive random noise. The additive noise is estimated via
the application of an autodeconvolved prediction error filter
(called the projection filter) to the data. Sacchi and Kuehl
(2001) pointed out that the model for seismic data in f -x
is actually a special autoregressive moving-average (ARMA)
model (Ulrych and Clayton 1976) in the sense that the
parameters of the AR portion are identical to the parameters
of the moving-average (MA) portion of the model. The
prediction error filter in Sacchi and Kuehl (2001) is the
solution of an eigen-decomposition problem. The additive
noise is estimated by a least-squares procedure equivalent to
the method outlined by Soubaras (1994).
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Recently, the singular spectrum analysis method (Sacchi
2009), also known as Cadzow filtering (Trickett 2008), was
introduced to attenuate random seismic noise and for seis-
mic data reconstruction (Oropeza and Sacchi 2011). It is also
based on the spatial predictability of seismic signal in the f -x
domain.

The aforementioned methods are based on the least-
squares approach. They are efficient for Gaussian noise
elimination. However, it is well known that least-squares esti-
mation is very sensitive to erratic noise (non-Gaussian errors).
Unfortunately, seismic data often contain erratic noise such as
noise bursts, polarity reversals, power-line noise, traffic noise,
swell noise, and harmonic noise. The contaminated data
samples are named outliers in robust statistics (Huber 1981;
Maronna, Martin, and Yohai 2006). The large size of the
modern dataset makes the conventional manual trace editing
impractical. Several automatic methods based on outlier
detection have been proposed to denoise seismic data con-
taminated by erratic noise (Elboth, Presterud, and Hermansen
2010; Bekara and van der Baan 2010). For instance, in each
frequency slice or frequency band, the traces containing
impulsive noise are first detected, invalidated, and then inter-
polated by f -x projection filters (Cambois and Frelet 1995;
Soubaras 1995) or detected, clipped, and iteratively interpo-
lated by f -x prediction filters (Schonewille, Vigner, and Ryder
2008). Empirical studies show that the outlier detection-
based methods may be not able to deal with multiple outliers
because of the so-called masking effect (one outlier may hide
the presence of others) (Hampel 1985). The breakdown point
of least-squares estimation after outlier rejection is lower than
that of robust estimation (M-estimators) (Hampel 1985).
Therefore, instead of outlier detection techniques followed by
least-squares estimation, we propose to apply direct robust
estimation (Chen and Sacchi 2014). The proposed robust f -x
projection method can simultaneously remove random Gaus-
sian noise and erratic noise and preserve the signal amplitude.
The misfit between the observed data and the modelled signal
is measured by the hybrid �1/�2-norm (Bube and Langan
1997) instead of the classical �2-norm. The estimation of
the prediction error filter and the clean signal is a nonlinear
problem because these two are coupled together via convolu-
tion. In this article, the aforementioned problem is tackled by
an alternating minimization scheme where the noise sequence
and the prediction error filter are alternately updated.

Robust estimation (inversion) has been used in geo-
physics for seismic deconvolution (Claerbout and Muir 1973;
Taylor, Banks, and McCoy 1979; Gholami and Sacchi 2012),
travel-time tomography (Scales and Gersztenkorn 1988; Bube
and Langan 1997), full-waveform inversion (Crase et al. 1990;

Ha, Chung, and Shin 2009; Brossier, Operto, and Virieux
2010; Aravkin, van Leeuwen, and Herrmann 2011), velocity
analysis (Guitton and Symes 2003; Li, Zhang, and Claer-
bout 2012), simultaneous source separation (Ibrahim and
Sacchi 2014), and matrix rank reduction-based erratic noise
removal and interpolation (Chen and Sacchi 2013; Chen
2013; Chen and Sacchi 2015). The main contribution of this
paper is the introduction of a robust inversion methodology
to the problem of estimating projection filters for seismic
noise suppression.

THEORY

Sinusoids in additive noise

The seismic signal is usually corrupted with seismic noise re-
sulting from various sources. We will consider the typical sit-
uation where a signal in the f -x domain is corrupted by not
only Gaussian noise but also erratic (impulsive) noise. The ob-
served seismic data at one frequency (y1(ω), y2(ω), . . . , yN(ω))
can be regarded as a discrete time series. We will omit the
symbol ω in the following text and understand that the anal-
ysis is carried out for different frequencies in a predetermined
frequency band. The time series is a sample realization from a
wide-sense stochastic process. The discrete stochastic process
modelling the time series can be expressed as

ỹn = x̃n + ñn + ĩn, (1)

where we use tilded letters to represent stochastic processes
and normal letters to represent time series (yn = xn + nn + in).
For instance, x̃n is a deterministic process representing the
signal, ñn is a stationary stochastic process representing the
additive complex white Gaussian noise, and ĩn is a stationary
stochastic process representing additive impulsive noise (Fox
1972). The signal x̃n, the Gaussian noise ñn, and the impul-
sive noise ĩn are assumed to be mutually independent. The
process ẽn = ñn + ĩn represents the mixture of additive noises.
Equation (1) can be rewritten as

ỹn = x̃n + ẽn, (2)

where the additive noise ẽn only affects the current observation
and will not affect the subsequent observations. A noise-free
seismic signal that contains p linear events with distinct dips
manifests itself as a superposition of p complex sinusoids in
the f -x domain. The discrete noise-free signal process x̃n can
be represented by

x̃n =
p∑

k=1

Ak(ω)e−iωηk(n−1)�s, (3)
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Figure 1 Forward and backward prediction scheme. Black dot repre-
sents already predicted data sample, and white dot indicates the data
sample to be predicted. Arrows indicate the direction of prediction.

where Ak(ω) is the Fourier transform of the source wavelet
corresponding to the kth event, ηk is the kth dip, �s is the
spatial interval between two channels, and i = √−1. Equation
(2) and (3) are the sinusoidal model representing the sinusoids
embedded in white noise (Stoica and Moses 2005). It can
be shown that the exponential signal satisfies the pth-order
homogeneous difference equation

x̃n + f1x̃n−1 + f2x̃n−2 + · · · + fpx̃n−p = 0, (4)

or in z-domain notation

X̃(z)F (z) = 0, (5)

with F (z) = ∏p
k=1(1 − z−1

k z) and zk = eiωηk�s . The coefficients
f0 = 1, f1, f2, . . . , fp are the so-called prediction error filter
(Canales 1984; Gulunay 1986). In this particular case, the
prediction error filter is also the annihilating filter of the dis-
crete signal x̃n (Blu et al. 2008). The exponential signal x̃n is
represented by line spectra consisting of p impulses located at
sinusoidal frequencies ωηk (k = 1, . . . , p). The latter is also a
“degenerate AR process” with innovations equal to zero and
poles that lie on the unit circle. Substituting x̃n = ỹn − ẽn into
equation (4), yields

p∑
k=0

fkỹn−k =
p∑

k=0

fkẽn−k, (6)

or in z-domain notation

Ỹ(z)F (z) = Ẽ(z)F (z). (7)

This ARMA model is special in the sense that the AR and MA
coefficients ( f0, f1, . . . , fp) are identical (Ulrych and Clayton
1976). Its poles and zeros are located on the unit circle, and
they overlap each other.

A special ARMA model for observed time series

In realistic cases, the noise-free f -x seismic signal cannot be
perfectly modelled as a sum of a finite number of exponentials.
The concept of quasi-predictability (Soubaras 1995) will allow
us to cope with a situation where the innovation of the special
AR process is not equal to zero. The deterministic complex
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Figure 2 The dashed line represents the quadratic function 1
2 |x|2. The

solid line represents the hybrid function
√

1 + |x|2 − 1.

sinusoidal signal xn in equation (4) is approximated by an AR
process

x̃n = −
p∑

k=1

fkx̃n−k + ε̃n, (8)

where fk, k = 1, 2, . . . , p, are the AR coefficients and ε̃n in-
dicates white noise sequence (innovation). Substituting x̃n =
ỹn − ẽn into equation (8) leads to

p∑
k=0

fkỹn−k =
p∑

k=0

fkẽn−k + ε̃n. (9)

This equation is an ARMA process (Kay 1978) similar to
equation (6); however, the process now contains an innova-
tion term.

Estimation of ARMA parameters and additive noise

The ARMA parameter estimation problem is nonlinear (Kay
and Marple 1981). We tackle it via an alternating minimiza-
tion scheme. First, the additive noise sequence is fixed, and
the prediction error filter (ARMA parameters) is estimated.
Then, the prediction error filter is fixed, and the additive noise
sequence is estimated. The two stages are iterated until reach-
ing convergence. The random process ỹn is observed over a
spatial interval of N points leading to the observation vector
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Figure 3 (a) Noisy synthetic data (after clipping). (b) Gaussian noise with SNR = 1.2. (c) Erratic noise. (d) Denoising via robust f -x projection.
(e) Denoising via f -x deconvolution. (f) Denoising via least-squares f -x projection. (g) Difference section for robust f -x projection. (h) Difference
section for f -x deconvolution. (i) Difference section for least-squares f -x projection filter.
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Figure 4 (a) f -k spectrum of noise-free data. (b) f -k spectrum of data corrupted with Gaussian noise. (c) f -k spectrum of the input noisy data
(Fig. 3a). (d) f -k spectrum of robust f -x projection filtered data (Fig. 3d). (e) f -k spectrum of f -x deconvolution filtered data (Fig. 3e). (f) f -k
spectrum of least-squares f -x projection filtered data (Fig. 3f).

y = (y1, y2, . . . , yN)T. The realization of signal plus additive
noise (equation (2)) is given by⎛
⎜⎜⎜⎜⎝

y1

y2

...
yN

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

x1

x2

...
xN

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

e1

e2

...
eN

⎞
⎟⎟⎟⎟⎠ . (10)

The forward and backward linear prediction method
(modified covariance method) (Ulrych and Clayton 1976) is
used to represent the AR process in equation (8)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xp+1 xp · · · x1

xp+2 xp+1 · · · x2

...
...

. . .
...

xN xN−1 · · · xN−p

x∗
1 x∗

2 · · · x∗
p+1

x∗
2 x∗

3 · · · x∗
p+2

...
...

. . .
...

x∗
N−p x∗

N−p+1 · · · x∗
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

f0

f1

...
fp

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εp+1

εp+2

...
εN

ϕ∗
p+1

ϕ∗
p+2
...

ϕ∗
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (11)
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Figure 5 (a) Poststack data from WCSB with erratic noise and random Gaussian noise. (b) The data in the left rectangular window. (c) The
data in the right rectangular window.

where εi , i = p + 1, . . . , N, are the forward prediction errors
and ϕi , i = p + 1, . . . , N, are the backward prediction errors.
Equation (11) can be notated as

Xf =
(

ε

ϕ∗

)
, (12)

where ε is the forward prediction error vector and ϕ is the
backward prediction error vector. Fig. 1 provides a diagram
highlighting forward and backward prediction.

Given the commutative property of convolution, equa-
tion (11) can be written as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

fp fp−1 · · · f0 0 · · · 0 · · · 0
0 fp · · · f1 f0 · · · 0 · · · 0
...

...
. . .

...
...

. . .
...

. . .
...

0 0 · · · 0 0 · · · fp · · · f0

f ∗
0 f ∗

1 · · · f ∗
p 0 · · · 0 · · · 0

0 f ∗
0 · · · f ∗

p−1 f ∗
p · · · 0 · · · 0

...
...

. . .
...

...
. . .

...
. . .

...
0 0 · · · 0 0 · · · f ∗

0 · · · f ∗
p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎝

x1

x2

...
xN

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εp+1

εp+2

...
εN

ϕp+1

ϕp+2

...
ϕN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (13)

or in matrix formulation

Fx =
(

ε

ϕ

)
. (14)

With x = y − e, this equation changes to

F(y − e) =
(

ε

ϕ

)
, (15)

where F is a convolutional matrix containing the elements of
the unknown filter coefficients. Our task is to estimate the pre-
diction error filter f and the noise sequence e. Soubaras (1994)
and Sacchi and Kuehl (2001) constrain the noise term e by
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Figure 6 (a) Data after robust f -x projection filtering. (b) Data after f -x deconvolution filtering. (c) Data after least-squares f -x projection
filtering.
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Figure 7 Difference sections (input noisy data minus filtered data) of (a) robust f -x projection, (b) f -x deconvolution, and (c) least-squares f -x
projection.
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Figure 8 The comparison of the filtered results of the data in the left rectangular window highlighted in Fig. 5a. (a) The result of robust f -x
projection. (b) The result of f -x deconvolution. (c) The result of least-squares f -x projection.
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Figure 10 The comparison of the filtered results of the data in the right rectangular window highlighted in Fig. 5a. (a) The result of robust f -x
projection. (b) The result of f -x deconvolution. (c) The result of least-squares f -x projection.

�2-norm. In this paper, we propose adopting a constraint
that minimizes the hybrid �1/�2-norm (Bube and Langan
1997; Li et al. 2012) of the noise sequence e. We estimate
the prediction error filter f and the noise sequence e via
minimizing the cost function

J (e, f) = 1
2

||F(y − e)||22 + λH(e), (16)

where λ = ξ2/σ is a tradeoff parameter, ξ is the standard
deviation of the innovation, and σ is the scale parameter for
the noise sequence e. The functional H(e) = ∑N

i=1 h(ei ) is the
hybrid �1/�2-norm of the complex vector e with the hybrid
function given by

h(e) =
√

σ 2 + |e|2 − σ. (17)

In Fig. 2, we compare the normalized hybrid function f (x) =√
1 + |x|2 − 1 and the normalized quadratic function f (x) =

1
2 |x|2. In the current situation, x is a normalized additive noise,
i.e., x = e/σ , where σ is the scale parameter.

The optimization problem (equation (16)) is nonlinear
because of the coupling of the two unknowns. It can be tackled
by an alternating minimization technique (Golub and Pereyra
1973; Kaufman 1975). We will first simplify the problem by
assuming that the prediction error filter is already estimated
from the previous iteration. The estimation of the noise se-
quence reduces as minimizing the cost function

J (e) = 1
2

||F(y − e)||22 + λH(e), (18)

Setting ∂J
∂e∗ = 0 leads to the “nonlinear normal equations”

(details are given in Appendix)

(
FHF + λW

)
e = FHFy, (19)

where W is an N × N diagonal weight matrix with diagonal
elements given by Wj j = 1/

√
σ 2 + |e j |2, j = 1, 2, . . . , N. The

nonlinear equations can be solved by the iteratively reweighed
least-squares (IRLS) algorithm (Bube and Langan 1997). The
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Figure 11 The comparison of the difference sections of three different methods in the right rectangular window highlighted in Fig. 5a. Difference
sections of (a) robust f -x projection, (b) f -x deconvolution, and (c) least-squares f -x projection.

kth iteration is solved with weights computed from the itera-
tion k − 1, Wk−1

W(k−1)
j j = 1

/√
σ 2 + |e(k−1)

j |2, j = 1, 2, . . . , N . (20)

The iterative solution is given by

e(k) = (FHF + λW(k−1))−1FHFy . (21)

Now we turn our attention to the estimation of the fil-
ter f. Clearly, once we have estimated the noise sequence e,
we can compute an estimation of the clean signal x = y − e.
Moreover, given that the regularization term does not depend
on f, the problem of estimating f reduces as minimizing

J (f) = 1
2

‖Fx‖2
2 . (22)

Due to the commutative property of the convolution operator,
minimizing ‖Fx‖2

2 is equivalent to minimizing ‖Xf‖2
2, where

X is the matrix containing the elements of x and Xf represents
the convolution of f with x. Given that f0 = 1, we estimate
the prediction filter g as

ĝ = (X̄HX̄)−1X̄Hx̄, (23)

X̄ and x̄ are the partitioned matrix and the vector of X such
that X = (x̄|X̄). Finally, the estimated prediction error filter is
given by the vector

f̂ = (1,−ĝT)T. (24)

Iterative algorithm, hyperparameter selection, and stopping
criteria

The algorithm is applied to each temporal frequency with
special attention paid to Fourier-domain symmetries to save
computational cost. The algorithm can be summarized as
follows.

1. Initialize the signal x by least-squares estimation (AR mod-
elling or ARMA modelling) and compute an initial noise term
e = y − x.
2. Estimate the prediction error filter f via equations (23) and
(24).
3. Estimate the noise sequence e by minimizing the cost func-
tion (equation (18)).
4. Iterate steps 2–3 until convergence.
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Figure 12 (a) Input marine shot gather with
strong swell noise. (b) Data after robust f -x pro-
jection filtering. (c) Data after f -x deconvolution
filtering. (d) Data after least-squares f -x projec-
tion filtering.

Parameter σ is fixed, and the tradeoff parameter λ is
tuned by examining the residuals. This is similar to the strat-
egy often used in f -x deconvolution for parameter selection.
For a very wide range of parameters, the erratic noise is well
removed. For fixed scale parameter σ , a smaller value of λ

will result in a cleaner section. Meanwhile, the signal will be
damaged if λ is chosen too small.

The algorithm has two groups of iterations, namely, an
internal iteration (IRLS) to estimate e and an external itera-
tion for alternating minimization. We have two convergence
criteria to reduce the number of iterations. We monitor the
cost function J (e, f) and terminate the external loop when
the relative change of the cost function between two consecu-
tive iterations is less than a tolerance tol1. A second tolerance

tol2 is used to control the number of IRLS iterations that are
required to estimate e.

EXAMPLES

Synthetic example

Our algorithm is first tested with a synthetic example. We
compare the results of robust f -x projection, f -x deconvolu-
tion, and the conventional f -x projection. The f -x deconvo-
lution used in this paper averages the forward and backward
predicted values and uses prediction matrix corresponds to
transient-free formulation (Sacchi 2008). The conventional
f -x projection filter used here is a modification of the method
of Sacchi and Kuehl (2001) that uses the modified covariance
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Figure 13 Difference sections of (a) robust f -x
projection, (b) f -x deconvolution, and (c) least-
squares f -x projection.

method. Figure 3a shows 2-D synthetic data with noise. The
central frequency of the Ricker wavelet is 20 Hz. Figure 3b
shows band-limited Gaussian noise with signal-to-noise ratio
(SNR) equal to 1.2 (SNR is defined as the ratio of the max-
imum amplitudes of signal and noise). Figure 3c shows the
high-amplitude erratic noise. The maximum amplitude of the
erratic noise is approximately five times the maximum ampli-
tude of the signal in Fig. 3a.

The processing frequency band ranges from 1 Hz to
60 Hz. The length of the prediction error filter for the robust
f -x projection filtering is set to 4. Scale parameter σ and
trade-off parameter λ are 6 and 0.1, respectively. The length
of the prediction error filter of the f -x deconvolution is 11.
The length of the prediction error filter in the conventional

f -x projection filtering method is 4, and the pre-whitening
parameter is 3. The filtered data by robust f -x projection,
f -x deconvolution, and least-squares f -x projection are
shown in Figs. 3d, 3e, and 3f, respectively. Only the robust
f -x projection filter was able to suppress the erratic noise and
Gaussian noise. Difference sections (noise-free data minus
filtered data) in Figs. 3g, 3h, and 3i show that the robust f -x
projection preserves the original signal. On the other hand,
f -x deconvolution damages the signal. We tested f -x decon-
volution and least-squares f -x projection with a variety of
parameters, but we never managed to produce fully satisfying
results when the data are contaminated by high-amplitude
erratic noise. We evaluate the performance of the algorithms
in decibels via the expression Q = 10 log ‖D0‖2

F
‖D0−D̂‖2

F
, where D0
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Figure 14 (a) The data in the left rectangular window highlighted in Fig. 12a. (b) The result of robust f -x projection. (c) The result of f -x
deconvolution. (d) The result of least-squares f -x projection.
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Figure 15 The comparison of the difference sections of three different methods in the left rectangular window highlighted in Fig. 12a. Difference
sections of (a) robust f -x projection, (b) f -x deconvolution, and (c) least-squares f -x projection.
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Figure 16 (a) The data in the right rectangular window highlighted in Fig. 12a. (b) The result of robust f -x projection. (c) The result of f -x
deconvolution. (d) The result of least-squares f -x projection.
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denotes the noise-free data section, D̂ denotes the filtered data
section, and ‖ · ‖F is the Frobenius norm of a matrix. Larger
value of Q means better denoising performance. The Q value
for the robust f -x projection filter is 13.1. The Qvalue for the
f -x deconvolution is -1.2. The Qvalue for the f -x projection
is -15.5. The f -k spectra in Fig. 4 show that the proposed ro-
bust f -x projection reasonably recovers the true spectrum but
f -x deconvolution and least-squares f -x projection cannot.

Poststack field data example

We tested our proposed algorithm on a poststack field dataset
from the Western Canadian Sedimentary Basin (WCSB). The
performances of robust f -x projection, f -x deconvolution,
and conventional f -x projection are compared. Figure 5a
is a poststack data section with erratic noise and random
Gaussian noise. Magnified portions of data in the left and
right rectangular windows highlighted in Fig. 5a are shown in
Figs. 5b and 5c, respectively. The complete data in Fig. 5a are
divided into overlapping windows. All windows are processed
and then added back. Each window has 50 traces with 50%
overlap and 300 time samples (0.6 s) with 33% overlap. All
the three filtering methods are applied for frequencies in the
band of 1 Hz–80 Hz. The length of the prediction error filter
for robust f -x projection filtering is 4. Scale parameter σ

and tradeoff parameter λ are 10−3 and 0.1, respectively. The
length of the prediction error filter for the f -x deconvolution
is 5. The length of the prediction error filter for the conven-
tional f -x projection filter method is 4, and the pre-whitening
parameter is 0.1.

The denoising results of the robust f -x projection, f -x
deconvolution, and least-squares f -x projection are shown in
Figs. 6a, 6b, and 6c, respectively. The result of robust f -x
projection is cleaner than the other two. The difference sec-
tions in Fig. 7 show that the robust f -x projection preserves
the original seismic signal. To show the details more clearly,
we display the zoomed results and difference sections for the
left window in Fig. 5a in Figs. 8 and 9, respectively. The
zoomed results and difference sections for the right window
in Fig. 5a are shown in Figs. 10 and 11, respectively. The pro-
posed robust f -x projection removes more erratic noise than
f -x deconvolution and least-squares f -x projection.

Pre-stack marine data example with swell noise

The proposed algorithm was also tested on a pre-stack ma-
rine shot gather (Fig. 12a) that contains swell noise. This is a
benchmark dataset used in Elboth et al. (2010) and Bekara and

van der Baan (2010). Swell noise usually manifests as high-
amplitude and low-frequency (2 Hz–10 Hz) vertical stripes
(Elboth, Reif, and Andreassen 2009). If not removed, it will
pose problems for the following processing steps. Similarly,
the shot gather is divided into overlapping windows for pro-
cessing. The window size is 50 traces by 250 time samples
(1 s). The overlapping percentages in time and space are both
50%. The frequency band processed is 1 Hz–120 Hz. The
length of the prediction error filter for robust f -x projection
filtering is 5. Scale parameter σ and tradeoff parameter λ are
10−3 and 0.1, respectively. The length of the prediction er-
ror filter for the f -x deconvolution is 6. The length of the
prediction error filter for the conventional f -x projection fil-
ter method is 5, and the pre-whitening parameter is 0.1. We
can see that the robust f -x projection filter almost completely
removed the swell noise (Fig. 12b). While, conventional f -x
deconvolution (Fig. 12c) and f -x projection (Fig. 12d) do not
perform well for swell noise attenuation. The difference sec-
tions (Fig. 13) show that the robust f -x projection preserves
the original seismic signal. Figs. 14 and 15 show the filtered
results and difference sections of the data in the left rectan-
gular window highlighted in Fig. 12a, respectively. Similarly,
Figs. 16 and 17 show the filtered results and difference sec-
tions of the data in the right rectangular window highlighted
in Fig. 12a, respectively. All of them demonstrate that robust
f -x projection successfully removed the high-amplitude swell
noise and preserves the signals.

D I S C U S S I O N

The proposed method is based on robust inversion. There are
two loops of iterations (one for alternating minimization and
another for IRLS). Thus, the computation is more expensive
than outlier detection-based methods. We derived the 2-D ro-
bust f -x projection filtering algorithm. It can be extended
to a 3-D case using 2-D convolution (Chase 1992; Soubaras
2000; Naghizadeh and Sacchi 2010). For the current imple-
mentation, the algorithm uses the same parameter setting for
different windows of the data. One potential future research is
developing a data-adaptive parameter determination scheme
that will give better tradeoff on signal-preserving and noise
attenuation in different windows. It is known that f -x predic-
tion and projection filters may produce small artificial events
in the filtered results (Abma and Claerbout 1995; Soubaras
1994, 1995; Ozdemir et al. 1999; Soubaras 2000). This prob-
lem can be alleviated by designing filters in the time domain
(Abma and Claerbout 1995; Liu, Liu, and Liu 2015). It is im-
portant to point out that the idea of our robust f -x projection
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filter can also be adapted for designing robust t-x prediction
filters.

CONCLUSIONS

In this paper, we have proposed a robust f -x projection de-
noising method that is robust to erratic noise. The method is
also efficient for Gaussian noise attenuation. Instead of us-
ing the �2-norm of the additive noise, we adopted the hybrid
�1/�2-norm to penalize the energy of the additive noise in or-
der to promote robustness to erratic noise. The estimation
of the noise sequence and the estimation of the prediction
error filter are conducted via an alternating minimization al-
gorithm. Synthetic data examples and two field data examples
show that the proposed robust algorithm can remove erratic
noise with a minimal degradation of the signal.
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APPENDIX: PROOF OF EQUATION (19 )

The system of “nonlinear normal equations” (equation (19))
is obtained by setting the derivative of the cost function J to
zero

∂J
∂e∗ = ∂

∂e∗

[
1
2

||F(y − e)||22 + λH(e)
]

= 1
2

FH(Fe − Fy) + λ
∂H(e)
∂e∗ . (A-1)

The derivative of H(e) with respect to e∗ is equal to (∂H(e)/
∂e∗

1, . . ., ∂H(e)/∂e∗
N)T with

∂H(e)
∂e∗

j

= ∂

∂e∗
j

N∑
i=1

(√
σ 2 + |ei |2 − σ

)

= 1
2

e j√
σ 2 + |e j |2

= 1
2

Wj j e j . (A-2)

Rewrite equation (A-2) in matrix form

∂H(e)
∂e∗ = 1

2
We, (A-3)

where W is a diagonal weighting matrix. After substituting
equation (A-3) into equation (A-1), we obtain the “nonlinear
normal equations”(

FHF + λW
)

e = FHFy, (A-4)

where the weighting matrix W depends on e.
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