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Elastic least-squares reverse time migration via linearized elastic
full-waveform inversion with pseudo-Hessian preconditioning

Ke Chen' and Mauricio D. Sacchi’

ABSTRACT

Time-domain elastic least-squares reverse time migration
(LSRTM) is formulated as a linearized elastic full-waveform
inversion problem. The elastic Born approximation and elas-
tic reverse time migration (RTM) operators are derived from
the time-domain continuous adjoint-state method. Our ap-
proach defines P- and S-wave impedance perturbations as
unknown elastic images. Our algorithm is obtained using
continuous functional analysis in which the problem is dis-
cretized at the final stage (optimize-before-discretize ap-
proach). The discretized numerical versions of the elastic
Born operator and its adjoint (elastic RTM operator) pass
the dot-product test. The conjugate gradient least-squares
method is used to solve the least-squares migration quadratic
optimization problem. In other words, the Hessian operator
for elastic LSRTM is implicitly inverted via a matrix-free
algorithm that only requires the action of forward and
adjoint operators on vectors. The diagonal of the pseudo-
Hessian operator is used to design a preconditioning oper-
ator to accelerate the convergence of the elastic LSRTM.
The elastic LSRTM provides higher resolution images with
fewer artifacts and a superior balance of amplitudes when
compared with elastic RTM. More important, elastic
LSRTM can mitigate crosstalk between the P- and S-wave
impedance perturbations given that the off-diagonal ele-
ments of the Hessian are attenuated via the inversion.

INTRODUCTION

Acoustic reverse time migration (RTM) was initially proposed
for poststack seismic data migration (Baysal et al., 1983; McMe-
chan, 1983; Whitmore, 1983). Prestack RTM was implemented

in the shot-profile domain by either applying the excitation-time
imaging condition (Chang and McMechan, 1986) or the crosscor-
relation imaging condition (Etgen, 1986). RTM uses the two-way
wave equation for extrapolating wavefields into the interior of the
earth. RTM can handle steep and complex geologic structures, such
as sedimentary areas with salt inclusions (Etgen et al., 2009). Lailly
(1983) points out that computing the gradient in full-waveform in-
version (FWI) is equivalent to applying the prestack RTM operator
on data residuals. From then, RTM has been connected to the ad-
joint-state method that is used in FWI (Tromp et al., 2005; Plessix,
2006; Douma et al., 2010).

Acoustic methods approximate the elastic solid earth by a fluid.
However, S-waves also convey subsurface rock-property informa-
tion. S-waves can be recorded by multicomponent sensors (Hardage
etal., 2011). The multicomponent seismic data can be used for elastic
seismic imaging. Elastic RTM was developed by Sun and McMechan
(1986) and Chang and McMechan (1987) with the excitation-time
imaging condition. The elastic data record is back-extrapolated using
the elastic wave equation, and the image time is computed by ray
tracing using a P-wave velocity model. In these methods, P- and
S-images are not explicitly separated. Instead, they compute the
so-called vertical and horizontal images. The latter could impede
the proper interpretation of multicomponent images. Sun and McMe-
chan (2001) and Sun et al. (2004) propose another method, in which
the elastic data are first back-propagated by the elastic wave equation
and then a Helmholtz decomposition (Dellinger and Etgen, 1990) is
used to separate the P- and S-wave modes at a predefined datum. The
separated P- and S-wave data are extrapolated upward to the surface
of the earth via the acoustic wave equation. Then, the separated P-
and S-wave data are injected into two acoustic RTM algorithms that
adopt an excitation-time imaging condition. In a similar vein, Yan
and Sava (2008) propose to perform forward and backward extrapo-
lation of wavefields via elastic wave equation and to apply Helmholtz
decomposition to separate P- and S-wavefields followed by the cross-
correlation imaging condition (Lu et al., 2009). One drawback of
methods based on Helmholtz wave-mode decomposition is that
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the P-S images will have polarity reversals. The latter will prevent
stacking of individual shot contributions. Polarity reversal correction
strategies for elastic RTM methods that adopt Helmholtz decompo-
sition have been proposed (Du et al., 2012; Duan and Sava, 2015).
Early work in the field of FWI (Tarantola, 1986) recognized that the
gradient in each iteration of an elastic FWI algorithm is indeed a pre-
stack elastic RTM operator applied to data residuals. This idea is
adopted by Luo et al. (2009) and Zhu et al. (2009), who propose
elastic RTM algorithms based on FWI sensitivity kernels. In these
methods, the elastic model perturbations on the background model
are defined as “elastic images.”

A migration algorithm can be described as the adjoint of the for-
ward Born modeling operator. In this case, the migrated image can be
considered as a blurred version of subsurface model perturbations.
The deblurring operator is the inverse of the Hessian of the imaging
problem, which is defined, for linearized inversion, as the cascade of
the forward and adjoint operators. Several strategies have been de-
veloped to approximate the Hessian to deblur seismic images. For
instance, prestack least-squares Kirchhoff migration was initially for-
mulated to retrieve acoustic velocity perturbation given a background
velocity model (Tarantola, 1984b; Lambare et al., 1992). Nemeth
et al. (1999) implement least-squares Kirchhoff migration for migrat-
ing incomplete reflection seismic data. Least-squares Fourier finite-
difference one-way wave-equation migration was formulated by
Rickett (2003) and then used by Tang (2009) for blended seismic
data migration. Least-squares reverse time migration (LSRTM)
was investigated for estimating P-wave impedance perturbation
and P-wave velocity perturbation (Bourgeois et al., 1989) under
the name “linearized inversion.” Ostmo et al. (2002) implement
acoustic LSRTM in the frequency domain under the name of “lin-
earized waveform inversion.” In recent years, LSRTM was further
developed for high-resolution true amplitude imaging (Dong et al.,
2012; Zhang et al., 2015; Yao and Jakubowicz, 2016), migration of
multisource blended seismic data (Dai et al., 2012; Xue et al., 2016),
and for imaging with multiples (Zhang and Schuster, 2014; Wong
et al., 2015). The acoustic slowness perturbation or velocity pertur-
bation represents the “image” or reflectivity model. We would like to
classify the above-mentioned least-squares migration techniques as
linearized waveform inversion. These methods, in general, invert
for an image that is proportional to an averaged subsurface reflectiv-
ity. Least-squares migration can also be implemented in an extended
domain to produce an image volume that depends on redundant
parameters (Symes, 2008). This idea was implemented by Kuehl
and Sacchi (2003) using the survey-sinking approach (Claerbout,
1985). The technique was modified to process 3D field data via
the constant azimuth approximation by Wang et al. (2005) and to
include sparsity constraints to increase vertical resolution by Wang
and Sacchi (2007). Moreover, Kaplan et al. (2010) derive least-
squares split-step migration for extended shot-domain image inver-
sion. The latter was also applied for the migration of blended seismic
data (Cheng et al., 2016). Similarly, Dai and Schuster (2013) imple-
ment LSRTM in the extended plane-wave domain for blended seis-
mic data. Finally, we also mention that Hou and Symes (2016) and
Huang et al. (2016) implement LSRTM in the extended subsurface
offset domain and extended shot domain, respectively. We can clas-
sify this type of least-squares migration algorithms as extended least-
squares migration (Symes, 2008), in which an extended reflectivity
volume is produced. Least-squares migration has also been formu-
lated in the image domain that the inverse of the Hessian is approxi-

mated via various strategies (Rickett, 2003; Guitton, 2004; Fletcher
et al., 2016; Wang et al., 2016). Image-domain least-squares migra-
tion requires lower computational cost than data-domain least-
squares migration methods.

The aforementioned least-squares migration methods are based
on the acoustic approximation. Land data and ocean-bottom data
record both P- and S-waves. The geophysical community has inves-
tigated several elastic least-squares migration algorithms. Elastic
least-squares ray-Born migration/inversion is implemented by Be-
ydoun and Mendes (1989) and Jin et al. (1992) in heterogeneous
media for multicomponent seismic data. Tura and Johnson
(1993) discuss an elastic least-squares migration/inversion method
in the f-k domain for homogeneous background media. Anikiev
et al. (2013) investigate the decoupling of parameters for fre-
quency-domain elastic LSRTM for the case of a point scatterer
in a homogeneous background model. In these studies, the elastic
parameter perturbations are estimated and defined as elastic images.
Recently, Stanton and Sacchi (2015, 2017) and Xu et al. (2016) use
Helmholtz decomposition (Dellinger and Etgen, 1990) for elastic
least-squares split-step and reverse time migration to estimate elas-
tic reflectivity volumes in the extended domain, respectively.

This paper formulates time-domain elastic LSRTM as a linearized
elastic FWI problem (Chen and Sacchi, 2016). We discussed the re-
lationship between LSRTM and Gauss-Newton FWI in Appendix A.
The elastic Born approximation and elastic RTM operators are
derived via a time-domain continuous adjoint-state method. The ad-
joint-state equation system is equivalent to the state equation system
with one difference: The explosive source is replaced by an adjoint
source. In our work, P- and S-wave impedance perturbations are de-
fined as elastic images. The two terms “‘model perturbation” and “im-
age” are used interchangeably. All derivations are in a continuous
functional form; the problem is discretized after developing the algo-
rithm. This is the so-called optimize-before-discretize approach
(Borzi and Schulz, 2012). The discretized numerical version of elas-
tic Born operator and its adjoint (elastic RTM operator) pass the dot-
product test (Mora, 1987; Claerbout, 1992). The latter allows the use
of the conjugate gradient least-squares (CGLS) algorithm (Hestenes
and Stiefel, 1952; Paige and Saunders, 1982) to solve the least-
squares migration optimization problem. In other words, the Hessian
operator is implicitly inverted via a matrix-free algorithm that re-
quires only the forward and adjoint operator applied to vectors. The
diagonal of the pseudo-Hessian operator (Shin et al., 2001a) was
adapted for the elastic case and used as a preconditioning operator
to accelerate the convergence of the elastic LSRTM algorithm. Our
elastic LSRTM yields higher resolution images with fewer artifacts
and more balanced amplitudes than elastic RTM. Moreover, elastic
LSRTM can reduce the multiparameter crosstalk given that the off-
diagonal terms of the Hessian operator are attenuated via the least-
squares inversion. Finally, the adopted pseudo-Hessian precondition-
ing strategy accelerates the convergence of our algorithm and im-
proves the amplitude responses of the P- and S-wave impedance
perturbation images.

Our research originated from a detailed study of the time-domain
elastic Gauss-Newton FWI and its sensitivity kernels (Epanomeri-
takis et al., 2008). Recently, we noticed that a similar line of work is
also presented by Feng and Schuster (2016). Our research comple-
ments the work of Feng and Schuster (2016). We stress the follow-
ing differences between our work and the aforementioned work and
summarize our contributions in the next paragraph. First, we formally
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derived an adjoint-state equation system via the continuous adjoint-
state method for the first-order velocity-stress elastic wave-equation
system. The adjoint-state equation system is equivalent to the state
equation system after a variable transformation (Vigh et al., 2014).
This allows us to reuse our forward-modeling code to compute the
receiver-side wavefield (adjoint-state variable). The differences are
the replacement of the explosive source by an adjoint source and
the back-propagation of the adjoint source from final time to zero
time. Second, we carefully discretized the continuous functional forms
of the elastic Born operator and the elastic RTM operator to guarantee
that the operators pass the dot-product test (Mora, 1987). This allows
us to adopt the CGLS algorithm (Hestenes and Stiefel, 1952; Paige
and Saunders, 1982) to solve the least-squares migration optimization
problem. The advantage of the CGLS algorithm is that the step size of
the method is analytically calculated. In other words, one does not
need to compute the step size via line search (Dong et al., 2012)
as it often done when the forward and adjoint operators do not satisfy
the numerical condition for adjointness. Third, we have also investi-
gated the structure of the multiparameter Hessian operator for elastic
LSRTM to design a preconditioning strategy. We adapted the pseudo-
Hessian (Shin et al., 2001a) to the time-domain elastic case and de-
rived the equations of the Hessian and pseudo-Hessian for elastic
parameters. We adopted the diagonal of the pseudo-Hessian to pre-
condition the CGLS algorithm.

This paper is organized as follows: First, we describe the system
of equations that we have adopted to forward model elastic wave-
fields. Then, we introduce linearized forward modeling by adopting
the elastic Born approximation. Subsequently, we derive the adjoint
operator (elastic RTM operator) of the linearized forward-modeling
operator. We discuss the numerical adjointness of forward and
adjoint operators and propose to solve the elastic LSRTM via the
CGLS algorithm. Furthermore, we discuss preconditioning as a
strategy to accelerate the convergence of the CGLS algorithm. In
the last section, we provide numerical examples that permit us
to evaluate the performance of the proposed algorithm. The first
numerical example is a simple elastic Camembert model. Our second
numerical example entails adopting the elastic Marmousi2 model for
additional tests.

THEORY
Heterogeneous, isotropic elastic wave equation

‘We assume a heterogeneous, isotropic elastic earth media. Propa-
gation of the seismic wave is governed by first-order linear partial
differential equations (Virieux, 1986; Vigh et al., 2014)

pl 0\O0 (0 D)\ _
(0 I)at“ <CDT o)u=F b
where
() () () = ()
u= , V= , 6= 0., ]|, f= ,
c v, * f,
Oy
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0 — =
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2

with zero initial condition u|,_, = 0 and appropriate boundary con-
ditions. The vector u denotes the wavefield with v being the vector
particle velocity field and ¢ being the stress field. Similarly, p in-
dicates the density and C is being the isotropic elastic tensor in
Voigt notation with 4 and u the Lamé parameters. The matrix D
is a collection of spatial differential operators, and f,, is the explosive
source term. Finally, I is the identity matrix. In the wave equation, we
dropped the dependence on spatial and temporal coordinates x and ¢
of our variables to make the notations concise, but we understand that
v=v(x,1), A= A(x), etc. The elastic wave equation is the state
equation of the elastic parameter inversion problem when it is re-
garded as optimal control problem (Lions, 1971; Plessix, 2006). Ab-
stractly, the elastic wave equation 1 can be written in functional form
as follows:

Su =", 3)

where u is the wavefield vector in space U, f is the source vector in
space F, S = S(m) (S:U — F) is the wave-equation operator with
initial conditions and boundary conditions, and m = (p, A, )7 de-
notes the model parameter vector in space M. The solution of the
wave equation can be abstractly written as

u=3S'f=dt, )

where G = S~ is the inverse of wave equation operator S called the
Green’s operator (Tarantola, 1988). The Green’s operator is an inte-
gral operator with the integration kernel given by the Green’s func-
tion of the wave equation (Tarantola, 1988). The wavefield u is linear
in the source term f, but it is nonlinear in the model m. If the source
term is assumed known, u can be regarded as a nonlinear function of
the model parameters m

u =u(m). 3)

In a general heterogeneous media, there is no analytic solution for u
given m. A numerical method must be used to solve the forward
problem. In this paper, a time-domain staggered-grid finite-difference
(FD) scheme (Virieux, 1986; Levander, 1988) is used to discretize the
continuous form elastic wave equation 1. The unsplit convolutional
perfectly matched layer (C-PML) method is used to absorb incident
waves on artificial computational boundaries (Komatitsch and Mar-
tin, 2007). In our FD code, we adopted a second-order centerd differ-
ence scheme in time and a selectable order staggered difference
scheme in space. In seismic exploration, the wavefield is sampled
at the surface of the earth by a finite number of receivers

d(m) = Tu(m), (6)

where d is the recorded full-waveform seismic data and operator 7°
represents the sampling operator that extracts the wavefield at the
receivers positions.

The linearized forward problem: Elastic Born
approximation

The relationship between the seismic data d and model param-
eters m is nonlinear as discussed above. An expansion in terms of
Taylor series can be used to linearize the nonlinear forward problem
d = d(m). A perturbation of the model parameters m — m + ém
leads to a perturbation of the seismic data d(m) — d(m + ém)
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d(m + ém) = d(m) + S—iém + O(||6m||?), @)

where m is the background model, ém is the model perturbation,
d(m) is the seismic data associated with propagation in the back-
ground model, d(m+ ém) is the seismic data associated with
propagation in the perturbed model, and the linear operator od/om =
([od/ap], [0d/a2], [od/dp]) is the Fréchet derivative or Jacobian ma-
trix of d. The second and higher order terms in the Taylor series are
dropped resulting in the first-order Born approximation

od ou
5d—£5m—£5m—7'£5m, 8)

where Fréchet derivative £ = dd/dm is the Born modeling operator,
&d is the first-order scattered seismic data d ~ d(m + ém) — d(m),
and the linear operator du/om is the Fréchet derivative or Jacobian
matrix of u. The Fréchet derivative is prohibitively expensive to com-
pute explicitly. Alternatively, the adjoint-state method is used to com-
pute the action of the Fréchet derivative on vectors. For this purpose,
we first differentiate the wave equation 3 with respect to m (Fichtner,
2010; Fichtner and Trampert, 2011)

oS Jdu
= Z oo
u+Sa , )

where linear operator 0S/0m = ([0S/0dp], [0S /04|, [0S/du]). The
right side of equation becomes zero because the source term does

not depend on the model. Then, the Fréchet derivative of u can
be expressed as follows:

o 05 0S5
== = ST S (10)

where the multiplication of two operators follows the rule
ABv = A(Bv) (Chen and Lee, 2015). The term —(0S/dm)u is
the so-called “virtual secondary source,” which is the product of
the incident wavefield and 0S/0m. The operator 0S/om represents
the radiation pattern of the virtual secondary source (Pageot et al.,
2013). Inserting the expression of Fréchet derivative of u into equa-
tion 8, the Born approximation can be written as

od _, 08
5d—£5m—£5m— TS Eu&m. a1

Equation 11 indicates that the incident wavefield u hits the scatterers
ém, acts as a secondary source and generates the scattered wavefield.
The latter is sampled at the surface of the earth by receivers and gen-
erates the scattered seismic data. The linearized Born modeling op-
erator £ only depends on the smooth background model m and the
acquisition geometry.

One can apply the abstract linearized Born approximation equa-
tion 11 directly to the first-order velocity-stress elastic wave-equation
system 1. Alternatively, perturbing the elastic wave equation will lead
to the same result. A perturbation of the model parameters

p = p+op, (122)

A= A+ 64, (12b)

W=+ o, (12¢)
leads to a perturbation of the wavefield

u— u-+ou. (12d)
Inserting equation 12 into equation 1, subtracting equation 1, and

dropping second and higher order terms leads to the Born approxi-
mation for the first-order velocity stress elastic wave-equation system

pL 0O (0 D\_ _(-5p2lv
(0 I)atéu (CDT 0 )™= scpty ) 9

where

00
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sc=| s sit2u 0 |,
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with zero initial condition Su|,_, = 0 and appropriate boundary
conditions. The vector Su is the scattered wavefield, with év and
66 being the scattered particle velocity field and scattered stress
field due to model perturbations dp, 64, and du, and v is the incident
particle velocity field. The right side of equation 13 is the so-called
“secondary source.” The scattered wavefield can be computed using
the same FD code that is adopted to compute the source-side incident
wavefield in equation 1. The scattered data are obtained by sampling
the scattered wavefield at the receiver positions 6d = 7 Su.

The linearized adjoint problem: Elastic reverse time
migration

The migration operator is the adjoint of the Born modeling
operator that maps from reflection data to model perturbation or
image. The adjoint operator of the Born operator satisfies

(54, Lom)y = (£7d, 5m)y,. (15)

where T denotes the adjoint of an operator and (-,-)p and (-, -}py
denote inner products in the data domain and model domain, re-
spectively. The adjoint of Born operator (equation 11) applied to
reflection data can be expressed as (Tarantola, 1984a)

T T
om* = L£hed = (ad> 5d = _(asu> (S Ttsd
Jom om
_ <gu) (8T)'Ted, (16)

where 71 is the adjoint of sampling operator 7. Notice that we used
the property (S~')" = (ST)~! in equation 16 (Tarantola, 1988). We
adopted the symbol ém* to represent the model perturbation that
one can obtain by applying the adjoint operator to data perturbation
&d. Evidently, the adjoint operator is not equal to the inverse of the
linearized forward operator and therefore, ém* # ém. To continue
with our analysis, we now introduce the adjoint-state variable
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p = (S7)"!T75d. The latter satisfies the “adjoint-state equation”
corresponding to the state equation 3

S'p=Ti5d, an

where p is the adjoint-state variable of the state variable u, S' is the
adjoint wave-equation operator, and 7 '&d is the adjoint source. The
model perturbations or images (equation 16) can be expressed as

follows:
oS \f
om* = — , 18
o (Se

or rewritten the implicit inner product over time explicitly

= f(‘zfn’&l )Tp(x, t)dt
= — [p(x. T(f’s“)) (x, t))dl,

where p(x, ?)" = p(x, )T was applied. This is the formulation of
RTM with the adjoint-state method (Lions, 1971; Tarantola,
1984a, 1988; Tromp et al., 2005). The estimated images for differ-
ent shots are usually stacked to form a stacked image.

The abstract form adjoint-state equation 17 can be applied to the
first-order velocity-stress elastic wave equation system 1

1 0\7/0)\' 0 D)
(3 1) ) el )= e

with zero final condition p|,_; =0 and appropriate boundary
conditions. The vector p = (v,g)7, where v = (v,,v,)7 is the
adjoint-state particle velocity field and ¢ = (gyr» 6220 Gx)T IS the
adjoint-state stress field. The reflection data 6d = (5d,, &d,)7 act
as the adjoint source to the adjoint-state equation. The differential
operator is antiself-adjoint (d/dx)" = —(d/dx). Consequently, one
can write the expression D = —D7. Finally, the adjoint-state equa-
tion can be rewritten as follows:

1 0\/ 0 0 DC
(’:) I)(_E)H(DT 0>p:T'5d. @1)

The structure of the adjoint-state equation is slightly different to the
structure of the state equation 1. However, the adjoint-state equation
can be redefined into a form that resembles the state equation by
adopting a transformation of variables (Vigh et al., 2014)

. I 0
p:(o C)Ix (22)

where p = (0,5)7 is the transformed adjoint-state variable,
0 = (0,,0,)" and & = (Eyx» &1z Sx) . If we multiply both sides
of the adjoint-state equation 21 by the transformation matrix, the
adjoint-state equation can be rewritten as follows:

pL 0N 0\ (0 D\- (1 0)_.
(0 1>< at>p+<CDT 0)"‘(0 c>75d’

(23)

19)

where the adjoint-state equation now has the same structure as the
state equation 1. Consequently, the FD code adopted to solve the
forward equation system 1 and the Born modeling equation sys-
tem 13 can be reused to compute the adjoint wavefield in equa-
tion 23. The only difference is that the source term is replaced
by an elastic tensor scaled adjoint source and the FD steps are
in time-reversal mode. After computing the transformed adjoint-
state variable p, the original adjoint-state variable p can be retrieved
by the inverse transformation

(b (b &) ()

(24)
with
ivm
Aop + 4 Aoy + 4p?
A A+2u
Cl=]- 0 25

Au+ 4> Ao+ 4t 25)

1

0 0 —

U

Using the migration operator formulation given by equation 19,
elastic wave equation 1 and the adjoint wave equation 23, and var-
iable transformation equation 24, the adjoint model perturbations or
images (Sm* = (8p*, 2%, su*)T) for a single shot can be expressed
as

5P*:—/i'~1)dt:—/if-f)dtz—/(bxﬁx+i)zl~)z)dt,
aC aC

DT . — -4 . -1z
(a& ) odt /(azc c> (C~1&)dt

(éxx + 6-ZZ) (E-X-x + EZZ)
4(A+p)?

(gin) = | (35‘?) (€
:

dt,

sz&xz (é'xx + ézz) (C}xx + 512)
2 + 2
7 4(2+n)
+ (Gxx B Uzz) (zgxx B gzz):| dt, (26)
4u

5/1*—/
g
ow = [
g

where the over-dot means the time derivative. The interaction of the
forward (state variable) and backward wavefields (adjoint-state var-
iable) requires access to the two wavefields at the same time step.
However, these two wavefields are computed in the reverse time
direction. Naive methods, such as saving either forward or back-
ward wavefield to disk can be used. However, I/O can degrade com-
putational performance for large-scale problems. In our work, we
have adopted the source-wavefield reconstruction method (Gauthier
et al., 1986; Dussaud et al., 2008). During the forward simulation of
state (source side) wavefield, only the wavefield within the depth of
half of the spatial FD operator length on boundaries and the final
time snapshots are saved in memory. Then, the state (source side)
wavefield is recomputed from the saved wavefield by backward
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propagation while simultaneously computing the backward adjoint
(receiver side) wavefield. This completes the derivation of the elas-
tic Born operator and elastic RTM operator using continuous func-
tional analysis and the time-domain adjoint-state method.

Numerical adjointness of the elastic Born and RTM
programs

We derived the elastic Born operator and elastic RTM operator
using continuous functional analysis first and then discretize them.
This is the so-called optimize-before-discretize approach (Borzi and
Schulz, 2012). One must be careful when discretizing the forward
and adjoint operators to guarantee that they truly behave like a for-
ward and adjoint pair. In particular, one needs to be attentive to scal-
ing terms, source-injection strategies, and rules for updating particle
velocities and stresses. We adopted the dot-product test to numeri-
cally evaluate how close the discretize adjoint operator is to the true
adjoint of the forward operator (Mora, 1987; Claerbout, 1992; Le,
2016). This implies generating data and model vectors of random
numbers d; and m,. Then, we evaluate d, = £ém, and m; =
L£76d; and finally, we compute the closeness of inner products
via the following expression:

_| {6d,. 6dy)p, — (5my, Smy)
(6d;, 6dy)p, + (6my, 6my)

27)

Our code was written in single-precision float data type in C. The
relative error of our dot-product test is 10~ for a model that consists
of 500 x 500 samples in space and a single shot that consists of
5000 samples in time and 500 receivers.

Algorithm 1. CGLS algorithm.

Initialize
sm©® =0
v =sd,i=1,....N,
N, 0
0) — Zi:i ﬁi‘ (0)
p(O) =50
r@ = s3
for k = 0,1, ... while not converge do
H=Lp®i=1,...,N,
sH = Zl\il ”2
(k)/(s(k)

smlt+) = sm® 4 g®p®)
() — W) _qog® =1, . N

(k+1) Zz IET (k-+1)

r; K

m

y(k+l — HS (k+1) H2
ﬁ<k) — k+1 /},
plt) = sk+1) | gk p®)

end

Elastic least-squares reverse time migration
CGLS with adjoint-state method

From the above derivation, a properly designed elastic RTM code
can be considered equivalent to the adjoint operator of the elastic
Born forward-modeling operator. The adjoint operator is an
approximation to the inverse operator, in which the Hessian of
the linearized inversion problem is replaced by an identity matrix.
In other words, the migrated image obtained via the adjoint operator
is a blurred version of the true subsurface image. The migrated im-
age, in general, suffers from relative low resolution, unbalanced am-
plitudes due to geometric spreading and acquisition footprint.
Moreover, multiparameter elastic migration will generate crosstalk
among different components because different parameters are
coupled. To estimate higher resolution images with properly bal-
anced amplitudes and fewer crosstalk and artifacts, the elastic
LSRTM is formulated as a quadratic optimization problem, in
which one minimizes the following cost function:

1
J(om) =23 |
i=1

where £, is the Born approximation operator for the ith shot, d; is
the reflection data associated to the ith shot gather, Sm denotes
model perturbation (elastic images), N, indicates the number of
shots, and || - ||, indicates the ¢, norm of vector. The optimal sol-
ution satisfies the condition [0.7 (dm)]/dém = 0. The latter leads to
the normal equations

N, Ny
(Z L‘,T,C,) sm=> L]sd;, (29)
i=1 i=1

(28)

Algorithm 2. Preconditioned CGLS algorithm.

Initialize
sm® =0
r') =sd,i=1,....N,
=P PHEY, L)

p(0> ()
r® = [|s©]3
for k = 0,1, ... while not converge do
= PrPup®

® = £, i=1,....N,
N, k
50 =5 1lqM )2

®) /50)
sm*D = sm® 1 Rk
r — 0 —oc(")q(}k> i=1,...,N,
st = PLPL( L)
7/(k-i—l — HS (k+1) HZ
ﬂ(k — k+l /},
p( 1) — glk+1) +ﬂ(k) (k)
end
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where Zf\;l ﬁjﬁdi is the reverse time migrated image and
Z?ﬁ] C}LEi is the Hessian operator for least-squares migration. Last
expression indicates that the migrated image is a blurred version
of the true parameter perturbations. By applying the inverse of
the Hessian operator, the raw migrated images can be deblurred.
Explicit forming and inverting the Hessian is prohibitive expensive
in terms of computational cost and memory requirements. Instead,
we adopt an iterative method: the CGLS (Hestenes and Stiefel,
1952; Paige and Saunders, 1982). The CGLS only requires two op-
erators £; and L;’ that are applied “on the fly” to vectors. The op-
erators are applied on vectors efficiently via the adjoint-state
method. The CGLS algorithm can be safely used because our dis-
cretized numerical versions of £; and E; passed the dot-product
test. A series of steps (CGLS iterations) are required to solve the
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quadratic optimization problem given in equation 28. The CGLS
algorithm for elastic LSRTM is summarized as Algorithm 1.

Parameterization

For reflection data FWI, P-wave impedance, S-wave impedance,
and density are the most suitable parameters to invert for. The latter
was confirmed by a detailed radiation pattern analysis for different
parameterizations of elastic FWI (Tarantola, 1986). We parameterized
our elastic LSRTM in terms of P-wave impedance perturbation 6/,
and S-wave impedance perturbation 6/,. We have preferred to omit
the inversion of the density perturbation because it cannot be properly
resolved from reflection data (Tarantola, 1986; Lebrun et al., 2001).
We use the following relationships between elastic parameters:
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Figure 1. Elastic Camembert model. (a) P-wave velocity model. (b) S-wave velocity model. (¢) Smoothed P-wave velocity model.
(d) Smoothed S-wave velocity model. (e) True P-wave impedance perturbation. (f) True S-wave impedance perturbation.
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A=pV3=2pVi u=pVi,

I,=pV,, I,=pV, (30)

p’
in conjunction with total derivatives to write down the following
parameter perturbation transformation:

52 2V, —4v,\ (sl
(5;;) :< 0 2V, )(51?)' 31

We insert the above parameter transformation into the elastic LSRTM
formulation (equation 28). The parameter transformation matrix and
its adjoint are incorporated into the CGLS algorithm (Algorithm 1).
The change of parameters is similar to adding preconditioning to our
system of equations. In our experience, inverting for impedance per-
turbations leads to an algorithm with faster convergence than
inverting for the Lamé parameter perturbations.

Preconditioning using multiparameter Hessian

The elastic LSRTM implicitly inverts the Hessian operator via
CGLS iterations combined with adjoint-state method; i.e., we apply
the Fréchet derivative and its adjoint on vectors via the adjoint-state
method on the fly in each CGLS iteration. It does not need to form
the Fréchet derivative or Hessian explicitly. However, the CGLS
algorithm may need a relatively large number of iterations to con-

a) Horizontal component data
1250

1500 2000
x (m)

b) Vertical component data
1250

1000 1500 2000 2500
x (m)

Figure 2. Prestack multicomponent data for elastic Camembert
model. (a) Horizontal particle velocity data. (b) Vertical particle
velocity data.

verge to an optimal solution. Preconditioning of the gradients is im-
portant to accelerate the convergence of CGLS and save
computational resources. We investigate the structure of the Hessian
operator of the elastic LSRTM and use the diagonal of the pseudo-
Hessian for preconditioning (Shin et al., 2001a). The Hessian op-
erator of elastic LSRTM problem can be expressed as

N, N,
fee-§(2) (72)

N,
= (TS‘lﬁuJ (’TS‘ Eu) (32)
: om om

where u; is the source-side wavefield for ith shot, and recall that S -1
is the Green’s operator. If the Green’s functions are not saved,
explicitly computing the Hessian needs N - N,, forward simula-
tions with N,, as the number of model grid points. Using the reci-
procity of the Green’s function (Tarantola, 1988), the number of
forward simulations needed for explicitly computing the Hessian
reduces to N - N, where N, denotes the number of receivers.
The diagonal element of the Hessian is the zero-lag autocorrelation
of the Fréchet derivative. It accounts for the geometric spreading
effect (Shin et al., 2001b). Explicitly computing the diagonal of
the Hessian also requires N, - N, forward simulations. Shin et al.
(2001a) propose to neglect the receiver Green’s function to save
computation cost. Under this assumption, the Hessian can be sim-
plified to the so-called “pseudo-Hessian™:

NS \'[aS
]I-]I:g(au,) <£u5). (33)

For multiparameter problem, the Hessian and pseudo-Hessian are
blockwise. The pseudo-Hessian for Lamé parameters is given by

HM H/ly
H, = <HIM HW). (34)

Using the pseudo-Hessian operator expression (equation 33) and
the elastic wave equation 1, the diagonal blocks can be expressed

HH(x,x’) /( ) ((;f (x’)) dt,
H# (x,x”) /( ) ((;/(;D (x’))dt, (33)

where the dependence on shot index i of particle velocity field
is omitted to avoid notation clutter. The diagonal terms of the
pseudo-Hessian (x = x’) for Lamé parameters can be expressed
as follows:
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N, . .
S [ (Gnt62)
Y i

NS . 2 . . 2 . . 2
_ Oz (o-xx + o-zz) (axx - GZZ)
Hﬂ/‘(x,X) = E / |:7+ 2(1_’_”)2 + 2”2 dt.

(36)

Using the relationships between elastic parameters and chain
rule, the pseudo-Hessian for P- and S-wave impedances is given by
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(37
We use the inverse of the diagonal of the pseudo-Hessian for pre-

conditioning. The diagonal terms of the pseudo-Hessian for P- and
S-wave impedances can be expressed as follows:

b) x (m)
0 500 1000 1500 2000 2500

z (m)
500

1000

1500

S-wave impedance image ERTM

d) x (m)
0 500 1000 1500 2000 2500

z (m)
500

1000

1500

S-wave impedance image ELSRTM

f) x (m)
0 500 1000 1500 2000 2500

z (m)

o
o
mn
—

S-wave impedance image PELSRTM

Figure 3. (a) P-wave impedance perturbation image estimated via elastic RTM. (b) S-wave impedance perturbation estimated via elastic RTM.
(c) P-wave impedance perturbation image estimated via elastic LSRTM. (d) S-wave impedance perturbation image estimated via elastic
LSRTM. (e) P-wave impedance perturbation image estimated via preconditioned elastic LSRTM. (f) S-wave impedance perturbation image

estimated via preconditioned elastic LSRTM.
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Ny 2
H»r (x,x) = /2 0”—’_672) dt,
i=1 )“ —|—,Lt)
N,
HIJ‘ X X Z / 4V2|: Gxx + 022)2
e 20 +p)?
(64x — 62.)°
= dt. 38
+ 27 (33)

The preconditioned version of elastic LSRTM minimizes
1 &
J (o1h) = 5 > ILPrPyom — odf3, (39)
i=1

where Py denotes the inverse of the diagonal of pseudo-Hessian for
P- and S-wave impedances, Py denotes the parameter transforma-
tion matrix in equation 31. As discussed in the last section, the
parameter transformation matrix Pr and its adjoint also play the
role of preconditioning to our system of equations. The precondi-
tioned CGLS algorithm (Bjorck, 1996) can be summarized as Al-
gorithm 2. The output of Algorithm 2 is the inverted Lamé
parameter perturbations m = (5/1 )T PTPH(Sm And, the in-
verted P- and S-wave impedance perturbations can be retrieved
by (81,,81,)7 = P;' (62, 50)".

EXAMPLES

The proposed method was tested on two synthetic models: the
elastic version of the Camembert model (Gauthier et al., 1986) and
the elastic Marmousi2 model (Martin et al., 2006). All the “ob-
served data” are generated with the time-domain elastic stag-
gered-grid FD method. In other words, we have not committed
the so-called “inverse crime” that entails using the linearized Born
modeling operator to generate data to test least-squares migration.
The same staggered-grid FD code was used for the elastic LSRTM
inversion. The C-PML boundary condition was applied on the top
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Figure 4. Comparison of relative data-misfit convergence curves
for elastic LSRTM (blue) and preconditioned elastic LSRTM
(red) for Camembert model.

of the model. The observed data were assumed to be vector par-
ticle velocity fields. Only the direct wave was muted from the data.
The data contain internal multiples that are not honored by the
linearized Born modeling. In real data applications, the multiples
can be attenuated from the data to only keep first-order scattered
energy. The code for our numerical examples was written in C and
parallelized with message passing interface (MPI).

Elastic Camembert model

The elastic LSRTM is tested on a synthetic elastic version of the
Camembert model. This test shows that elastic LSRTM can attenu-
ate crosstalk between P- and S-wave impedance perturbations. Fig-
ure la and 1b shows the true P- and S-wave velocity models. The
velocity anomalies are embedded in two layered models. The veloc-
ity anomalies for P and S are in different positions. Density is
assumed to be constant (1500 kg/m?). The model has a dimension
of 2.5 km in the horizontal axis and 1.5 km in depth with
501 x 301 grid points. There are 101 shots and 501 receivers that
simulate a fixed-spread survey geometry. The shot interval is 25 m,
and the receiver interval is 5 m. The shot depth is 5 m, and the
receiver depth is 10 m. A 20 Hz central frequency Ricker wavelet
is used to simulate an explosive source. The observed data are si-
mulated using our elastic FD code. No other preprocessing was ap-
plied to the data except for muting the direct wave. The observed
data are shown in Figure 2. Figure 1c and 1d shows the smoothed
background velocity models for elastic RTM and elastic LSRTM.
Smoothed models were obtained by convolving the true models
with a 2D Gaussian function of 50 m width with standard deviation
as half the width. The width of the 2D Gaussian function is approx-
imately equal to the shortest P-wave wavelength. Figure le and 1f
shows the true P- and S-wave impedance perturbations with respect
to the background models.

The results of elastic RTM are shown in Figure 3a and 3b. The
elastic RTM operator generates high-amplitude low-frequency arti-
facts caused by the crosscorrelation of the head wave, diving wave,
and backscattered internal reflections. A Laplacian filter (Youn and
Zhou, 2001) was used to attenuate the artifacts. As expected, there is
crosstalk between the P- and S-wave impedance perturbations in the
elastic RTM images. Elastic LSRTM (Figure 3c and 3d) not only
reduces multiparameter crosstalk but also displays fewer artifacts,
properly balanced amplitudes, and higher resolution. To make a fair
comparison with the elastic RTM images (Figure 3a and 3b), the
least-squares inverted images were postprocessed by Laplacian filter-
ing. No filters were applied during the inversion process. These re-
sults were computed after 82 iterations of elastic LSRTM. The
relative data-misfit percentage reduces to approximately 6%. The rel-
ative data misfit is defined as

N, ~
Sy l|£0m - 6d,]3 _
S llod;|13

(40)

Figure 3e and 3f shows the pseudo-Hessian preconditioned elastic
LSRTM after 20 iterations. The relative data misfit also reduces to
approximately 6%. The results are similar to unpreconditioned elastic
LSRTM. Figure 4 compares the convergence curves of the unprecon-
ditioned and preconditioned version of elastic LSRTM. From this
figure, one can observe that preconditioned elastic LSRTM converges
much faster than unpreconditioned LSRTM.
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Sensitivity to background model error

‘We tested the proposed elastic LSRTM using background models
with different degrees of spatial smoothing. The setup is equivalent
to the setup adopted in the last section (the elastic Camembert
model test). We have run our algorithm using background models
with increasing degrees of smoothing. The background velocity
models were smoothed via 2D Gaussian functions of width W
50, 100, 150, and 200 m. The standard derivation of the 2D Gaus-
sian function equals to its half width. Results for W =50 m
smoothing have already been shown in the previous section. We
only plot the models and results for smoothing with 100, 150,
and 200 m widths. Figure 5 shows background models using difter-
ent levels of smoothing. The comparison of the data-misfit conver-
gence curves of elastic LSRTM using the four background models
is shown in Figure 6. We observe that the level of smoothing of the
background models influences the data misfit. The elastic LSRTM
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Figure 6. Comparison of relative data-misfit convergence curves
for elastic LSRTM for background models with different degree
of smoothing: W = 50 m (blue), W = 100 m (red), W = 150 m
(purple), and W = 200 m (green).
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for different background models converge to different levels of data
misfit. We have compared the results at fixed number of iterations
(82 iterations) that all misfit curves have converged. The inverted

2006). The model consists of a total of 199 layers with a steep
anticline fault zone. The size of the original model was reduced
to 1001 x 426 grid points to decrease the turnaround time of our tests.

The water layer in the original Marmousi2 model was removed and
replaced by a low-velocity layer to simulate a purely elastic model.
Figure 8 shows the modified elastic Marmousi2 P- and S-wave veloc-
ity models. In the steep fault zone, there are two hydrocarbon reser-
voirs around depth 500 m that have decreased P-wave velocity and a
small change in the S-wave velocity (indicated by the white trian-
gles). This uncorrelated P- and S-wave structures will cause crosstalk
in elastic RTM images. We will show that the elastic LSRTM

results are shown in Figure 7. The quality of the inverted images
degrades and more artifacts are present in the images as the level
of smoothing increases.

Elastic Marmousi2 model
The proposed method was also tested on a complex elastic model.

To this end, we adopted the elastic Marmousi2 model (Martin et al.,
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Figure 7. Comparison of elastic LSRTM results for background models with increasing degree of smoothing. (a and b) Inverted P- and S-wave
impedance perturbation images using background models smoothed with a 2D Gaussian function of width W = 100 m. (c and d) Inverted P- and
S-wave impedance perturbation images using background models smoothed with a 2D Gaussian function of width W = 150 m. (e and f) Inverted
P- and S-wave impedance perturbation images using background models smoothed with a 2D Gaussian function of width W = 200 m.
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can attenuate the crosstalk. Density is assumed to be constant
(2000 kg/m?). The model has dimensions of 2500 m in the horizon-
tal distance and 1062.5 m in depth. A land-acquisition geometry is
simulated with 101 shots and 1001 receivers distributed on the sur-
face of the earth. The shot interval is 25 m, and the receiver interval is
2.5 m. The central frequency of the source function (Ricker wavelet)
is 35 Hz. The observed data were simulated with our FD code, and
the direct wave was removed from the observed data. The observed
data are shown in Figure 9. Figure 10 shows the smoothed back-
ground velocity models for elastic RTM and elastic LSRTM.
Smoothing was accomplished by convolving the true velocity models
with a 35 m width 2D Gaussian function. Figure 11 shows the true P-
and S-wave impedance perturbations with respect to the smoothed
background models. From this figure, we can also observe that
the P- and S-wave models are inconsistent in the two hydrocarbon
reservoirs region at approximately 500 m depth in the steep fault zone
(indicated by white triangles). Figure 12 shows the P- and S-wave
impedance perturbation images obtained via elastic RTM. The elastic
RTM algorithm has successfully imaged the geologic structures.
However, the amplitudes of the elastic images are unbalanced. Un-
collapsed energy artifacts caused by not having a dense distribution
of sources and limited aperture are also visible. Most important, the
elastic RTM operator has generated crosstalk between P and S images
in the two hydrocarbon reservoir areas because the P- and S-wave
velocity structures are different. These problems are caused by the
fact that the elastic RTM operator is an adjoint operator as opposed
to an ideal inverse operator. The elastic LSRTM (Figure 13) can solve
these problems. Results for elastic LSRTM were computed after
98 iterations. The relative data misfit percentage reduces to approx-
imately 40%. The geologic structure of the elastic Marmousi2 model
is complex. The data generated by FD modeling contain internal mul-
tiples that are not honored by the linearized Born modeling operator.
We believe that the latter explains the inability of the algorithm to
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Figure 8. Elastic Marmousi2 model. (a) P-wave velocity model.
(b) S-wave velocity model.

reduce the data misfit further. The elastic LSRTM corrected the
unbalanced amplitudes and suppressed the low-frequency RTM ar-
tifacts and artifacts caused by limited aperture. The elastic LSRTM
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Figure 9. Prestack multicomponent data for elastic Marmousi2
model. (a) Horizontal particle velocity data. (b) Vertical particle
velocity data.
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also generates high-resolution images. More important, the elastic
LSRTM can successfully decouple elastic parameters and suppress
multiparameter crosstalk in areas with hydrocarbon traps in the
P- and S-impedance perturbation images. These benefits are the
result of the embedded de-blurring process that is associated with
the inversion of the Hessian operator in elastic LSRTM.
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Figure 11. Elastic Marmousi2 model. (a) True P-wave impedance
perturbation. (b) True S-wave impedance perturbation.
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Figure 12. Images obtained via elastic RTM. (a) P-wave impedance
perturbation image. (b) S-wave impedance perturbation image.

Figure 14 shows the pseudo-Hessian preconditioned elastic
LSRTM after 58 iterations. The relative data misfit also reduces
to approximately 40%. The preconditioned version of the elastic
LSRTM yielded more amplitude balanced images than the unpre-

z (m)

P-wave impedance image ELSRTM

z (m)

S-wave impedance image ELSRTM
Figure 13. Images obtained via elastic LSRTM. (a) P-wave imped-

ance perturbation image. (b) S-wave impedance perturbation image.
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Figure 14. Images obtained via preconditioned elastic LSRTM.
(a) P-wave impedance perturbation image. (b) S-wave impedance
perturbation image.
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conditioned elastic LSRTM. To finalize our analysis, we also pro-
vide Figure 15 in which we compared convergence curves for the
unpreconditioned and preconditioned elastic LSRTM. Precondi-
tioning with the pseudo-Hessian has led to a visible improvement
in convergence.

DISCUSSION

The source type adopted in our numerical examples is an explo-
sive P-wave source that imitates an air gun or a dynamite source.
A different type of source could have been implemented in the pro-
posed elastic LSRTM. For example, a vertical force source term
could have been implemented in our FD code to simulate a vibroseis
source. For land seismic acquisition, the recorded data can contain
multicomponent or single vertical component observations. In the
single-component case, one should use the vertical component and
use a sampling operator to exclude the horizontal component.
Clearly, multicomponent vector data are preferable than the single
vertical component data. The horizontal component will help to re-
solve the S-wave impedance perturbation because it primarily cap-
tures converted modes. Recording long-offset vertical component
data containing converted S-wave energy will contribute to resolve
the S-wave impedance perturbation as well. Applying elastic
LSRTM to field land seismic data requires having high-quality data
and access to accurate background models for P- and S-wave veloc-
ities. The proposed elastic LSRTM method also can be applied on
marine seismic data. The staggered-grid FD modeling code used for
elastic solid media can be used for acoustic fluid media as well. In
this case, one can set the S-wave velocity to zero, and no particular
treatment is needed for the solid-fluid interface (Virieux, 1986). In
acoustic fluid media, the inverse elastic tensor C™! in equation 24 is
replaced by the pseudoinverse of C (Albertin et al., 2016). Conven-
tional wide-aperture marine streamer pressure data can be used in
the proposed elastic LSRTM. However, the normal stress fields si-
mulated by the elastic wave equation need to be transformed to

Convergence curve

0.7

Relative data misfit
0.6

0.5

0.4

0 10 20 30 40 50 60 70 80 90
Number of iterations

Figure 15. Comparison of relative data-misfit convergence curves
for elastic LSRTM (blue) and preconditioned elastic LSRTM (red)
for the Marmousi2 model.

pressure field (Vigh et al., 2014). It is clear that modern multi-
component ocean-bottom cable data can resolve the subsurface
elastic images better than the streamer data.

CONCLUSION

Elastic LSRTM is formulated as a linearized elastic waveform
inversion problem. The inversion is parameterized in terms of P-
and S-wave impedance perturbations. The formulations of elastic
Born approximation operator and elastic RTM operator are derived
from the time-domain continuous adjoint-state method. The adjoint-
state equation system is the same as the state-equation system. The
only difference is the replacement of an explosive source to an ad-
joint source. After developing the functional formulations for our
forward and adjoint operators, we have discretized the elastic Born
and RTM operators. The numerical discretized versions of the two
operators pass the dot-product test. This allows us to use the CGLS
algorithm for solving the least-squares optimization problem. The
Hessian is implicitly inverted via the adjoint-state method combined
with CGLS algorithm. We investigated adopting the diagonal of the
pseudo-Hessian operator to precondition the elastic LSRTM and
thereby to accelerate its convergence. The elastic LSRTM produces
high-resolution images with fewer artifacts and more balanced am-
plitudes than elastic RTM. More importantly, elastic LSRTM can
reduce crosstalk artifacts between P- and S-wave impedance pertur-
bations that are present in elastic RTM images. In essence, the off-
diagonal elements of the Hessian operator are attenuated by the in-
version process. The pseudo-Hessian preconditioning operator
adopted in our work not only accelerates the convergence of the
elastic LSRTM but also improves the overall amplitude response
of our images.
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APPENDIX A

CONNECTIONS BETWEEN FULL-WAVEFORM
INVERSION AND LEAST-SQUARES MIGRATION

The FWI problem (Tarantola, 1984a; Luo and Schuster, 1991;
Pratt et al., 1998; Gao et al., 2007; Alkhalifah and Plessix, 2014;
Innanen, 2014; Li and Demanet, 2016; Yang et al., 2016) inverts for
the spatially varying coefficients of the wave equation from the ob-
served data on the surface of the earth. We will show that LSRTM is
equivalent to one iteration of Gauss-Newton FWI. The difference is
that LSRTM is applied to primary reflection data, whereas one iter-
ation of Gauss-Newton FWI is applied to the data residual. The FWI
minimizes the cost function (Tarantola, 1984a)
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1 &
T(m) =2 || Tu;(m) - dy|3. (A-1)
i=1

where 7 is the sampling operator, u;(m) represents full wave mode
forward modeled wavefield for ith shot, and d; is the full wave
mode observed data for ith shot. Gradient-based FWI is a local
optimization that uses the Born approximation in each iteration
(Virieux and Operto, 2009). Introducing a model perturbation
m — m + om and a second-order Taylor series expansion, the cost
function in the vicinity of m is given by the following expression:

J(m + 6m) = 7 (m) + %f:’)am

1. ,0°J(m) 3
+zom” W om 1 O(Jom|]).  (A-2)

In the vicinity of m, the cost function is linearized and an optimal
model update Sm should satisfy [0.7 (m + ém)]/0ém = 0. The lat-
ter results in the following expression:

{[(rom) (i) (o) rwan]}
X §<T%)T(di—7ui)}, (A-3)

where the term in the braces is called the full Hessian in the FWI
problem. The second term in the braces corresponds to the second-
order multiple scattering. This term is small when the cost function
is close to a minimum. Dropping the second-order term results in
the Gauss-Newton update (Pratt et al., 1998)

. LE’; (T%y (T%)] B [ﬁ; (T%>T(di—7ui)] .
(A-4)

We recognize that the latter is same equation adopted in the LSRTM
algorithm 29. The main difference is that the operator is applied on
data residual at each iteration of the Gauss-Newton FWI. On the
other hand, the operator is applied to primary reflection data when
is used to solve the LSRTM problem. If the model is close to the
optimal solution and the reflection data are preprocessed, one iter-
ation of the Gauss-Newton FWI is equivalent to solving the LSRTM
problem.
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