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Abstract

We present an adaptive filtering method to denoise downhole microseismic

data. The methodology uses the apex-shifted parabolic Radon transform.

The algorithm is implemented in two steps. In the first step we apply

the apex-shifted parabolic Radon transform to the normalized root mean

square envelope of the microseismic data to detect the presence of an event.

The Radon coefficients are efficiently calculated by restricting the integra-

tion paths of the Radon operator. In a second stage, a new (preconditioned)

Radon transform is applied to individual components to enhance the recorded

signal. The denoising is posed as an inverse problem preconditioned by the

Radon coefficients obtained in the previous step. The algorithm was tested

with synthetic and field datasets that were recorded with a vertical array of

receivers. The method performs rapidly due to the parabolic approximation

making it suitable for real-time monitoring. The P− and S−wave direct ar-
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rivals are properly denoised for high to moderate signal-to-noise ratio records.

Keywords: microseismic, denoising, adaptive filtering, Radon transform.

1. INTRODUCTION

Low permeability reservoirs require fluid injection in order to fracture

the bedrock and favor hydrocarbon extraction. This gives rise to a broad

set of geophysical applications designed to monitor the reservoir dynamics

while controlling the injection process. The microseismicity induced by the

hydraulic fracturing is characterized by small magnitude micro-earthquakes

(Maxwell and Urbancic, 2001). Therefore, microseismic data are generally ac-

quired in low signal-to-noise (S/N) environments. Furthermore, inadequate

array coverage and imprecise knowledge of subsurface P− and S−wave ve-

locity models complicate the detection and location of microseismic events

(Eisner et al., 2009).

Microseismic acquisition projects can be divided according to two dif-

ferent scenarios: surface and downhole monitoring. This paper focuses on

downhole geometries and on the problem of detecting and enhancing micro-

seismic events. Downhole acquisition configurations involve arrays of three-

component geophones buried in vertical or deviated boreholes close to the

injection well (Maxwell et al., 2010).

Noise-suppression has become an important challenge to precondition mi-

croseismic data for the estimation of the event location and inversion of the

seismic moment tensor. Accurate locations and moment tensor information

are of paramount importance for the correct derivation of fracture positions

and source mechanisms (Leaney, 2008; Eisner et al., 2011; Kendall et al.,
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2011; Vera Rodriguez et al., 2012). Thus, signal enhancement techniques are

an important component of current efforts to properly analyze and invert

microseismic data. In this sense, Vera Rodriguez et al. (2012) introduced

a time-frequency basis pursuit denoising algorithm for multicomponent mi-

croseismic data. Recently, Forghani-Arani et al. (2013) proposed a τ − p

transform to suppress noise in microseismic data acquired by surface ar-

rays. In this article we focus our attention to the problem of denoising

borehole microseismic data via the apex-shifted parabolic Radon transform

(ASPRT) (Hargreaves et al., 2003; Trad, 2003).

In reflection seismology, Radon transforms have been widely used to in-

crease the S/N of seismic gathers and to remove multiple reflections (Hamp-

son, 1986; Russell et al., 1990a,b; Yilmaz, 1989). In this paper, we propose

to detect microseismic signal arrivals and denoise the data using an adaptive

filtering method that follows a Radon transform formulation that is often

utilized in reflection seismology.

This paper is organized as follows. We first describe the two-stage al-

gorithm for microseismic data denoising. The first stage is used for the

detection while the second is used for the denoising. For the detection, we

use the apex-shifted parabolic Radon transform of the normalized root mean

square envelope of the microseismic data, which is similar to the 3C envelope

energy suggested by Michaud and Leaney (2008). Then, we use this infor-

mation to determine a support region in the Radon domain that contains the

signal arrivals (P− and S−waves). This permits to enhance the S/N of each

component of the data by posing the Radon representation of the data as

an inverse problem with restricted support. We first evaluate the algorithm
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with synthetic datasets. Then, we evaluate it with field datasets that por-

tray different noise levels. In addition, we include a discussion section and

an appendix to analyze the validity of the parabolic approximation and the

reliability of the results in view of the algorithm’s parameters selection.

2. Method

We present a two-step method to detect and denoise microseismic events.

For this purpose, we utilize the apex-shifted parabolic Radon transform (AS-

PRT) first introduced in reflection seismology to attenuate diffracted multi-

ples (Hargreaves et al., 2003; Trad, 2003).

2.1. Parabolic approximation

We consider a constant velocity 2D medium. Let us assume an array of

receivers with coordinates (x, z) deployed on a vertical borehole close to the

source of microseismic events. For this geometry, the recorded travel-times

for a seismic event occurring at coordinates (xs, zs) is given by

t(z) = t0 +

√
(x− xs)2

v2
+

(z − zs)2
v2

, (1)

where t0 is the time of the event relative to the origin of the recording time and

v is the P− or S−wave velocity of the medium. We can rewrite equation (1)

via the following expression

t(z) = t0 +

√
t2a +

(z − zs)2
v2

, (2)

where ta = (x − xs)/v. Equation (2) represents an apex-shifted hyperbola

with the apex shifted by zs and the time of the apex relative to the origin of

the recording time given by t0 + ta.
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We can now introduce the following parabolic approximation

t(z) = t0 + ta

√
1 +

(z − zs)2
t2av

2

≈ t0 + ta + q (z − zs)2

≈ τ + q (z − zs)2, (3)

where t0 and ta were combined into a single time variable τ = t0 + ta and the

curvature of the parabola is given by

q =
1

2 ta v2
. (4)

Thus, we obtain the expression of the shifted parabola that we will utilize for

our Radon transform. It is worth mentioning that the parameter q in equa-

tion (4) is interpreted as an effective curvature that in real scenarios might

not yield a realistic velocity v (Yilmaz, 2001; Blias and Grechka, 2013). In

other words, we will not use the estimated parameter q to infer velocity in-

formation via equation (4). In fact, q is interpreted as a kinematic parameter

to stack energy across parabolic paths.

By adopting the parabolic approximation we have replaced the two tem-

poral variables t0 and ta by a single variable τ . The integration path given

by equation (3) leads to the so called ASPRT (Hargreaves et al., 2003; Trad,

2003). The validity of the parabolic approximation for constant velocity

media is discussed in Appendix A.

2.2. Event detection via the ASPRT

We denote the three-component data recorded by a vertical array of re-

ceivers by dx(t, zj), dy(t, zj) and dz(t, zj), j = 1 . . . N , where zj is the verti-

cal position for the receiver j and N is the number of receivers of the array.
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We also define the envelope of the x, y and z components by ex(t, zj), ey(t, zj)

and ez(t, zj), respectively. In low S/N environments, it is often preferable

to detect seismic arrivals by processing the average envelope function of the

three-component seismograms (Michaud and Leaney, 2008). In this study, we

define the normalized root mean square envelope via the following expression

e(t, zj) = cj

√
ex(t, zj)2 + ey(t, zj)2 + ez(t, zj)2 , j = 1, . . . N (5)

where the scalar cj is the normalization factor such that max [e(t, zj)] = 1

for all j. We also define the adjoint apex-shifted parabolic Radon operator

over the normalized root mean square envelope via the following sum

me(τ, q, zs) =
∑
z

e(τ + q (z − zs)2, z) . (6)

This formula can be implemented in an efficient and rapid way by restrict-

ing the pairs (q, zs) after considering the dependency of the minimum and

maximum expected arrival times on the parameters q and zs (Appendix B).

By virtue of the normalization of the root mean square envelope, it is clear

that an event parameterized by (τ ∗, q∗, z∗s) will lead to me(τ
∗, q∗, z∗s) ' N .

We will use this simple concept to define a criterion in the Radon domain to

detect the presence of a microseismic event. In this sense, the presence of an

event is detected if there exist parameters (τ ∗, q∗, z∗s) such that

me(τ
∗, q∗, z∗s) ≥ α1, (7)

where α1 is a threshold that can be used to control the sensitivity of the

event detection stage. In our code, we adopted α1 = N/2.
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2.3. Denoising individual components via a fast ASPRT inversion

Once a microseismic event was identified by the aforementioned detection

algorithm criterion, we utilize the ASPRT to denoise individual components.

For this purpose we first use the Radon coefficients obtained from the nor-

malized root mean square envelope to estimate the region of support of the

microseismic signal in the space (τ, q, zs) and to estimate a weighting function

that we will utilize to precondition the denoising algorithm.

We first define a matrix of weights via the following expression

We(τ, q, zs) =

 me(τ, q, zs) if me(τ, q, zs) > α2

0 if me(τ, q, zs) ≤ α2,
(8)

where α2 is another threshold parameter that represents a trade-off between

noise rejection and fitting low-amplitude signals. We also define the subset

S of parameters (τ, q, zs) of identified active coefficients that will be used to

fit the data:

S = {(τ, q, zs) such that me(τ, q, zs) > α2} . (9)

Once the support of the signal in Radon space has been found, we propose

to use Radon synthesis operator to denoise individual components. In this

case we will represent each individual data component as the outcome of

the application of the Radon transform to the corresponding series of Radon

coefficients. This is expressed mathematically via the following synthesis

formula

dc(t, z) =
∑

(q,zs)∈S

mc(t− q (z − zs)2, q, zs) for c = x, y, z. (10)
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To facilitate the development of the algorithm, the last equation can be

written in matrix-vector form using

dc = Lmc + nc, c = x, y, z (11)

where dc corresponds to the c component seismogram, mc are the associ-

ated Radon coefficients mc(τ, q, zs) in vector form, and L is the apex-shifted

parabolic Radon forward operator. Notice that in equation (11) we have

also added a noise term. The idea is to estimate the Radon coefficients from

equation (11), and then use the estimated coefficients to synthesize noise-free

data. For this purpose, the coefficient are estimated by solving the following

problem:

m̂c = argmin
mc

[ ‖Lmc − dc‖22 + µ‖Pmc‖22 ] , (12)

where P is a matrix which is applied to the regularization term and µ is a

trade-off parameter. We also propose a change of variables uc = Pmc to

rewrite the cost function to minimize in standard form as follows:

ûc = argmin
u

[ ‖LWeuc − dc‖22 + µ‖uc‖22 ]

m̂c = We ûc ,
(13)

where it is clear that we have selected P−1 = We as the preconditioning

operator, where We is a diagonal matrix of weights whose elements corre-

spond to We(τ, q, zs). In essence, we are preconditioning the estimation of

the Radon coefficients via a matrix of weights that resembles a semblance

function (Moore and Kostov, 2002). The latter is estimated from the aver-

age envelope and therefore, it is less prone to be contaminated by the noise

in each component. Equation (13) is solved using the method of conjugate
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gradients. Once the solution mc is found for an appropriate trade-off value

µ, it is used to synthesize an enhanced signal:

d̂c = Lm̂c, c = x, y, z. (14)

This finalizes our denoising stage. We need to stress that the denoising is only

carried out when a seismic event is detected. When the detection criterion

does not find a seismic event, we simply move to a new window and re-initiate

the two-step detection-denoising process.

3. Results

We tested our two-step algorithm with synthetic and field data contami-

nated with different levels of noise.

3.1. Synthetic data

The far-field displacements recorded at each receiver for an homogeneous

velocity media are given by (Shearer, 1999)

ui (P |S)(t,x) =
1

4πρc3
1

r
Rijk Ṁjk (t− r

c
) , (15)

where ui is the displacement for the component i, x are the 3D receiver

components, ρ is the density of the medium, c is the velocity of the P− or

S−wave, r is the distance between the source and the receiver, and Rijk

is the radiation pattern tensor due to the ith receiver component and the

jkth element of the seismic moment tensor Ṁjk. Assuming that the seismic

moment tensor can be separated into a time invariant tensor Mjk and a

source time function s(t) (Aki and Richards, 2002):

Ṁjk = Mjk s(t) . (16)
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Then, replacing into (15) yields:

ui (P |S)(t,x) =
1

4πρc3
1

r
Rijk Mjk s(t−

r

c
) . (17)

The synthetic data examples of this work were generated with equation (17).

We used a medium with vP = 3500 m/s and vS = 2400 m/s. An array of

N = 8 multicomponent receivers were vertically located in the medium. For

the sake of simplicity, we let the origin of the coordinate system be the first

(deepest) receiver position. The receivers are thus placed at x = (0,0, zr),

where

zrj = (j − 1)δzr , j = 1, . . . , N , (18)

with zr1 = 0 m and δzr = 30 m. The source was placed at (xs, ys, zs) =

(240, 320,−140) m. Note that the horizontal distance h between source and

receivers is h =
√
x2s + y2s = 400 m. The radiation pattern is a function of the

relative position of source and receivers. The source function was modelled

via a Ricker wavelet with peak frequency f0 = 60 Hz. To introduce the

source mechanism, let us call k to the unit vector normal to the fault plane

and l to the unit vector of the slip direction. The source was modelled as

a shear fracture occurring in the (x, z) plane with the slip in the negative

x direction. For that case, k = (0, 1, 0), l = (−1, 0, 0) and the symmetric

moment tensor M will be given by (Ud́ıas, 1999):

M = M0


0 −1 0

−1 0 0

0 0 0


Finally, we added band-limited random noise to the data.

10



1 2 3 4 5 6 7 8

100

150

200

250

300

dx(a)

Receiver

 t
 (

m
s
)

1 2 3 4 5 6 7 8

100

150

200

250

300

dy(b)

Receiver

 t
 (

m
s
)

1 2 3 4 5 6 7 8

100

150

200

250

300

dz(c)

Receiver

 t
 (

m
s
)

1 2 3 4 5 6 7 8

100

150

200

250

300

e(d)

Receiver

 t
 (

m
s
)

Figure 1: Synthetic dataset 1: S/N = 100 (negligible noise). (a) x−component.

(b) y−component. (c) z−component. (d) Normalized root mean square envelope attribute

e.

3.2. Synthetic data example 1

First, we generated a synthetic dataset in a high S/N scenario. This

dataset was generated with two purposes: (1) illustrate the proposed tech-

nique for the signal detection and denoising, and (2) show that the Radon-

based inversion can be used to recover the multicomponent data without de-

grading the amplitude information that is extremely important for processes

like seismic moment tensor inversion (Aki and Richards, 2002; Leaney, 2008).

The latter point is not trivial, since Radon transforms assume no amplitude

variation effects and microseismic signals are critically affected by amplitude

variations caused by the radiation pattern. We will address this point in the

section devoted to discussions.

The first data example is shown in Figure 1 together with the normalized

root mean square envelope e(t, z). The S/N was set equal to 100 (negligible

noise). Note the radiation pattern effect in the data and particularly the

change of polarization of the S−wave in the y−component. To carry out the
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Figure 2: Synthetic data example 1. Low resolution Radon coefficients me(τ, q, zs) thresh-

olded using equation (7) with α1 = 4. The color-map scale is clipped at 7 so as to make

the high amplitudes more clear (recall that the maximum of me is 8).

automatic detection of the microseismic event, we transformed e(t, z) to the

Radon domain using the ASPRT. The results are given by the 3D function

me(τ, q, zs), which is illustrated in Figure 2 using a 3D plot after applying

the threshold criterion (9) with α2 = 2. The amplitude of each me(τ, q, zs)

value is shown with a color-map scale. Figure 2 shows that each value of the

scanned source depth zs gives rise to a different Radon panel in the (τ, q)

domain. One can easily identify the P− and the S−wave energy. Notice

that there is a large subset of parabolas stacking over the same microseismic

event, especially for the S−wave.

Another way of visualizing and analyzing the Radon coefficients ampli-

tudes is by re-organizing me(τ, q, zs) into a 1D array mv
e . This “vectorized”

new array is shown in Figure 3a to illustrate the detection and denoising

threshold criteria. Each panel corresponds to a scanned source depth zs.
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Figure 3: Synthetic data example 1: Low resolution Radon coefficients of the normalized

root mean square envelope. Each panel corresponds to a single source location zs. (a) Vec-

torized coefficients mv
e . The white lines correspond to α1 = 4 and α2 = 2. (b) Radon (τ, q)

panels without any thresholding. (c) Radon (τ, q) panels thresholded by α1 = 4 (detection

step). (d) Radon (τ, q) panels thresholded by α2 = 2 (denoising step).

Each dot corresponds to a pair (τ, q). As we limited the number of parabo-

las, the number of q values for each zs is not constant. Therefore, each panel

has a different size. The white lines at mv
e = 4 and mv

e = 2 correspond to

α1 = 4 and α2 = 2 for the detection and denoising thresholds, respectively.

We additionally computed a 2D Radon panel me(τ, q) for every source posi-

tion zs. These panels are shown in Figure 3b with no threshold, in Figure 3c

thresholded by α1 = 4, and in Figure 3d thresholded by α2 = 2. Figure 3
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Figure 4: Synthetic data example 1. The thicker gray lines show the noise-free synthetic

data components (ux, uy and uz) and the black lines the corresponding denoised data

components (d̂x, d̂y and d̂z).

demonstrates that the signal detection, in this case, is due to the S−wave

arrival energy, because the P−wave energy is below α1 but above α2. By

comparing Figure 3b with Figure 3d one can notice that a small portion

of low amplitude signal will not be considered in the subset S used for the

denoising step.

Once the event was detected via the α1-thresholding, we synthesized the

Radon representation for each data component with equation (13) using the
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subset S that is derived after applying the α2-thresholding (Figure 3d). The

denoised components are obtained transforming back to the time domain

with the forward operator (14). The results are shown in Figure 4 (black

lines) superimposed onto the synthetic noise-free data components (grey

lines). In this example, denoising was not problematic because S/N = 100.

However, we stress that the waveform and amplitudes were recovered with

great accuracy, especially for the S−wave. Note that in the y−component

of the S−wave the arrivals present a change of polarity and the signal am-

plitudes are very low due to the radiation pattern. Nonetheless, we observe

a remarkable agreement between the observed and predicted data. The only

significant discrepancies that arise are observed for the P−wave, where some

low amplitude side-lobes were missed. These discrepancies can be explained

as follows: these arrivals exhibit low amplitude and thus the number of Radon

coefficients that passed the α2-thresholding is very small.

3.3. Synthetic data example 2

The second synthetic example was generated using S/N = 1.8. The data

components, the normalized root mean square envelope, and the denoised

data are shown in Figure 5. The P−wave signal was masked by the noise

in the x− and z−components. The noise also corrupted the y−component

of the S−wave. The P−wave arrivals are hardly distinguishable by visual

inspection, not even analyzing the normalized root mean square envelope

(Figure 5d). However, the method succeeded to clean the microseismic ar-

rivals for both the P− and the S−wave signals.

In Figure 6 we show the vectorized 1D array mv
e Radon coefficients and

the Radon (τ, q) panels that lead to our detection criterion and to the domain
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Figure 5: Synthetic data example 2: S/N = 1.8. (a) x−component. (b) y−component.

(c) z−component. (d) Root mean square envelope attribute e. (e) Denoised x−component.

(f) Denoised y−component. (g) Denoised z−component. (h) Denoised root mean square

envelope attribute e.

restriction we used for the denoising. By comparing Figures 6b and 6d it is

clear that the α2-thresholding rejected most of the noise components. In Fig-

ure 7 we show the low resolution Radon panels for each data component and

the synthesized coefficients that result from the inversion. The low resolution

coefficients (Figure 7a, 7c and 7e) were estimated using the adjoint operator

(equation (6)) without the thresholding. It is interesting to note that the

S−wave microseismic arrival energy is clear in the x− and z−components

(see Figure 7a and 7e, respectively), while the P−wave microseismic arrival
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Figure 6: Synthetic data example 2: Low resolution Radon coefficients of the normalized

root mean square envelope. Each panel corresponds to a single source location zs. (a) Vec-

torized coefficients mv
e . The white lines correspond to α1 = 4 and α2 = 2. (b) Radon (τ, q)

panels without any thresholding. (c) Radon (τ, q) panels thresholded by α1 = 4 (detection

step). (d) Radon (τ, q) panels thresholded by α2 = 2 (denoising step).

energy is clear in the y−component only (Figure 7c). However, in our au-

tomatic strategy, we do not have this information in advance. We are only

exploiting the information given by me(τ, q, zs) to synthesize each data com-

ponent. For this reason, in Figure 7b, 7d and 7e the signal is highly focused

on the coefficients shown in Figure 6d.

Finally, to evaluate the denoising results, we present the noise-free data

together with the denoised traces in Figure 8. The amplitudes and waveforms
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Figure 7: Synthetic data example 2: Low resolution Radon coefficients for each com-

ponent and the corresponding Radon coefficients synthesized by the inversion process.

(a) Low resolution coefficients for the x−component mx. (b) Synthesized coefficients for

the x−component m̂x. (c) Low resolution coefficients for the y−component my. (d) Syn-

thesized coefficients for the y−component m̂y. (e) Low resolution coefficients for the

z−component mz. (f) Synthesized coefficients for the z−component m̂z.
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Figure 8: Synthetic data example 2. The thicker gray lines show the noise-free synthetic

data components (ux, uy and uz) and the black lines the corresponding denoised data

components (d̂x, d̂y and d̂z)

were very well recovered, except for those components and phases for which

the signal was totally masked by the noise. Particularly, the S−wave signal

amplitude is very low in the y− component, and the algorithm outputs noise

in these cases.

3.4. Field data example 1

We tested the algorithm with field datasets with different S/N . The first

dataset is shown in Figure 9 (top row). Only a single phase arrival is above
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Figure 9: Field data example 1 (high S/N case): (a) x−component. (b) y−component.

(c) z−component. (d) Root mean square envelope attribute e. (e) Denoised x−component.

(f) Denoised y−component. (g) Denoised z−component. (h) Denoised root mean square

envelope attribute e.

the noise level. Assuming that the source mechanism is a shear fracture, this

energy is probably due to the S−wave. The 5th channel of the x−component

is corrupted and so we muted it. Although the records are noisy, the event

was very well isolated by the algorithm (see Figures 9e, 9f and 9g). Nonethe-

less, one should note that although the signal is severely contaminated by the

noise in the x− and y−components, the S/N of the z−component is rela-

tively high. This makes the proposed detection-denoising strategy to perform

very well.
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Figure 10: Field data example 1 (good S/N case). The thicker gray lines show the raw

data components (ux, uy and uz) and the black lines the corresponding denoised data

components (d̂x, d̂y and d̂z).

We show a detailed view of the results in Figure 10, where we super-

imposed the raw traces onto the corresponding denoised ones. We point

out that the original noise-free data are not available for these field data

examples. Nevertheless, one can evaluate the results after noting that the

algorithm performed as expected by recovering consistent waveforms at the

appropriate locations in most of the individual traces. However, it is very

difficult to assess, for example, whether in channels 1 and 2 for the x− and
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y−components (where the S/N is very low) the algorithm outputs noise or

the actual signal. Likewise, we intentionally let the method invert the muted

trace (5th channel of the x−component). As a result, a low amplitude signal

consistent with the nearby waveforms was “reconstructed” after the process.

3.5. Field data example 2

The second field dataset is shown in Figure 11 (top row). This dataset is

more challenging than the previous one, because most traces are very noisy.

Despite the fact that the microseismic arrivals are only easily distinguishable

in the y− component, the use of the normalized root mean square envelope e

helps to increase the confidence of the signal detection. We show the results

of the event detection and denoising in Figure 11 (bottom row). Although

the results are not optimal, we want to stress that the detection is obtained

automatically. Further, the S/N is increased significantly after the denoising

step, even for those channels where the signal arrival was barely distinguish-

able.

Figure 12 compares the individual raw traces with the denoised ones.

Again, the algorithm succeeded to denoise those traces in which the micro-

seismic arrivals are not completely masked by the noise (particularly for the

y−component). On the other hand, and due to the extremely low S/N , the

signal cannot be isolated in some channels. Nevertheless, the denoised data

provide an acceptable solution of improved quality as compared with the

original data.
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Figure 11: Field data example 2 (low S/N case): (a) x−component. (b) y−component.

(c) z−component. (d) Root mean square envelope attribute e. (e) Denoised x−component.

(f) Denoised y−component. (g) Denoised y−component. (h) Denoised root mean square

envelope attribute e.

4. Discussion

There are some hypothesis and assumptions made by our algorithm that

are worth to discuss. First, our method is derived using the constant velocity

assumption. However, the velocity we are considering has not a strict physical

meaning. In equations (1) and (2), for example, one should interpret the

parameter v as an “effective” velocity (Yilmaz, 2001; Blias and Grechka,

2013). Moreover, after the parabolic approximation, we are just considering

those triplets (τ, q, zs) that best stack over the microseismic signal. Therefore,
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Figure 12: Field data example 2 (poor S/N). The thicker gray lines show the raw data

components (ux, uy and uz) and the black lines the corresponding denoised data compo-

nents (d̂x, d̂y and d̂z).

v is a parameter related to τ and q (see equations (3) and (4)) which does

not need to have a physical meaning.

The second hypothesis of the proposed algorithm is related to the parabolic

approximation. We showed in Appendix A that for some geometries this

should not be a problem, in spite of the errors that may arise by considering

a parabola instead of an hyperbola in cases with large array apertures. For

those scenarios, an alternative solution is to consider the actual hyperbolic

24



arrivals times and use an apex-shifted hyperbolic Radon transform (Sabbione

et al., 2013). However, an hyperbolic Radon transform is a 4D mapping that

involves the scanning of an extra parameter for a 2D geometry model. Al-

though more accurate, the computational cost increases significantly with

respect to the proposed ASPRT, and fast almost real-time processing could

not be considered. In other words, the parabolic Radon-based algorithm pro-

posed in this work can be used to detect microseismic signals in real time,

while the hyperbolic Radon-based method cannot.

The third and last hypothesis assumed in this work has to do with the

representation of the data in the Radon domain. We could, for instance, have

adopted the high resolution Radon transform (Thorson and Claerbout, 1985;

Sacchi and Ulrych, 1995; Trad et al., 2003) that assumes that parabolic events

can be modelled via a small number of coefficients in the Radon panel. This

is true when seismic reflections exhibit a moderate amplitude variation with

offset (AVO) effect. A high resolution Radon transform that preserves AVO

effects has been proposed by Wang et al. (2011). However, this algorithm

requires the estimation of two Radon panels: one to model the intercept and

one to model the gradient. Modelling radiation patterns is more difficult than

modelling moderate AVO effects. In addition, AVO preserving Radon algo-

rithms are more expensive in terms of computational cost than traditional

algorithms. The latter is the main reason why we have not utilized AVO

preserving high resolution Radon transform algorithms to model microseis-

mic data. We do understand that the forward Radon operator that we have

proposed in this paper cannot handle strong variations of amplitudes caused

by radiation patterns if one were to invert it via a sparsity constraint. This is
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why we resorted to utilize a least-squares Radon transform with pre-defined

regions of support and with a preconditioning operator derived from the av-

erage envelope. Given that the Radon transform panel is non-sparse and

contains many coefficients in the area of support of the elements (τ, q, zs),

the strong radiation patterns are modelled without incurring the problems

associated with the mismatch that exists between observed and modelled

responses. Nevertheless, a few low-amplitude discrepancies may arise as we

showed in the first synthetic data example.

Our method requires two parameters: the threshold α1 for the automatic

signal detection and the threshold α2 for the Radon domain restriction that

leads to the S/N enhancement. The detection criterion is simple and relies

in a single parameter easily tuned by virtue of the normalization of the root

mean square envelope. In fact, we set α1 = N/2 in all examples, where N is

the number of receivers. The algorithm was devised to be applied in partially-

overlapped moving windows that scan for microseismic events automatically.

In this work we only show windows containing a single microseism after the

event detection step. However, the method permits to denoise more than one

event within the window of analysis. This situation is equivalent to detecting

two phases (as shown in the synthetic examples) where the S−wave masks

the P−wave and the algorithm denoised the signal correctly. We should

stress that although we did not show the complete datasets, there were no

false detections neither for the synthetic nor for the field data examples. In

this sense, the largest Radon coefficient max[me] within the analyzed window

acts as a confidence indicator. The likelihood of detecting a false event is

high when max[me] is close to α1. In practice, we use max [me] to asses
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the reliability of the corresponding detected event. Regarding the domain

restriction, the selection of α2 is a trade-off between preserving low-amplitude

signals and noise rejection. In other words, α2 could be related to the S/N of

the microseismic data. We believe that in general α2 = N/4 is a good figure

to reject most of the noise energy and to avoid killing the signal.

Although surface monitoring arrays are beyond the scope of this work,

we briefly discuss how one could generalize the proposed method to cope

with surface microseismic data (Thornton and Eisner, 2011). In this sit-

uation, we need to consider a 3D scenario to model the data. Assuming

that the parabolic approximation is valid for surface geometries, it can be

shown that traveltimes are aligned along an apex-shifted paraboloid in the

(x, y) domain. Therefore, the computational cost of the method increases

significantly because two extra parameters are required in the summations.

5. Conclusions

We presented an algorithm that tackles two of the main problems in

microseismic downhole data processing: (1) automatic signal detection and

(2) data denoising. The methodology is based on an apex-shifted parabolic

Radon transform. The algorithm was derived using the constant velocity

model but it is clear that parabolic approximations can also be used in situ-

ations where the velocity model is not constant. The parabolic parameter q

is a simple curvature parameter and should not be used to estimate velocity

information.

The algorithm can be divided in two steps. In the first step, the mi-

croseismic arrivals are automatically detected based on the low resolution
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Radon coefficients of the normalized root mean square envelope of the 3C

data. The second step is devised to denoise the data via an adaptive filter-

ing technique. Once an event was detected, the information given by the

aforementioned Radon coefficients is exploited in two different ways. First,

to restrict the Radon domain and focus on the microseismic signal energies.

Secondly, to precondition the Radon synthesis of each data component. The

representation of the data components for the denoising step is posed as an

inverse problem and solved by the conjugate gradients method. The synthe-

sized Radon coefficients for each data component are used to transform back

to the data domain thus obtaining a denoised version of the input data.

The computational cost of the Radon transforms is critically reduced

by restricting the number of parabolas that are expected to arise based on

moveout considerations, and also by the Radon domain restriction for the

denoising step. Therefore, the method is computational efficient and could

be used to process microseismic data in real time.

The results using synthetic data examples show that the detection is

triggered by the phase with higher energy (the S−wave in our examples).

In addition, the proposed strategy inverts the microseismic signal waveforms

properly despite of the difficulties that entail the complicated radiation pat-

tern. The discrepancies on the amplitudes are not considerable, nonetheless

some low-amplitude side-lobes can be missed. The test over a noisy synthetic

dataset demonstrates that the algorithm significantly enhanced the S/N of

the input data for both the P− and the S−wave arrivals. Regarding the field

data examples, the method succeeded in detecting the arrivals automatically

for both the good and the poor S/N cases. The denoised version of the good
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S/N dataset exhibits signal arrivals very well isolated and cleaned. For the

example with poor S/N , those traces with visually distinguishable arrivals

were properly denoised. However, for seismograms with poor S/N , the inver-

sion tends to retain the noise. Synthetic data tests show that one should rely

on this denoised traces. In any case, for very noisy data, an expert analyst

can simply isolate the part of the signal were the microseismic was detected.

We believe that this method represents a very useful tool to be applied

in standard downhole microseismic data processing. In general, the method

is very robust to detect the events automatically, and contributes to signifi-

cantly enhance the data quality for further data processing.
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Appendix A. The validity of the parabolic approximation

In this appendix we demonstrate the validity of the parabolic Radon

transform approximation in the context of microseismic event detection and

denoising. In addition, we show the discrepancies that can arise when adopt-

ing this approximation instead of the expected hyperbolic model. In this

sense, the parabola that best approximates the true hyperbolic travel time is

also the parabola that maximizes the energy of the parabolic Radon trans-

form. Therefore, parameters (τ, q) represent the “effective” intercept and

curvature coefficients that best approximate a waveform with hyperbolic

29



travel-time. To begin with, consider the following approximation:

τ + q (z − zs)2 ≈ t0 +

√
(x− xs)2

v2
+

(z − zs)2
v2

. (A.1)

For an N -receivers vertical array with coordinates (x, zj), j = 1, . . . , N , we

can write equation (A.1) in matrix notation

Aζ = Y, (A.2)

where

A =


1 (z1 − zs)2

1 (z2 − zs)2
...

...

1 (zN − zs)2

 , ζ =

τ
q

 , Y =


t0 +

√
(x−xs)2

v2
+ (z1−zs)2

v2

t0 +
√

(x−xs)2

v2
+ (z2−zs)2

v2

...

t0 +
√

(x−xs)2

v2
+ (zN−zs)2

v2
.


The parameters (τ, q) that best satisfy equation (A.2) according to the least-

squares criterion are given by:

ζ = (A>A)−1A>Y. (A.3)

In Figure A.13a we show a typical geometry for this problem. The veloc-

ity model is constant with v = 2500 m/s. The dots represent potential source

locations. Their sizes are proportional to the rms error between the hyper-

bolic travel-times and the parabolic travel-times computed using the effective

parameters derived from equation (A.3). It is clear that the error increases

as the source moves away from the receiver array in the vertical coordinate,

and/or approaches the receiver array in the horizontal coordinate. Nonethe-

less, the errors are relatively small, as shown in Figure A.13b. To further

analyze the validity of the approximation, we selected two sources: one in
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Figure A.13: Parabolic approximation analysis. (a) Typical geometry in downhole acqui-

sition projects. The black dots represent possible source locations. The size of the dot

is proportional to the rms error between the actual and the approximated travel-times.

(b) rms error curves for the different sources depths in (a). (c) Hyperbolic arrival times

and their corresponding times for the parabolic approximation for the two selected sources.

the center of the analyzed positions, and the other in the worst situation re-

garding the errors generated by the approximation. The selected sources and

their corresponding rms errors are indicated in Figures A.13a and A.13b, re-

spectively. The actual hyperbolic travel-times and those obtained by the

parabolic approximations after solving equation (A.3) are shown in Fig-

ure A.13c. Notice that the approximation is suitable for these geometries,

for one can find a pair (τ, q) that fits the curve very accurately. There-

fore, the small discrepancies observed in Figure A.13c should not represent a

major concern given the implicit errors introduced by the constant velocity

assumption. Nevertheless, it is worth mentioning that receiver arrays with

larger apertures will produce larger errors. In such cases, one should perform

an rms-analysis similar to the one carried out in this appendix in order to

validate the hyperbolic assumption before applying the detection/denoising

algorithm.
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Appendix B. Restriction of parabolic paths to increase the com-

putational efficiency of the method

We are approximating the hyperbolic arrivals given by equation (1) by

the parabolas given by equation (3). The computational cost of the Radon

transform is mainly determined by the sums in equation (6). Microseismic

arrivals are not expected to be horizontally aligned along the records. In

addition, the maximum moveout between any pair of receivers should also

be bounded. We use this idea to restrict the number of (q, zs) pairs involved

in the Radon operators. Given the known receivers locations, we fix the

minimum and maximum expected moveouts for the signal arrivals. Using

equation (3), this limit values define a region in the (t, z) record domain, as

shown in Figure B.14a. Each pair (q, zs) that generates a parabola outside

this region is not taken into account for the Radon operators. By these means,

we significantly reduce the number of calculations and increase the efficiency

of the algorithm (see Figure B.14b). Moreover, the parabolas restriction also

contributes to diminish the risk of stacking over false events.
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