
Block row recursive least-squares migration

Nasser Kazemi1 and Mauricio D. Sacchi1

ABSTRACT

Recursive estimates of large systems of equations in the
context of least-squares fitting is a common practice in dif-
ferent fields of study. For example, recursive adaptive filter-
ing is extensively used in signal processing and control
applications. The necessity of solving least-squares prob-
lems recursively stems from the need for fast real-time signal
processing strategies. The computational cost of least-
squares solvers can also limit the applicability of this tech-
nique in geophysical problems. We have considered a recur-
sive least-squares solution for least-squares wave equation
migration with sliding windows involving several fixed rank
downdating and updating computations. This technique can
be applied for dynamic and stationary processes. If we use
enough data in each windowed setup, the spectrum of the
preconditioned system is clustered around one and the
method will converge superlinearly with probability one.
Numerical experiments were performed to test the effective-
ness of the technique for least-squares migration.

INTRODUCTION

Seismic migration aims to produce true structural and stratigraph-
ical images of the subsurface. There are different types of migration
in the geophysical literature. Migration methods can be divided into
two main categories. The first category is a ray-tracing-based ap-
proach (e.g., Kirchhoff migration; Schneider, 1978). The ray-trac-
ing method is computationally efficient, and it is easily adaptable to
irregular acquisition geometry. Another category is wave equation
methods. Although wave equation methods are computationally
expensive, they provide accurate wavefield extrapolation and
high-quality images for complex areas. In this approach, we solve
for one- or two-way wave equations (Gazdag, 1978; Stolt, 1978;
Baysal et al., 1983; McMechan, 1983; Whitmore, 1983; Gazdag
and Sguazzero, 1984; Stoffa et al., 1990). The action of these mi-

gration operators will be calculated on the fly, and in some cases, it
is even impossible to have a very straight forward explicit matrix
format for these operators. Moreover, it is worth mentioning that
each one of the migration techniques has its own artifacts. These
artifacts arise from approximations that were made at the time of
designing migration operators and also from incompleteness of
the data.
These artifacts can be removed by adopting data regularization

techniques prior to imaging (Fomel and Guitton, 2006). Artifacts
can also be attenuated by implementing least-squares migration
(Chavent and Plessix, 1999; Nemeth et al., 1999; Duijndam et al.,
2000; Kuhl and Sacchi, 2003; Plessix and Mulder, 2004; Symes,
2008; Kaplan et al., 2010a, 2010b). In least-squares migration, we
try to fit the data by inverting the demigration operator, and in gen-
eral, we adopt constraints to minimize the artifacts produced by data
incompleteness. However, the computational cost of the least-
squares approach is high, and with present computer resources, it
is really difficult to implement this method in its full potential for
industrial applications. In other words, the direct inverse computa-
tion of the Hessian is expensive and we need to approximate its
inverse (Hu et al., 2001; Etgen, 2002; Guitton, 2004; Yu et al.,
2006; Lecomte, 2008; Toxopeus et al., 2008; Naoshi and Schuster,
2009; Kazemi and Sacchi, 2014). Another way of reducing the
computational cost of least-squares migration is by adopting encod-
ing methods (Wei et al., 2010; Dai et al., 2011). The other way to
look at the problem is to apply least-squares migration in a recursive
fashion. In this approach, we can implement the technique on the
memory-limited machine and in a fast way.
Recursive least-squares algorithms are extensively used for a dy-

namic system of equations (e.g., radar data) and also for adaptive
filtering in the case of dynamic and stationary environments. The
main idea is to implement infinite memory algorithms by solving
the problem via introducing one data point at a time to the system of
equations (e.g., adding one row to the data matrix or in our case the
demigration operator). By infinite memory algorithm, we mean a
recursive method that operates at a given time on a small segment
of data but without forgetting the influence of previous segments of
data in the current solution. However, very little effort has been
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made in the geophysical community to adapt this technique for
different practical applications. This is mainly because recursive
least-squares algorithms require explicit matrices. In large-scale
problems (e.g., migration), everything will be done on the fly,
and adding or removing one row from the system of equations
(e.g., demigration operator) has no physical meaning. Moreover,
the one-data-point update scheme in the recursive least-squares ap-
proach causes stability issues. In other words, it is difficult to track
the stability of the process. To tackle these shortcomings, one can
update the system of equations in a block fashion by introducing
more than one data point at each step, making the algorithm faster
and more stable. These kinds of algorithms belong to the family of
block row or block column recursive least squares. However, in this
family, we need to explore some structures in the data matrix to
make the algorithms faster and also update the solution in a way
that in the end we solve for the original least-squares problem with
the accuracy in the bounded error limit. However, in most of geo-
physical problems, we do not have explicit matrices for data matrix
and algorithms will be implemented on the fly. Of course, in some
cases such as autoregressive (AR) or moving average (MA) or AR
with MA applications, one can explore special structures in the data
matrix and use directly the common recursive algorithms. For ex-
ample, Naghizadeh and Sacchi (2009) use rank one update of the
recursive least-squares fitting with some exponentially weighted
forgetting factor for f‐x adaptive filtering in the context of seismic
interpolation. It is obvious that this technique cannot be applied to
least-squares migration.
In this paper, we propose a block row recursive method to solve

the least-squares migration. Our method, in essence, is closest to the
work of Ng and Plemmons (1996). We consider a recursive least-
squares solution of the wave equation migration with sliding
windows involving several rank K downdating and updating com-
putations. The least-squares estimator can be found by solving the
partial least-squares settings in each step, recursively. We apply pre-
conditioned conjugate gradient (CG) method with proper precondi-
tioners that cluster the eigenvalues of the partial Hessian operators.
From practical point of view, to name a few, the blocks can be a
group of shot gathers, group of frequency slices, or group of offset
classes.
The outline of the paper is as follows. First, least-squares migra-

tion will be explained. Then, we will introduce a block row recur-
sive algorithm. Moreover, we will discuss some of the practical
considerations for the proposed method and compare the computa-
tional cost of the method with full least-squares migration and ex-
amine the efficiency of the proposed method on a simple toy
example and the Marmousi model. Finally, the main conclusions
will be summarized.

LEAST-SQUARES MIGRATION

Data generating model under the action of demigration operator
A can be written as

d ¼ Amþ n; (1)

where d is N × 1 vectorized version of the recorded data at the sur-
face,m is the migrated model withM × 1, and n is the noise content
and, often, also a term to absorb waves not modeled by the demi-
gration operator. Using the adjoint operator of demigration, one can
estimate the migrated model as

m̂ ¼ ATd; (2)

where m̂ is the adjoint estimated image of the earth, and AT is the
migration operator. Although m̂ can capture the main structures of
the true geologic model m, the produced model does not honor the
data. In other words, application of the demigration operator on
the migrated image yields poor data prediction. In addition, the mi-
grated image contains blurring and sampling artifacts. These artifacts
come from the fact that migration and demigration operators are not
orthogonal, and the energy of the signal in the complimentary image
space of the operator will be zeroed out. To tackle the problem, we
will solve

~m ¼ argmin
m

kAm − dk22 þ λkmk22; (3)

where m is a desired model, A is a demigration operator, d is a re-
corded data, and λ is a regularization parameter (Nemeth et al., 1999;
Kuhl and Sacchi, 2003; Kaplan et al., 2010b). The cost function of
equation 3 is convex and has a closed-form solution

~m ¼ ðATAþ λIÞ−1ATd: (4)

However, the computational cost of the least-squares approach is
high, and to make the algorithm faster, one can approximate the Hes-
sian (i.e., ATA) inverse (Hu et al., 2001; Kazemi and Sacchi, 2014).
In the next section, we will propose a sliding window scheme for
solving equation 3 in recursive fashion. The main motivations behind
the method are reducing the computational cost and, at the same time,
producing migrated images that honor the recorded data using
memory-limited resources.

BLOCK ROW RECURSIVE LEAST-SQUARES
MIGRATION

In this section, we will follow the recursive least-squares solution
via the rank K updating and rank K downdating procedure intro-
duced by Ng and Plemmons (1996). However, there are some
differences between the proposed method in Ng and Plemmons
(1996) with our technique. We are not considering a near-Toeplitz
structure for data matrix, and in the updating procedure, we just use
the previous solution of the block row setup as an initial solution for
the next sliding window. This way, we will give up fast implemen-
tation of the technique in favor of not considering special structures
in the demigration operator. However, one can show that in the case
of a laterally invariant medium, the data matrix can be considered as
blockwise Toeplitz.
To explain the block row recursive least-squares method, let us

consider again the problem of equation 3. In recursive least-squares
computations, it is required to calculate m while observations are
successively added to or deleted from the system of equations. Sup-
pose we have estimated the model with the first set of measurement
points d0 in a least-squares sense,

m0 ¼ ðAT
0A0Þ−1AT

0d0. (5)

Now, the question we should ask is that by introducing new data
points to the system of equations, can the best estimate for the com-
bined system A0m ¼ d0 and A1m ¼ d1 be estimated using onlym0

and d1?
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To do that, we define the new matrix as

P−1
1 ¼ AT

0A0 þ AT
1A1; (6)

then we have

m1 ¼ P1ðAT
0d0 þ AT

1d1Þ; (7)

and note that m1 is the best model for combined system of equa-
tions. At this point, we need to eliminate d0 term from equation 7.
Let us rewrite equation 6 as

P−1
1 ¼ P−1

0 þ AT
1A1; (8)

and after a few algebraic manipulations, one can show that equa-
tion 7 changes to

m1 ¼ m0 þ P1AT
1 ðd1 − A1m0Þ; (9)

where P1AT
1 is the gaining factor. In the case of one data point up-

date, we can use the matrix inversion lemma (MIL) and calculate the
gaining factor without direct inversion, and in the case of a block-
wise update (more than one data point update), to apply fast calcu-
lations of the gaining matrix, we need to explore MIL with QR
decomposition. However, none of these approaches are applicable
to least-squares migration. It is mainly because in migration, every-
thing will be done on the fly and there are no simple explicit ma-
trices for migration.
However, it is easy to show that if the system of equations sat-

isfies some assumptions, we can relax the gaining factor term of
equation 9 and solve the problem recursively on the overlapping
windows using the CG method. Let us explain the method step
by step. The least-squares estimator at step i can be found by solv-
ing for the M × 1 vector mðbiÞ in

~mðbiÞ ¼ argmin
mðbiÞ

kAðbiÞmðbiÞ − dðbiÞk22

þ λkmðbiÞ − ~mðbi−1Þk22; (10)

where ~mðbiÞ is the least-squares solution of the model till block i,
and dðbiÞ is the recorded data corresponding to block i with size
Q × 1, AðbiÞ is the Q ×M data matrix of block i, and Q is the
length of sliding window. Figure 1 shows the schematic represen-
tation of the setup. To update the solution recursively, we will add K

data points to the system of equations and remove K data points
from the beginning of the previous data vector. We call this step
rank K updating and downdating (see Figure 1 for more informa-
tion). For this new configuration, one can use

~mðbiþ1Þ ¼ ~mðbiÞ þ ðATðbiþ1ÞAðbiþ1Þ þ λIÞ−1ATðbiþ1Þ
× ½dðbiþ1Þ − Aðbiþ1Þ ~mðbiÞ�;

(11)

to estimate the best model in a least-squares sense that fits the whole
system of equations till step iþ 1. The second term in equation 11
can be interpreted as the least-squares solution of the unpredicted part
of the new data set by the solution of the previous step. It is worth
mentioning that we use CG to solve equation 11 and we never cal-
culate the inverse of the Hessian (i.e., ðATðbiþ1ÞAðbiþ1Þ þ λIÞ−1).
Using the previous solution as an initial model for the next block
has some advantages. This “warm start” for the new sliding window
will result in fast convergence of the CG method. This is mainly be-
cause the nearby data points are highly correlated in seismic acquis-
ition. It is also good to point out that in each setup, we must use
proper preconditioners and regularization term to cluster the eigen-
values of the partial Hessians around one. Ng and Plemmons (1996)
prove the convergence of this recursive least-squares technique in
probabilistic terms. They show that the method will converge super-
linearly with probability of one, provided the underlying process sat-
isfies some assumptions. First of all, the input discrete-time stochastic
process should be stationary. Second, the autocovariances of the ker-
nels in each step should be absolutely summable. This in turn will
assure the invertibility of the processes in each windowed setup.
Third, the variances between the autocovariances of the kernels be-
tween different setups should be bounded. Finally, the stationary
process has zero mean. All of these assumptions are valid for many
time series analysis problems, but it is not clear if they are fully appli-
cable to migration. However, in some cases, one can show that these
assumptions are more or less valid for migration (e.g., the acquisition
system has a full aperture and sufficiently fine sampling in time and
spatial directions). Moreover, the physical properties of the medium
such as slowness should be spatially invariant (Stolk, 2000).
For this idealized situation following the works by Gelius et al.

(2002), Sjoeberg et al. (2003), and Lecomte (2008), it is easy to
show that the action of the Hessian can be approximated via con-
volutional operators. Note that this relationship is only valid for a

Figure 1. Schematic representation of the block
row recursive least-squares algorithm.
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spatially invariant medium (i.e., constant slowness in spatial
directions).
Nevertheless, the ideas of Ng and Plemmons (1996) can be ex-

plored for migration applications and we will show that this method
works quite well even for complex medium. In the next section, we
will show the efficiency of the proposed method using a simple toy
example and the Marmousi model.

PRACTICAL CONSIDERATIONS

It is worth mentioning that in this paper, we assume that the
velocity field is known and there is no need for residual velocity
analysis. From an application point of view, the proposed method
can be implemented via different configurations. The key element
to keep in mind is the fact that we need some overlapping between
consecutive blocks to assure smooth changes in the Hessians. This
method can be applied on a subset of shot gathers in the context of
shot-profile migration or in the frequency domain using a subset of
frequency slices with overlapping. The subset of shots can be chosen
with regular patterns (e.g., in two dimensions from left to right or
right to left). We cannot use a pure stochastic gradient method with
a random selection of shot gathers because we need overlapping be-
tween the blocks. In the frequency domain, one could start from low
frequencies and move to high frequencies. Application of the pro-
posed technique using near offsets (near angles) and moving to
far offsets (high angles) is also straightforward. A block row recursive
least-squares method can also be extended to 3D imaging. One has

the option of using subset of shots or offset classes as a block, pro-
vided that a proper migration operator is chosen.

COMPUTATIONAL COST ANALYSIS

To compare the computational cost of the full least-squares mi-
gration and block row recursive method, let us assume that the num-
ber of grid points in one coordinate direction is n; hence, in 2D
coordinates, there are Oðn2Þ points. We will borrow some of the
complexity estimates from Marfurt and Shin (1989), Mulder and
Plessix (2004a), and Mulder and Plessix (2004b). In general, the
one-way wave equation has complexity of Oðnsnωn2Þ for a 2D ac-
quisition system, where ns is the total number of shots and nω is the
number of frequency realizations in data space. Considering the
scheme described in Collino and Joly (1995), the complexity of
the one-way wave equation in three dimensions increases by the
factor of n (i.e., the complexity is Oðnsnωn3Þ). Moreover, in the
CG method, in each iteration, we need to call migration and demi-
gration operators. Let us say that CG will converge in N iterations.
So, the computational cost of the CG method for the 2D case is
roughly Oð2Nnsnωn2Þ. On the other hand, the cost of block row
recursive least-squares migration in the frequency domain is
Oð2N̄nsnbnbωn2Þ, where N̄ is the average number of iterations
per block, nb is the number of blocks, and nbω is the number of fre-
quency realizations in each block. In the case of a subset of shot
gathers as a block, the cost will be Oð2N̄nbnbsnωn2Þ, where nb is
the number of shot gather blocks and nbs is the number of shot gath-

Figure 2. True and migrated reflectivity models. (a) True reflectivity. (b) Adjoint migrated model. (c) Least-squares migrated model. (d) Block
row recursive least-squares migrated model.
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ers per block. Moreover, to make the algorithm more efficient, one
can use a subset of the model for each block (i.e., there are no illu-
minations outside the coverage zone of subset of shots) and reduce
the cost even more. Hence, the new cost will be Oð2N̄nbnbsnωnnmÞ
where nm is the number of grid points of model in the horizontal
direction that covers the illumination aperture corresponding to
the geometry of subset of shots.
In the case of 3D imaging the I∕O cost can also be drastically

decreased. In the block row recursive approach, we need to load the
data for each subset of shot gathers only once, rather than repeatedly
as is the case for CG applied to the full least-squares migration prob-
lem when the data size exceeds core storage, which is routinely the
case in 3D imaging.

EXAMPLES

In the following examples, we used shot profile wave equation
adjoint and forward operators with a split step correction in the con-
text of adjoint, least-squares, and block row recursive least-squares
algorithms.
To test the performance of the proposed method, we generate a

2D reflectivity model (Figure 2a) and we use demigration operator
to produce the data set with a 10-m shot interval and a 5-m receiver
interval. We use a Ricker wavelet with dominant frequency of 30 Hz,
and the receivers are active for all of the shots. Then, we apply the

adjoint operator to migrate the data set (Figure 2b). Figure 2c and 2d
shows the least-squares and the block row recursive approach mi-
grated models, respectively. In the case of the block row recursive
approach, we use 10 consecutive shot gathers in each group and we
delete five shot gathers from the beginnings of the previous win-
dowed setup and add five new shot gathers to the end of the new
windowed setup. The stopping criterion, for both methods, is set to
be equal to the drop of the data residual of the first iteration by the
order of 106, and the regularization parameter is set to λ ¼ 100.
Please note that in the case of block row recursive method, the stop-
ping criterion is defined for each block separately. The full least-
squares approach converged after 13 iterations, and in the case
of the block row recursive method, the average iteration number
per block was approximately N̄ ¼ 3. Hence, the speed up for this
experiment was by a factor of two. It is worth mentioning that for
this experiment, all the receivers were active and we cannot use the
second cost criterion (e.g., Oð2N̄nbnbsnωnnmÞ) for the block row
recursive method. The block row recursive approach did a good
job in recovering the true reflectivity model, and the result is com-
parable to that of the least squares. To show how they honor the
recorded wavefield, we use the recovered reflectivity models to pre-
dict the data set. Figure 3a shows the true near-offset section of the
data set, and Figure 3b is the predicted near-offset section using the
adjoint migrated model. Finally, Figure 3c and 3d shows the pre-
dicted near-offset sections using the least-squares and block row

Figure 3. True and predicted near-offset sections. (a) True near-offset section. (b) Adjoint predicted section. (c) Least-squares predicted sec-
tion. (d) Block row recursive least-squares predicted section.

Recursive least-squares migration A99

D
ow

nl
oa

de
d 

12
/0

8/
15

 to
 1

42
.2

44
.1

94
.2

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



recursive approach models, respectively. It is clear that the predicted
near-offset sections via the least-squares approach and the block
row recursive methods are in good accordance with the true
near-offset section. Moreover, in both cases, the amplitudes are well
preserved and also the detailed features are better predicted than the
adjoint predicted data set.
Next, we apply the method on the Marmousi model. It is worth

mentioning that the data set is generated by the finite-difference
method with a Ricker wavelet with dominant frequency of 20 Hz.
The data set consists of 240 shot gathers with 25-m shot interval that
are modeled with an off-end survey with receivers to the left of the
source being pulled toward the right. Each shot gather consists of 96

traces, with the smallest offset being 200 m, and the receiver inter-
vals are 25 m. The nonsmooth velocity model of the Marmousi is
shown in Figure 4a. Figure 4b shows the adjoint-migrated image of
the Marmousi data set using shot profile wave equation migration
with split-step correction. Figure 5a shows the least-squares-mi-
grated image of the Marmousi data set after 15 iterations using
split-step Fourier migration and demigration operators as an adjoint
and forward operators required by the CG algorithm. The stopping
criterion for full least squares is set to be equal to the drop of the
data residual of the first iteration by the order of 106, and the regu-
larization parameter is set to λ ¼ 1. Finally, Figure 5b shows the
migrated image produced by the block row recursive approach.

In the case of the block row recursive approach,
we test different configurations and finally we
use five consecutive shot gathers in each group,
and we delete three shot gathers from the begin-
nings of the previous windowed setup and add
three new shot gathers to the end of new win-
dowed setup. The stopping criterion for the block
row recursive approach is set to be equal to the
drop of the data residual of the first iteration by
the order of 106, and the regularization parameter
is set to λ ¼ 1. Please note that the stopping cri-
terion is defined for each block separately. The
average iteration number per block is approxi-
mately N̄ ¼ 4, and we choose nm to be one-third
of the model size in the horizontal direction.
Hence, the speed up for this experiment is ap-
proximately by a factor of six. It is worth men-
tioning that we get the same results using
different configurations. The block row recursive
approach does a good job in recovering the true
reflectivity model, and the result is comparable
to that of least squares. Comparing the proposed
method’s result with adjoint, the block row re-
cursive approach did a reasonable job in preserv-
ing the amplitude of the reflectors and removed
some of the defocusing problems inherent in the
adjoint migrated image.

CONCLUSION

We have presented a block row recursive least-
squares migration method. This method uses a
blockwise update of the demigration operator
via rank K update and downdate in each setup
while the new data points are successively added
to the data vector. In each windowed setup, the
CG algorithm was used to solve the system of
equations in least-squares sense. To have fast
convergence, the previous solution of the method
is implemented as an initial solution for the next
block. This warm start will result in fast conver-
gence of the CG algorithm. This is supported by
the fact that nearby blocks are highly correlated.
The results of applying this technique on a sim-
ple toy and the Marmousi model convinced us
that the block row recursive method can be a
practical tool for improving the spatial resolution
of the migrated images.

a) b)

Figure 4. Velocity field of the Marmousi model and the corresponding shot-profile
wave-equation-migrated image. (a) True velocity field. (b) Adjoint migrated model.

a) b)

Figure 5. Comparison of the results of full least-squares migration and the proposed
method on the Marmousi model. (a) Full least-squares-migrated model. (b) Block
row recursive least-squares-migrated model using blocks of shot gathers.
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