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ABSTRACT

We developed a sparse multichannel blind deconvolution
(SMBD) method. The method is a modification of the multi-
channel blind deconvolution technique often called Euclid
deconvolution, in which the multichannel impulse response
of the earth is estimated by solving an homogeneous system
of equations. Classical Euclid deconvolution is unstable in
the presence of noise and requires the correct estimation of
the length of the seismic wavelet. The proposed method, on
the other hand, can tolerate moderate levels of noise and
does not require a priori knowledge of the length of the
wavelet. SMBD solves the homogeneous system of equa-
tions arising in Euclid deconvolution by imposing sparsity
on the unknown multichannel impulse response. Trivial sol-
utions to the aforementioned homogeneous system of equa-
tions are avoided by seeking sparse solutions on the unit
sphere. We tested SMBD with synthetic and real data exam-
ples. Synthetic examples were used to judge the viability
of the method in terms of noise. We found that SMBD gives
reasonable estimates of the wavelet and reflectivity series
for S∕N ≥ 4. The results clearly deteriorated when we tried
to work on data that were severely contaminated by noise.
A real marine data set was also used to test SMBD. In this
case, the estimated wavelet was compared with a wavelet
estimated by averaging first breaks. The estimated wavelet
showed a noticeable resemblance to the average first break
with normalized correlation coefficient of 0.92.

INTRODUCTION

Deconvolution is an important and recurrent topic in seismic data
processing. Many signals and images can be represented via the
convolution of an unknown signal of interest and a blurring kernel.
In general, the process that permits to remove the effects of the blur-
ring kernel on the observed signal or image is called deconvolution.

When the signal of interest and the blurring kernel are unknown, the
aforementioned process is denominated as blind deconvolution
(Shalvi and Weinstein, 1990). In seismic data processing, the signal
of interest is the impulse response of the earth and the blurring
kernel is the seismic wavelet. In general, the seismic wavelet is
considered unknown and, therefore, exploration seismologists are
often faced with a typical blind deconvolution problem (Ulrych
et al., 1995).
In seismic data processing, deconvolution is a part of early efforts

to enhance resolution of seismic data and an important component
of the transition from analog analysis of seismic data to digital-
seismic data processing (Robinson, 1967). Early work using linear
prediction theory solves the seismic blind deconvolution problem
by making two fundamental assumptions. The earth’s reflectivity
series (impulse response of the earth) is a white sequence, and
the seismic wavelet is a minimum phase sequence (Robinson and
Treitel, 1964). These two assumptions permit estimation of a causal
and stable inverse filter that is applied to the data to estimate the
impulse response of the earth. Many deconvolution methods have
been proposed to overcome the minimum phase assumption. Two
early attempts are homomorphic deconvolution based on the work
by Oppenheim and Schafer (1968) and Oppenheim et al. (1976) and
implemented for the first time in exploration seismology by Ulrych
(1971). A comprehensive theoretical and practical study of the ap-
plication of homomorphic systems to deconvolution and suppres-
sion of air gun reverberations is provided in Buhl et al. (1974)
and Stoffa et al. (1974). Similarly, practical methods to implement
homomorphic blind deconvolution on real data have been proposed
by Otis and Smith (1977) and, more recently, by Herrera and
van der Baan (2012). The minimum entropy deconvolution (MED)
algorithm is another method that avoids the minimum phase
assumption (Wiggins, 1978). MED assumes that the reflectivity
is a sparse sequence. The MED algorithm estimates a nonminimum
phase filter by maximizing a measure of sparsity of the seismic trace
(Donoho, 1981). The measure of sparsity is the varimax norm that is
also equivalent to an estimate of kurtosis (Longbottom et al., 1988;
White, 1988). The maximization of the varimax norm, or the equiv-
alent kurtosis, is analogous to minimization of a measure of entropy.
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The latter is coincident with Wiggins’s interpretation of minimum
disorder or minimum entropy as a synonym of sparsity (Sacchi
et al., 1994). The convolution of the estimated MED inverse
filter with the seismogram yields the reflectivity and the inverse
of the MED filter is an estimator of the seismic source wavelet.
Practical algorithms inspired in the MED method have been pro-
posed for seismic data dephasing. Maximum kurtosis phase correc-
tion, for instance, can be used to find a phase rotation term that
maximizes the kurtosis of the seismic trace (Levy and Oldenburg,
1987). It can be shown that, under ideal conditions, the phase ro-
tation that maximizes the kurtosis of the seismic trace also dephases
the seismic wavelet (Longbottom et al., 1988; Cambois and Har-
greaves, 1994).
The homomorphic deconvolution, MED, and maximum kurtosis

phase estimation methods suffer from a variety of shortcomings. For
instance, homomorphic deconvolution is inclined to instability due
to phase unwrapping and by its inherent inability to incorporate an
additive noise term into its formulation. MED deconvolution often
tends to annihilate small reflection coefficients (Ooe and Ulrych,
1979; Walden, 1985) and can become unstable in the presence of
noise and highly sensitive to operator length (Nickerson et al.,
1986). Maximum kurtosis phase estimation is sensitive to the band-
width of the wavelet (White, 1988; Xu et al., 2012).
The history of seismic deconvolution is populated by interesting

statistical methods for blind deconvolution. These methods, how-
ever, often only work under ideal signal conditions. For instance, an
important excitement was generated by methods based on fourth-
order cumulant matching (Hargreaves, 1994; Velis and Ulrych,
1996) and homomorphic deconvolution via fourth-order cumulants
(Sacchi et al., 1996). Fourth-order cumulants are attractive because
they can be computed from the seismic trace and they do preserve
the phase of the wavelet when the reflectivity is a sparse sequence
with nonvanishing kurtosis (Sacchi and Ulrych, 2000). However,
the conditions for robust wavelet estimation required by cumu-
lant-based methods are not often satisfied by real seismic data
(Stogioglou et al., 1996).
Last, we also mention parametric methods based on maximum

likelihood estimation. These methods attack the blind deconvolu-
tion via a two-stage procedure. First, the wavelet is assumed to
be known and the reflectivity is estimated by maximizing likeli-
hood. Then, the reflectivity is fixed and the likelihood function
is maximized with respect to the wavelet (Mendel, 1983; Kaaresen
and Taxt, 1998; Canadas, 2002).
In this paper, we studied a multichannel blind deconvolution al-

gorithm often called Euclid’s deconvolution. The method was first
discussed in the geophysical literature by Rietsch (1997a) and tested
with real data examples in Rietsch (1997b). The method has been
previously investigated by Xu et al. (1995) for blind channel esti-
mation in communication systems. The method has also been used
to improve speech recognition by Liu and Malvar (2001). The idea
can be summarized as finding common factors of the z-transform
of the source wavelet embedded in a group of seismograms with
different reflectivity sequences. The problem leads to the estimation
of the multichannel seismic reflectivity via the solution of homo-
geneous system of equations (Rietsch, 1997a; Mazzucchelli and
Spagnolini, 2001). In the ideal case, the eigenvector associated
to the minimum nonzero eigenvalue of the homogenous system of
equations is an estimator of the multichannel reflectivity. However,
small level of noise impinges on the correct identification of the

eigenvector associated to the impulse response of the earth. This
problem is examined in detail by Rietsch (1997a, 1997b).
A variant of Euclid deconvolution is used by Royer et al. (2012)

to separate source signatures from propagation effects in teleseismic
data. Similar approaches to Euclid deconvolution were also pro-
posed for image restoration (Harikumar and Bresler, 1999; Sroubek
and Milanfar, 2012).
Our main contribution is an improvement to Euclid deconvolu-

tion to make it applicable to real data processing. The proposed
method can tolerate moderate amounts of noise and does not require
a priori knowledge of the length of the seismic wavelet. In the pro-
posed method, the homogeneous system of equation is satisfied by a
sparse solution (sparse impulse responses). In other words, we are
assuming a reflectivity sequence that is sparse. The problem leads
to a nonquadratic minimizing technique, where the solution must be
constrained to lie on the unit sphere. We discuss a steepest descent
method that permits to obtain accurate estimates of the seismic
reflectivity and wavelet in the presence of a moderate amount of
noise.

THEORY

Multichannel blind deconvolution

The earth’s impulse response can be modeled as a linear system
(Robinson and Treitel, 1980). The input-output relationship for this
system, assuming a stationary source wavelet and no noise, can be
written as follows:

dj½n� ¼
X
k

w½n − k�rj½k�; j ¼ 1 : : : J; (1)

where the multichannel seismic data is given by dj ¼ ðdj½1�; dj½2�;
: : : ; dj½N�ÞT . Similarly, the impulse response for channel j is given
by rj ¼ ðrj½1�; rj½2�; : : : ; rj½M�ÞT, and the seismic source wavelet
via the vectorw ¼ ðw½1�; w½2�; : : : ; w½L�ÞT. We stress that N ¼ Mþ
L − 1. We also remind the readers that convolution can be repre-
sented via the z-transform as follows

DjðzÞ ¼ WðzÞRjðzÞ; j ¼ 1 : : : J: (2)

By virtue of equation 2, it is easy to show that

DpðzÞRqðzÞ −DqðzÞRpðzÞ ¼ 0; ∀ p; q: (3)

The latter can be rewritten in matrix-vector form as follows:

Dprq − Dqrp ¼ 0; (4)

where Dp and Dq in equation 4 represent the convolution matrices
of channels p and q, respectively. The combination of all possible
equations leads to the following homogeneous system of equations:

Ax ¼ 0; (5)

where
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A ¼

0
BBBBBBBBBBBBBBBB@

D2 −D1

D3 −D1

D4 −D1

..

. . .
.

D3 −D2

D4 −D2

..

. . .
.

DJ −DJ−2
DJ −DJ−1

1
CCCCCCCCCCCCCCCCA

; (6)

and

x ¼ ½r1; r2; r3; : : : ; rJ�T: (7)

The classical formulation of Euclid deconvolution estimates the re-
flectivity by estimating the eigenvector associated to the minimum
nonzero eigenvalue of ATA (Rietsch, 1997a). A small amount of
noise in the data makes the solution impractical for real data appli-
cations (Rietsch, 1997b).

Sparse multichannel blind deconvolution

In the previous analysis, we did not consider noise. The addition
of a noise term in our signal model leads to the following expres-
sion:

DjðzÞ ¼ WðzÞRjðzÞ þ NjðzÞ j ¼ 1; : : : ; J; (8)

and

DpðzÞRqðzÞ−DqðzÞRpðzÞ
¼ NpðzÞRqðzÞ − NqðzÞRpðzÞ; ∀ p; q (9)

or in matrix form

Dprq − Dqrp ¼ Nprq − Nqrp. (10)

The last expression is expressed as follows:

Ax ¼ e: (11)

We will assume that e is white and Gaussian, which is clearly a
hypothesis that permits us to develop an algorithm, but one under-
stands that e is not necessarily white and Gaussian (Sroubek and
Milanfar, 2012). Therefore, we propose to find a solution x that
minimizes the l2 norm of the error term e with the requirement that
x is sparse. To avoid the trivial solution, we must provide an extra
constraint (i.e., xTx ¼ 1). To summarize the problem, we propose to
find the solution by minimizing the following cost function:

x̂ ¼ argmin
x

JðxÞ; subject to xTx ¼ 1; (12)

where

JðxÞ ¼ 1

2
kAxk22 þ λRϵðxÞ; (13)

and

RϵðxÞ ¼
X
i

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i þ ϵ2

q
− ϵ

�
: (14)

The trade-off parameter λ balances the importance of sparseness
of the reflectivity and data fitting. RϵðxÞ is the regularization term
that promotes a sparse solution. For estimation of sparse solutions,
one could have adopted an l1 norm. However, we prefer to use the
hybrid l1∕l2 norm,RϵðxÞ, because it is differentiable and, therefore,
it enables us to use simple optimization methods based on steepest
descent techniques (Bube and Langan, 1997; Lee et al., 2006;
Schmidt et al., 2007; Li et al., 2012). Figure 1 shows the functional
Rϵ for ϵ ¼ 0.01 and 0.05 and the classical l1 norm.
The constrained optimization problem involves minimizing the

following cost function:

LðxÞ ¼ JðxÞ − η

2
ðxTx − 1Þ; (15)

with the Lagrange multiplier given by the scalar η. The condition for
minimum must satisfy

∇LðxÞ ¼ g − ηx ¼ 0; (16)

where g ¼ ∇JðxÞ. Multiplying equation 16 by xT and using the
condition xTx ¼ 1 yields

η ¼ xTg: (17)

Hence, the projection of the gradient on the sphere is given by

∇LðxÞ ¼ g − ðxTgÞx: (18)

The steepest descent algorithm can be expressed via the classical
update rule xkþ1 ¼ xk − αkhk with normalized gradient hk ¼
∇LðxkÞ∕j∇LðxkÞj where αk is the adaptive step size and k indicates
iteration. A step in the direction of steepest descent might move
xkþ1 off the unit sphere. This is illustrated by Figure 2a. Therefore,

Figure 1. Comparison of the l1 ¼ jxj norm and its approximation
RϵðxÞ for ϵ ¼ 0.01 and 0.05.
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we prefer to use an educated step that was derived from Rodrigues’
rotation formula (Murray et al., 1994):

xkþ1 ¼ cosðθkÞxk þ sinðθkÞhk: (19)

It is easy to show via a few algebraic manipulations that with
this expression the updated solution xkþ1 is on the unit sphere
(see Appendix A). Notice that by choosing a small angle θk < 0, we
obtain the desired small step in the direction of steepest descent
because sinðθkÞ ≈ θk < 0. In equation 19, the effect of the term
cosðθkÞ is to shrink the current position cosðθkÞxk in a way that
the updated solution lies on the unit sphere. This is illustrated by
Figure 2b. Our problem has been reduced to a 1D minimization on
the sphere. The minimization is carried out by a simple update of θk
that guarantees that JðxkÞ > Jðxkþ1Þ (see Appendix B).
It is important to point out that the steepest-descent algorithm

must be initialized by a solution that is close to the final reflectivity.
This is because the problem is nonlinear and multimodal. Our test
indicates that starting with the data as an initial solution always
leads to sparse estimate of the reflectivity. The last assessment is
supported because the data are structurally close to the true sparse
reflectivity.

EXAMPLES

To examine the performance of the proposed method, we intro-
duce two figures of merit for the estimated wavelet and the esti-
mated reflectivity series. For instance, if a true generic signal is
denoted by y0 and the estimated signal by y, we define the quality
of the reconstruction, Q, as follows:

Q ¼ 10 log
ky0k22

ky0 − yk22
: (20)

Our second figure of merit is the normalized correlation coefficient
(NCC):

NCC ¼ yTy0
ky0k2kyk2

: (21)

We stress that blind deconvolution algorithms can only determine
unscaled versions of the seismic wavelet and reflectivity series.
Therefore, all our estimators must be rescaled prior to computing
Q. For this purpose, the estimated signal y is multiplied by a scalar α
such that ky0 − αyk22 is minimum. It is clear that y in equation 20 is
replaced by αy. It is also clear that the aforementioned scaling is

not needed for the computation of the NCC.
We will denote NCCw and NCCx as the normal-
ized correlation coefficients for the wavelet and
the reflectivity, respectively. Similarly, we will
use Qw and Qx to indicate the quality of the
reconstruction of the wavelet and reflectivity,
respectively.

Simulations

To test the method, we first run a synthetic
example with high signal-to-noise ratio (S∕N ¼
100). We run the algorithm for different values of
the parameter λ to explore the trade-off curve.
The latter is portrayed in Figure 3. With different
experiments, we concluded that λ ¼ 4 yields the
best result for different levels of S/N. The true
sparse reflectivity is displayed in Figure 4a in
conjunction with the data (Figure 4b). The sam-
pling interval for this exercise was chosen Δt ¼
2 ms. We also used a Ricker wavelet of central
frequency 40 Hz and a 50° phase rotation. The
estimated reflectivity for this example is shown

in Figure 4c. The estimated reflectivity and the seismic traces were
used to estimate the seismic wavelet via multichannel frequency
domain deconvolution. The estimated wavelet and the true input
wavelet are shown side by side in Figure 4d. In this example,
the quality of reconstruction for the wavelet is Qw ¼ 14 dB.
Similarly, the quality of the reconstruction for the reflectivity is
Qx ¼ 5 dB. Normalized correlation coefficients for the wavelet
and reflectivity are given be NCCw ¼ 0.96 and NCCx ¼ 0.82,
respectively.
We rerun the synthetic example with additive noise S∕N ¼ 4. In

this case, we obtain a reconstruction quality of Qw ¼ 13 dB and a
normalized correlation coefficient NCCw ¼ 0.89. Similarly, we ob-
tain Qx ¼ 3.8 dB and NCCx ¼ 0.75 for the reflectivity series. The
results for this simulation are shown in Figure 5. Finally, we also

a) b)

Figure 2. Cartoon representation of the classical steepest descent and proposed ap-
proach. (a) Steepest descent algorithm via classical update rule xkþ1 ¼ xk − αkhk, αk
is the step length and (b) proposed steepest descent algorithm via the update rule
xkþ1 ¼ cosðθkÞxk þ sinðθkÞhk, the step length is given by sinðθkÞ. In this case, the up-
dated position is guaranteed to lie on the unit sphere.

a) b)

Figure 3. Exploring the importance of trade-off parameter λ in the
SMBD method using synthetic data with S∕N ¼ 100. (a) Trade-off
parameter versus the l2 norm of homogeneous system of equations
and (b) trade-off curve using different values of regularization
parameter.
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a) b)

c) d)

Figure 4. Performance of the SMBD method
using synthetic data with S∕N ¼ 100. (a) True
synthetic reflectivity sequences, (b) seismic traces
with S∕N ¼ 100, (c) estimated sparse reflectivity
sequences, and (d) true and estimated wavelets.

a) b)

d)c)

Figure 5. Performance of the SMBD method
using synthetic data with S∕N ¼ 4. (a) True syn-
thetic reflectivity sequences, (b) seismic traces
with S∕N ¼ 4, (c) estimated sparse reflectivity
sequences, and (d) true and estimated wavelets.
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provide convergence curves for the algorithm for S/N = 2, 4, and
100 in Figure 6.
To analyze the stability of the sparse multichannel blind decon-

volution (SMBD) method under different levels of noise, we run a
Monte Carlo simulation with 20 different realizations of noise and
seismic reflectivity for a given S/N and parameter λ. Each realiza-
tion of the reflectivity is similar to Figure 4a. We have been careful

in producing realizations with 10 reflectors each and similar tem-
poral and spatial variability. This was done by taking a random re-
flectivity composed of 10 impulses of random amplitude for the first
trace and randomly perturbing the times to generate the reflectivity
of the remaining traces. The amplitude of the reflection coefficients
for a given reflector were also allowed to vary in space by a very
small amount. The 20 realizations where used to estimate 20 wave-
lets and 20 multichannel reflectivity estimators that were used to
estimate averages and standard errors for NCCw, NCCx, Qw,
and Qx.
At this point, it is important to mention that the computation

of the standard error of the normalized correlation coefficients
NCCw and NCCx requires special attention. Normalized correlation
coefficients are bounded by unity and, therefore, they are not nor-
mally distributed (Weatherburn, 1949). To compute the mean and
standard error of the normalized correlation coefficient, we first
apply the Fisher’s transform to create a new variable F ¼ 1

2
ln½ð1þ

ðNCCÞÞ∕ð1 − ðNCCÞÞ� that is distributed almost normally. We can

Figure 6. Convergence behaviour of SMBD method using syn-
thetic data with different levels of noise.

Figure 7. (a) Mean and standard error of normalized correlation
coefficients versus S/N and (b) mean and standard error of the qual-
ity of the reconstruction versus S/N. These results were obtained
by running SMBD on 20 realizations of reflectivity models that
are similar to the reflectivity shown in Figure 4a. Diamonds (⋄)
are used to indicate NCCw and Qw values for the estimated seismic
wavelet. Similarly, circles (∘) are used to indicate the NCCx and Qx
for the estimated reflectivity. Squares (□) are used to indicate the
NCCx andQx computed after applying an Ormsby trapezoidal filter
to the true reflectivity and the estimated reflectivity. The trade-off
parameter of the SMBD method is λ ¼ 1. Note that the S/N values
are not linearly spaced.

Figure 8. Similar to Figure 7 but with λ ¼ 4.

Figure 9. Similar to Figure 7 but with λ ¼ 10.
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now compute the mean and standard error of the variable F, which
are then inverse transformed to obtain the desired mean and stan-
dard error of the normalized correlation coefficients (VanDecar and
Crosson, 1990; Herrera and van der Baan, 2012).
The average for 20 realizations of our two figures of merit and

their standard deviations are shown in Figures 7–9 for λ ¼ 1; 4, and
10, respectively. In these figures, the diamonds (⋄) are used to
indicate NCCw and Qw values for the estimated seismic wavelet.
Similarly, circles (∘) are used to indicate the NCCx and Qx values
for the estimated seismic reflectivity. We observe that the proposed
deconvolution scheme performs better at estimating the wavelet
than the reflectivity. The reflectivity is a full band sequence with

low and high frequencies annihilated by the bandpass character
of the seismic wavelet. Therefore, recovery of frequencies outside
the natural band imposed by the seismic wavelet fully relies on the
sparse reflectivity assumption (Sacchi et al., 1994). Our synthetic
data were sampled at 2 ms and, therefore, hoping to recover a full
band reflectivity with spectral contributions from 0 to 250 Hz
(Nyquist frequency) is definitely an unworkable cause. The latter
is reflected by the low values of Qx in comparison to those of
Qw. To gain critical understanding of the limits of our algorithm,
we also compute Qx values for bandpassed versions of the true
and estimated reflectivity series. In this case, we use an Ormsby
trapezoidal filter (Sheriff, 2002) defined by four corner frequencies

a)

b)

c)

d)

Figure 10. (a) First trace from one realization of multichannel data
similar to Figure 5b, (b) true reflectivity series, (c) estimated reflec-
tivity via SMBD, and (d) estimated reflectivity after applying an
Ormsby trapezoidal filter with corner frequencies 0, 1, 100, and
125 Hz. The simulation corresponds to values S∕N ¼ 4 and λ ¼ 4.

a)

b)

c)

d)

Figure 11. Power spectral density of the data portrayed in Figure 10.
(a) Seismic trace, (b) true reflectivity series, (c) estimated reflectiv-
ity via SMBD, and (d) estimated reflectivity after applying an
Ormsby trapezoidal filter with corner frequencies 0, 1, 100, and
125 Hz.
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0, 1, 100, and 125 Hz to restrict the bandwidth of the true reflec-
tivity and estimated reflectivity before computing Qx and NCCx.
The results are also included in Figures 7–9 and are indicated
with squares (□). One can observe an improvement in NCCx

and Qx when high frequencies are excluded from the recovered
reflectivity.
Finally, Figures 10 and 11 portray the resulting reflectivity inver-

sion in time and frequency domain for one realization and for
the first seismic trace of a group of 24 traces. The example also
corresponds to a parameter λ ¼ 4 and S∕N ¼ 4. Figure 10a presents
the seismic trace, Figure 10b shows the true reflectivity series,
Figure 10c is the full band reflectivity estimated by SMBD, and
Figure 10d is the estimated reflectivity after applying the Ormsby
trapezoidal filter. Figure 11 shows, in the same order, the power
spectral density of the signals portrayed in Figure 10. It is evident
from Figure 11 that the unfiltered spectra match well with the true
spectra up to approximately 100 Hz.

Real data example

Unfortunately, we do not have an automatic way of estimating the
trade-off parameter λ needed by SMBD. The simulations in the
previous section were used to explore the behavior of the algorithm
in terms of the parameter λ. Based on the analysis presented in
Figures 7–9, we have selected λ ¼ 4 because it provided the best
reconstruction of the wavelet and reflectivity for a moderate level of
noise (S∕N ¼ 4).
Our real data test uses the Gulf of Mexico, Mississippi Canyon

data set. These data have been extensively used for testing multiple
suppression algorithms (see, e.g., Verschuur and Prein, 1999).
SMDB was run on the near-offset section of the Mississippi Canyon
data set. The input data and the estimated sparse impulse response
are shown in Figure 12a and 12b, respectively. We also show details
of the seismic sections before and after deconvolution in Figure 13a
and 13b. Notice that Figure 13b is the resulting sparse impulse
response estimated by SMDB. This data set is contaminated by

multiples. Therefore, our blind deconvolution algorithm was used
to estimate the full impulse response including multiples rather than
the primary only impulse response (reflectivity). We have run
SMBD in windows of 1 s in time and 200 traces with 10% overlap
in time and space. The windows were patched back together to pro-
duce Figure 12b.
We used the estimated impulse response of the whole near-offset

section to estimate the wavelet via a multichannel frequency domain
deconvolution. Wavelets computed from individual windows where
similar and this is why we have decided to compute one wavelet
for the whole near-offset section. The seismic wavelet is portrayed
in Figure 14. We also displayed the estimated wavelet obtained by
aligning and averaging the first break. The resemblance of the two
wavelets is remarkable, with normalized correlation coefficient
NCCw ¼ 0.92.
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CMPb)Figure 13. A zoom into the black rectangles

marked in Figure 12. (a) Before deconvolution
and (b) after deconvolution.

a) b)

Figure 14. Estimated wavelet for Golf of Mexico data set. (a) Esti-
mated wavelet using the SMBD method and (b) estimated wavelet
obtained by averaging the first beak after alignment.
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CONCLUSIONS

We have presented an algorithm inspired by Euclid deconvolu-
tion that permits us to estimate the seismic reflectivity without a
priori knowledge of the seismic wavelet. The seismic wavelet is
computed as a by-product of the process via a multichannel fre-
quency domain deconvolution between traces and estimated reflec-
tivity sequences. The core of the algorithm is the estimation of the
reflectivity by the solution of the multichannel homogeneous sys-
tem of equations with sparsity constraints.
An optimization problem that uses the method of steepest descent

was developed. To avoid trivial solutions, the reflectivity vector was
constrained to have unit norm. The latter leads to a constrained op-
timization problem, where one attempts to estimate a sparse signal
that fits a multichannel homogeneous system of equations and, in
addition, the signal lies on the unit sphere. This optimization prob-
lem was solved by the method of steepest descent with an update
rule that keeps current estimates of the sparse reflectivity on the unit
sphere. The method is stable under a variety of noise levels and for
different values of the trade-off parameter λ. We stress that like in
every deconvolution scenario, the method works well when it hon-
ors certain assumptions. In this case, not only the wavelet needs to
be stationary for all traces but the reflectivity must be sparse.
We used synthetic and real data examples to evaluate the method.

Synthetic examples permitted us to assess the viability of the
method in terms of noise. The method gives reasonable estimates
of wavelet and reflectivity series with S∕N ¼ 4 and higher. We have
obtained workable results for S∕N ¼ 2. However, the results of the
method clearly deteriorate when we try to push it to work on data
severely contaminated with noise. We have observed that the quality
of the estimated wavelet is superior to the quality of the estimated
reflectivity for the same S/N.
We also applied the method to near-offset section of Gulf

of Mexico data set. Our estimated wavelet has a remarkable sem-
blance with the wavelet estimated by aligning and stacking first
breaks.
We emphasize that the SMBDmethod does not consider coherent

noise in the convolutional model. In this regard, we believe that its
application to onshore data will require extensive preconditioning to
remove coherent noise. This is likely true for all blind deconvolu-
tion methods.
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APPENDIX A

CURVILINEAR LINE SEARCH ON THE UNIT
SPHERE

This section proves that curvilinear line search on the unit sphere
is equal to equation 19. In our problem, we need a rotation matrix
that preserves the sparse solution on the unit sphere. This is equiv-
alent to have a rotation matrix Rk:

xkþ1 ¼ Rkxk; (A-1)

such that kxkþ1k2 ¼ kxkk2 ¼ 1. Using angle axis representation of
rotation matrix via aka Rodrigues’ formula, we have

Rkxk ¼ xk þ sinðθkÞðrk × xkÞ þ ð1 − cosðθkÞÞðrkrTk − IÞxk;
(A-2)

where rk is rotation axis, θk is rotation angle, I is identity matrix,
and k is iteration. We need to choose rk in such a way that it lets the
search go in the direction of the projection of the gradient into the
tangent plane on the sphere. Hence, the only option is rk ¼ xk × hk
or in other words,

hk ¼ rk × xk; (A-3)

where hk is the normalized projected gradient on the sphere. Note
that the length of rk, xk, and hk are equal to one. Now it is easy to
show that the rotation axis is orthogonal to the current solution.
Hence, we have

rTk xk ¼ 0: (A-4)

Inserting equations A-3 and A-4 into equation A-2 yields

Rkxk ¼ sinðθkÞhk þ cosðθkÞxk: (A-5)

APPENDIX B

CONVERGENCE BEHAVIOR OF SMBD
ALGORITHM

This section proves the convergence of the proposed steepest
descent method. For xkþ1 ¼ xk þmk as long as −gTkmk > 0 it is
gradient descent. gk is the gradient of the cost function at iteration
k. In a gradient descent, the step size should be small enough to
guarantee the convergence. We will use the same concept to prove
the convergence of the proposed technique.
Again, consider the angle axis representation of rotation matrix

via aka Rodrigues’ formula:

Rkxk ¼ xk þ sinðθkÞðrk × xkÞ þ ð1 − cosðθkÞÞðrkrTk − IÞxk;
(B-1)

by analogy we have

mk ¼ sinðθkÞðrk × xkÞ þ ð1 − cosðθkÞÞðrkrTk − IÞxk: (B-2)

It is very interesting that unlike conventional steepest descent, the
evolving direction depends on the step size θk. Now, we need to
check if −gTkmk > 0. We should emphasize that the steepest descent
is valid only for sufficiently small step sizes. Assuming small an-
gles, we have sinðθÞ ≈ θ and ð1 − cosðθÞÞ ≈ 0. Hence, equation B-2
simplifies to

mk ≈ θkðrk × xkÞ ¼ θkhk: (B-3)

Obviously, −gTk θkhk > 0. Hence, it is gradient descent. It is
worth mentioning that to satisfy the constraint, we used mk ¼
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sinðθkÞðrk × xkÞ þ ð1 − cosðθkÞÞðrkrTk − IÞxk, but to prove the con-
vergence of the proposed steepest descent, we have mk ≈ θkhk.
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