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Abstract

The seismic exploration problem can be expressed as a linear integral
relating the Earth model and the recorded data. An estimated Earth
model may be recovered from observed data by inversion. A 2D

acoustic, constant density inversion algorithm is presented.

Standard smooth constraints deal well with noise, but blur material
boundaries. In contrast, a blocky solution will encourage sharp dis-
continuities. This is enforced by placing sparse constraints on the
model gradient. A non-linear sparse constraint found to be espe-
cially suited for blocky medical imaging by Charbonnier et al. (1997)

is tested for exploration seismology.

The non-linear sparse/blocky constraint is tested for 1D seismic

impedance inversion. It is then applied to the 2D migration/inversion
problem. In both instances, it consistently recovers accurate, piece-
wise continuous profiles. Higher resolution images are obtained than

those recovered by standard solutions.
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Chapter 1

Introduction

1.1 The Earth’s response

Within the discipline of geophysics, probing the earth is a large area of study.
This is because most of the science deals with describing, interpreting, and un-
derstanding earth structures that are hidden beneath the surface. Exploration
seismology deals with discovering the earth’s geology in order to exploit natural
resources, or for environmental purposes. Material properties are inferred from
their response to an induced excitation.

The reflection and refraction of seismic waves occurs when there is a difference
in impedances between two media (Beck, 1991). In the acoustic case (where only
a pressure or longitudinal wave is considered), the acoustic impedance is defined
as the product of the density and acoustic velocity. The density variation is
usually very small with respect to the velocity variation. Because of this, a
change in acoustic impedance is generally associated with a change in velocity.
The magnitude of this discontinuity is described by its reflection coefficient, or
reflectivity. Thus, the earth is characterized by the impedances of its layers, or

the reflectivity of its layer boundaries. The recovery of these material properties
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is the aim of seismic imaging.

1.2 Seismic tomography and the generalized
Radon transform

The word tomography comes from the Greek root tomos, meaning slice. Tomog-
raphy is defined as the reconstruction of a function from line integrals through
it (Claerbout, 1992). Diffraction tomography refers to the reconstruction of a
material perturbation that results in wavefield scattering using the reflected, or
scattered part of the wavefield (Song et al., 1995). In general, tomography is
characterized by the division of the unknown medium into a grid of cells whose
material properties are to be determined.

Diffraction tomography is a common technique of medical imaging, where
x-rays or ultrasonic rays are passed through the body to surrounding receivers.
In geophysics, seismic tomography is called thus because of its mathematical
similarities to medical imaging (Lay and Wallace, 1995). However, the receiver
coverage is not as easily manipulated, and therefore, oftentimes not complete.
Seismic tomography includes cross-well experiments, and can even be extended
to experiments where a dense array of receivers are positioned on the earth’s
surface.

In geophysical and medical applications, a wavefield is passed though the
material and recorded. The assumption is made that the wavefield is composed
of two parts: one created by the background or known material properties, and
one created by the perturbation from this background state. The Born approx-
imation presumes that the scattered wavefield is very small with respect to the
background one, and produces in a linear scattering integral (Beylkin, 1985).

The linearized scattering equation of the diffraction tomography problem is a
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filtered version of the generalized Radon transform (GRT) (Beylkin, 1985; Miller
et al., 1987). By using an asymptotic inverse expression of the GRT, material
properties may be recovered from the recorded data, and the tomographic prob-
lem solved. This method has been used in computed tomography (Melamed et
al., 1999), ultrasonic imaging (Mast, 1999), and imaging of the Earth’s crust
using teleseismic waves (Bostock and Rondenay, 1999). Applications to environ-
mental problems using ground penetrating radar (GPR) have also been explored
successfully (Cui and Weng, 2000; Wang and Oristaglio, 2000).

Within seismic exploration, solving the inverse scattering problem using the
GRT was first introduced by Beylkin (1985) for a 2D acoustic, constant density
medium. The technique was extended to exploration geophysics for the purpose
of oil and gas exploration (Miller et al., 1987; Bleistein, 1987). Further refine-
ments include the extension of the inversion to the elastic case (Beylkin and
Burridge, 1990), and to anisotropic media (de Hoop and Bleistein, 1997). All of

these methods are used in the field of seismic imaging.

1.3 Seismic imaging

Seismic imaging, as the name implies, is the imaging of the earth using seismic
wavefield data. There are two types of seismic imaging (Berkhout, 1984; Jin et
al., 1992): imaging accomplished by direct or discrete inversion. Direct inversion
recovers the earth image using a direct relation between the data and model.
It is customized by an analytic solution, and works only with particular source-
receiver geometries. This type of imaging is also referred to as migration because
it reverses the seismic experiment. The wavefield is propagated (migrated) back
in space and time to the original scattering points that created it. An example of
direct inversion is solving the linearized scattering equation using an asymptotic

inverse to the GRT (Beylkin, 1985).



CHAPTER 1. INTRODUCTION 4

The second type of imaging uses a discrete, numerical method to approximate
the inverse. It minimizes the difference between observed data and synthetic data
computed from the Earth image. This technique of solving the problem numeri-
cally is called discrete inverse theory, and is often referred to simply as inversion.
The synthetic data can be computed using ray theoretic approaches (Beydoun
and Mendez, 1989), or finite difference schemes (Crase et al., 1990). Discrete in-
version can handle arbitrary source-receiver geometries because of its numerical
rather than analytical approach, however it is computationally expensive. It is
also necessary to start with a reference Earth model or in some way impose a
constraint to recover a unique, stable solution.

Jin et al. (1992) were the first to combine direct and discrete inversion to
take advantage of their individual strengths. By using a numerical version of the
elastic Born modeling/direct inversion technique (Beylkin and Burridge, 1990),
they were able to include the linear, less computationally expensive algorithm as
a means to compute synthetic data. This was implemented in the framework of
discrete inversion to retrieve the final image.

This combined technique is commonly known as a migration /inversion scheme.
It has been used to recover 2D acoustic velocity and impedance perturbations
(Thierry et al., 1999), and adapted to retrieve reflectivity information (Duquet
et al., 2000). However, the inverse problem remains non-unique, and a constraint

must be enforced to select a stable, unique solution.

1.4 Constraints in discrete inversion

To date, the majority of migration/inversion algorithms use a background or
prior model to constrain the solution (Tarantola, 1984; Jin et al., 1992; Thierry
et al., 1999). The constraint is applied by minimizing the error between the

updated and prior models. This error is defined in terms of the distances of the
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solutions from one another, and is commonly chosen to be an Ly norm. However,
other definitions of error length are possible.

Constraints can also be thought of in terms of probability distributions, or
from a Bayesian perspective (Menke, 1984; Tarantola, 1987). These probability
distributions influence the type of solution obtained. The use of a Gaussian
prior probability distribution enforces a smooth solution, while a longer-tailed
exponential prior distribution yields a sparse one (Tarantola, 1987). These two
constraints can impose the most common types of solutions desired in geophysical
exploration.

A flat solution is created by enforcing a smooth gradient of the model. In
this way, the difference between adjacent material properties is minimized (Con-
stable et al., 1987; Duquet et al., 2000). When the second derivatives of the
model parameters are smoothed, a continuously varying, smooth solution is re-
trieved (Menke, 1984). Finally, if a sparse constraint is placed on the gradient
of a model, the model solution is piecewise continuous, or blocky, rather than
smooth.

This work will focus on sparse solutions encouraged by the longer-tailed prob-
ability distribution constraints. The application of sparse constraints are found

in two areas: sparse-spike inversion and blocky inversion.

1.4.1 Sparse-spike inversion

Reflectivity information can be used to define the relative impedances of the
layers above and below a discontinuity (Beck, 1991). The standard impedance
inversion problem is represented in this way: data are assumed to come from a
one dimensional model, where the wavefield travels straight down into the earth
and is reflected directly back by discontinuities to a receiver. In this simple

model, the seismic data can be defined as a convolution of the source with the
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Earth’s reflectivity. The discrete inverse problem seeks to recover the reflectivity
from the data.

A sparse constraint will return the simplest earth model possible: the one
with the least number of layers. The relative impedance amplitudes can then be
recovered from the reflectivity by an integral or summation (Waters, 1978; San-
tosa and Symes, 1988). This technique, standard in the exploration geophysics,
is known as sparse-spike inversion, despite the fact that the recovered impedances
are blocky, and it is the reflectivity that is sparse (Pendrel and van Riel, 2000).

The sparseness constraint was first imposed via an L; error norm on the
reflectivity series (Oldenburg et al., 1983; Santosa and Symes, 1988; Djikpesse
and Tarantola, 1999). The technique is very successful, and is so common that
in exploration seismology inversion is frequently accepted to mean sparse-spike
or impedance inversion. The sparseness constraint is not limited solely to the L,
norm, and other long-tailed probability distributions can easily be used (Sacchi,

1997).

1.4.2 Blocky inversion techniques

The idea behind blocky inversion techniques is simple: if the first order derivative
is sparse, a function will become piecewise constant. This is seen in blocky
impedance inversion: a sparse reflectivity will result in an impedance, or integral
of the reflectivity, that is blocky. Blocky inversion is not only applicable in
areas where the model parameters are actually blocky in form, but can be used
anywhere sharp edges divided by planar features are present. It has the effect of
sharpening and focusing the image, reducing the effects of noise and blurring.
The use of blocky inversion began with a constraint composed of the L,
norm of the gradient of the model parameters. This function is also known as

the total variation (TV) or bounded variation (BV) function because as well as
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encouraging sparseness, it penalizes very large values (Acar and Vogel, 1994). In
this way, the total variation of the model is limited.

The total variation function is useful, but is not differentiable at zero. It also
tends to create ringing in the solution due to its sharp truncation. In an effort
to circumvent these difficulties, a modified function is introduced (Acar and Vo-
gel, 1994) that adds a small parameter. The updated total variation function is
smoother, and defined at all values. This constraint function has been applied to
imaging for medical physics (Dobson and Santosa, 1994), illumination by electro-
magnetic waves (van den Berg and Kleinman, 1995), and satellite imaging (Vogel
and Oman, 1998).

Concurrently, the exploration of constraints to enforce sparseness was in-
troduced from the Bayesian perspective in the field of computer vision and to-
mography (Geman and Geman, 1984). The idea was to assign a different prior
distribution on the model parameters than to the normally distributed noise.
The function of choice was a long-tailed Gibbs distribution, which would enforce
sparseness.

Until this point, the majority of sparse constraints resulted in a non-linear
inverse problem. The evolvement of these techniques lead to the realization that
solving the non-linear problem was computationally expensive, and not guaran-
teed to converge to the true solution (Geman and Reynolds, 1992). Further work
revealed that though theoretically less accurate, linearization of the non-linear
problem was a faster, more dependable way to solve the problem. The series of
papers that followed saw a refinement and comparison of different sparse con-
straint functions that could be easily linearized (Geman and Reynolds, 1992;
Geman and Yang, 1995; Charbonnier et al., 1997).

The application of blocky inversion techniques to geophysics has been limited.

Most of the activity has been in the area of gravity and magnetic inversion. One
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application involves placing a sparse constraint on the volume rather than the
gradient of an image, to limit the smearing or blurring of body of interest (Last
and Kubik, 1983; Guillen and Menichetti, 1984). With the advances in computer
imaging, the concept of blocky gravity inversion using the model gradient has
been introduced (Portniaguine and Zhdanov, 1999). Other geophysical applica-
tions include using a Bayesian method to encourage strong variations in solutions
to geophysical tomographic traveltime data (Clippard et al., 1995). To date, the
author has found no evidence of application of these techniques to seismic or

GPR data.

1.5 The scope of this thesis

This work will study the applicability of sparse and blocky constraints for appli-
cations in exploration geophysics. I choose to work with the function introduced
for medical imaging by Charbonnier et al. (1997), because of its simple form that
is easily manipulated into a linear inverse problem. As well, this particular con-
straint has been found to be extremely well suited to enforcing blocky solutions.
The function is tested against the other commonly used sparse functions in the
context of impedance inversion for the 1D convolutional model of the earth.
The constraint is then extended to a 2D acoustic wavefield migration /inversion.

A modified version of the inverse GRT is used to compute synthetic data. By
enforcing a sparse constraint on the gradient of the model, blocky or piecewise
continuous images of the acoustic velocity are retrieved. I show that blocky in-
version recovers sharper, cleaner images of the earth model than the standard

inversion procedures.
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1.6 Thesis outline

The structure of the thesis is as follows:

Chapter 1 provides the motivation and scope of my research.

Chapter 2 is an introduction to Born linear scattering theory, and direct
inversion using the asymptotic inverse of the GRT. The modification of the
inverse GRT for the discrete, numerical migration/inversion algorithm is

then presented.

In Chapter 3, discrete inverse theory and the common quadratic solution

constraints are introduced.

Chapter 4 continues the discussion of constraints from a Bayesian perspec-
tive, and introduces sparse constraints. The computational methods of
solving the discrete inverse problem are explored. Finally, my sparseness
constraint is compared to other common constraints in the 1D impedance

inversion problem.

Chapter 5 describes the blocky inversion algorithm using a sparseness con-
straint, and illustrates its effectiveness for the 2D acoustic

migration/inversion problem.

Chapter 6 summarizes my research and the most relevant findings. Finally,

the advantages and disadvantages of the sparse constraint are discussed.
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Chapter 2

The linear scattering problem

In geophysical exploration, wavefield data created by an induced source are
recorded to collect information about the subsurface. This seismic experiment
can be considered a tomographic problem, described by the linear scattering in-
tegral (Miller et al., 1987). The integral directly relates data and model space.
Forward modeling is achieved by predicting the data created by a known Earth
model. Because the geophysical experiment records the resulting wavefield, in-
verse modeling, or recovering the earth image from known data, is of more in-
terest.

The inverse can be difficult to recover, as it requires perfectly complete and
accurate data (Claerbout, 1992). As well, it is generally unstable. Unlike the
inverse, the adjoint can deal with incomplete, inaccurate data. Fortunately, in
geophysical problems the adjoint retrieves an imperfect form of the inverse and
can be used to approximate inverse modeling.

Seismic imaging refers to the creation of an image of the Earth’s geology us-
ing inversion. There are two ways to create a seismic image: direct or discrete
inversion (Berkhout, 1984; Jin et al., 1992). Direct inversion uses an analytical

method to find the inverse. The inverse may then be computed numerically. Al-
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ternatively, discrete inversion uses a discrete, numerical method to approximate
the inverse, relying on adjoint modeling.

The linear scattering integral can be defined in terms of the generalized Radon
transform (GRT), to directly relate the data and model space. The linear scatter-
ing problem may then be solved using an asymptotic inverse to the GRT (Beylkin,
1985; Miller et al., 1987). This is a direct inversion method. It has the advantage
of being relatively computationally inexpensive, and the disadvantage of working
only with particular source-receiver geometries (Berkhout, 1984). Direct inver-
sion is also known as migration, as it projects or migrates data back into model
space.

In order to render the imaging technique more flexible, a computational
rather than analytical method of solving the linear scattering problem is pre-
sented. Discrete inversion recovers the Earth model by minimizing differences
between the observed and synthetic data. Methods of modeling synthetic data
such as ray theoretic approaches (Beydoun and Mendez, 1989), or finite differ-
ence algorithms (Crase et al., 1990) are computationally taxing. To circumvent
this, computational methods for forward and adjoint modeling are adapted from
direct inversion via the GRT. This enables the two inversion methods to be com-
bined in the manner of Thierry et al. (1999) to solve acoustic, constant density
Earth models. The resulting algorithm has the benefits of being computationally

efficient, and the ability to adapt to any source-receiver geometry.

2.1 Linearizing the scattering problem

The linear scattering relation is a standard representation for problems in optics
and geophysics (Miller et al., 1987; Thierry et al., 1999). In three dimensions,
the acoustic wave equation of a constant density medium is denoted by the scalar

wave equation (for derivation see Appendix A)
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w2

Vu(x,s,w) + %u(x, s,w) = —0(x—s). (2.1.1)

In this equation, u(x, s,w) is the acoustic pressure field or displacement, s and x
are the positions of the source and an arbitrary point within the 3-D model space,

and c(x) is the acoustic velocity. The acoustic scattering potential is defined as

1 1

flx) = 2x) 26 (2.1.2)

where f(x) is the perturbation from the known background velocity field co(x).
The acoustic wave equation can be rewritten in terms of the unknown acoustic

perturbation as

V2u(x,s,w) +

Cg(x)u(x, s,w) = —6(x —s) — wWif(X)u(x,s,w). (2.1.3)

The wave equation of the background wavefield can be written in terms of

Green’s functions as

oXx,y, C%(X)

The Lippman-Schwinger equation of quantum mechanics (Taylor, 1972) com-

Go(x,y,w) = —0(x—y). (2.1.4)

bines expressions (2.1.3) and (2.1.4)to relate the background and total wavefields.

Thus, one can obtain the expression for the wavefield at receiver position r

u(r,s,w) = Go(r,s,w) +w2/G0(r, x,w)f(x)u(x,s,w)d*x . (2.1.5)
—_—————

-’

Background wave field v~
Scattered wavefield

The total wavefield can be broken into two parts: the background wavefield and

the scattered wavefield. By rearranging this definition, one can state
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Use(r, 8, w) = u(r, s,w) — Go(r,s,w), (2.1.6)

and therefore that

Use(T, 8, w) = wQ/GO(r,x, w) f(x)u(x,s,w)d*x . (2.1.7)

As it is written, this expression is a non-linear equation; the scattered wave-
field is a function of the total wavefield. In order to create a linear expression the
Born approximation is used. This approximation states that u,. << wu, which

leads to

u(r,s,w) & Goy(r,s,w). (2.1.8)

The linearized scattering problem is written as

Use (T, 8, W) :wQ/GO(r, x,w) f(x)Go(x, s, w)d*x (2.1.9)

where the acoustic potential must be small to satisfy the approximation.

The Green’s functions for an arbitrary background velocity field can be ex-
pressed using the first-order asymptotic expansion of the Hankel function given
by geometrical optics (Beylkin, 1985). In this way, the Green’s functions are
established to be

Go(x,y,w) = A(x,y)e ¥ (2.1.10)

where A(x,y) represents the amplitude of the ray that travels from x to y, and
T is the traveltime between the two points. The amplitude term must satisfy the

transport equation
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A(x,y)Var(x,y) +2VA(X,y) - Var(x,y) =0, (2.1.11)

and the traveltime function, 7(x,y) is defined by the eikonal equation

1
[Ver(x,y) = 5 — - (2.1.12)
c5(x)
Using the definition of Green’s functions, the scattered field becomes
Use(T, S, W) = wz/A(r,x)ei“’r(r’x)f(x)A(x, s)ewr(8) gBx . (2.1.13)

New amplitude and traveltime functions are defined, composed of terms for the

incident and scattered wavefields:

A(r,x,s) = A(r,x)A(x,s),

and

7(r,x,8) = 7(r,x) + 7(x, 8) .

Thus, the scattering equation can be rewritten

Use(T, S, W) = wQ/A(r, X, 8)e™T(rxs) £ (x)dPx . (2.1.14)

Using the Fourier transform to express this in the time domain results in

82

USC(I', S, t) = —w

/ Alr, x, 8)3[t — 7(r, %, 8)] f(x)d*.. (2.1.15)

Either expression (2.1.14) or (2.1.15) may be referred to as the linear scattering

integral.
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2.1.1 The linear scattering problem for a source wavelet

When the source is not a delta function, the scattered wavefield will include

information of the source wavelet. This is written as

u&(r,s,w)::cu2J/,4(r,x,s)e“”(“xﬁ)f(x)VV(w)d3x, (2.1.16)

or as a convolution in the time domain

82

Use(T,8,1) = [— pres /A(r, x,8)0[t — 7(r,x,8)|f(x)dx | ®w(t). (2.1.17)

W (w) and w(t) represent the source wavelet in the frequency and time domains
respectively. The time derivative can be shifted onto the wavelet (Tarantola,

1984) to create the new expression

— %w(t)
® —p . (2118)

Use(r, 8, 1) =

/A@Jﬁwu—ﬂnx@u@m&

2.1.2 The linear scattering problem in two dimensions

The linear scattering problem can be easily adapted to two dimensions. In this
context, the Green’s functions are approximate. This occurs because the first-
order asymptotic expansion of the Hankel function is exact only for the 3D prob-
lem (Beylkin, 1985). Using this expansion, the Green’s functions are expressed

as

-1

Go(x,y,w) = (—iw) > A(x,y)e oY), (2.1.19)

The scattering equation for a delta function as the source is:
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Uno(r, 8, ) = iw / Alr, x, )79 f(x)d 2 (2.1.20)

If the source has a signature wavelet, W(w), the expression becomes

Use(T, 8, W) = iw/A(r, x,8)e™T%8) £ (x)W (w)d *x (2.1.21)

or in the time domain

Use(T, 8,1) = /A(r, x,8)8[t — 7(r,x,8)]f(x)d *x ® 81;])_]Et) : (2.1.22)

2.2 An asymptotic inverse operator

The true inverse of the linear scattering integral will recover the original earth
model from scattered acoustic wavefield data. Unfortunately, a general expres-
sion of this inverse does not exist, and so an approximation must be made. This
approximation begins by identifying the linear scattering integral as a modified
form of the generalized Radon transform (Beylkin, 1985). The GRT does not
have a true inverse, but does have an adjoint expression. The adjoint recovers a
distorted version of the original model. The asymptotic inverse to the scattering
problem is created by applying a weighting function to the adjoint of the GRT.
An analytic expression of the weighting function for common source-receiver ge-
ometries is then used to recover the original earth model (Miller et al., 1987;

Bleistein, 1987).

2.2.1 The generalized Radon transform

The GRT is defined to be (Ramm and Katsevich, 1996)
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f(e.p) = / o(p,€,%)3[p — € -] (x)d’x. (2.2.1)

Here g(p, £,x) is a weighting function, & specifies a family of “parallel” isochron
surfaces passing through point x, and p fixes one of these isochrons. Thus the
GRT is an integral over a fixed isochron surface. There is no inverse to this
transform, so the adjoint is used to recover f(x). The function at model point

Vo, is found by evaluating the following integral at p = £ - yo

~ -1 2

Flyo) = 2L / dw(p,€,y0) 2

32 a—pQ/g(p,f, x)8[p — € - x| f (x)d’x. (2.2.2)

This equation introduces an additional weighting function, dw(p,&,yo), in the

expression of the recovered acoustic potential, f(yo).

Adjoint modeling using the generalized Radon transform

Recall that:

82

U'sc(r7 S, t) = _ﬁ

/A(r, x,8)d[t — 7(r, %, 8)] f (x)d*x. (2.2.3)

By using the definition of the GRT, the linearized scattering problem can be

written as

82
ﬁfGRT(r, s, 1), (2.2.4)

Use(T, S, 1) = —
where fORT(r s,t) is the GRT of f(x). This reveals that our forward modeling
is simply a filtered version of the generalized Radon transform. The adjoint

operator can be recovered analytically using the adjoint of the GRT
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- _ 2

f(yo) = @/dW(r,yO,S)%/A(r,x, s)0[t — 7(r,x,8)|f(x)d®x, (2.2.5)

where dW (r,yo,s) is a weighting function. The integral is evaluated at ¢ =
7(r,yo,S)-

Conceptually, the traveltime function 7(r, yo, s) specifies a family of “parallel”
isochron surfaces. When the background velocity is constant, the traveltime
isochrons will become concentric ellipsoids with foci at the source and receiver
positions. Specifying one source-receiver pair and a traveltime, ¢, will isolate
an isochron surface. Integration then proceeds over this surface. The previous

formula can be reduced to:

~ 1

f(yo) = ) /dW(r,yo,s)usc(r, s,1). (2.2.6)

By substituting in the definition of the scattered wavefield (2.1.18), this becomes

flvo) = gz [ W lr30.5) x
(/A(r,x, $)[t — 7(x,x, s)]f(x)d3x) ® %ﬁ’(t)] C(227)

The inverse solution involves solving the weighting function to recover f(x).
The weighting function undoes the convolution with the source wavelet, and
removes the amplitude terms for the source-receiver geometry. Specific solutions
for common source-receiver geometries are discussed by Miller et al. (1987), and

Bleistein (1987).
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2.3 Modeling the linear scattering problem

In discrete inversion, the seismic image is adjusted by comparing the observed
data to the synthetic data calculated from the Earth model. Thus, methods of
computing the synthetic data from a model, and then projecting the data back
into model space are necessary. These steps are referred to as forward and adjoint

modeling respectively (Claerbout, 1992).

2.3.1 Forward modeling

The linear scattering equation can be used to calculate the scattered wavefield
of a seismic experiment for a known acoustic potential. The integral scattering
equation in time (2.1.18) can be expressed as a linear Born operator. The Born
operator, denoted B, can be broken into two distinct parts: an integral operator

L, and a convolution operator C

d(r,s,t) = Bf(x)
= CLf(x). (2.3.1)

In this equation, f(x) is the acoustic potential, and d(r,s,t) are the synthetic

data. Both are continuous functions. The integral operator denotes

(L) (r,s,¢) = / A(r, x,8)8[t — 7(r, %, 8)] f (). (2.3.2)

The convolution operator is defined as

(Cr) (t) = % ®r(t), (2.3.3)
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where 7(t) is a dummy variable. Both operators apply to continuous functions,
and may be expressed in the frequency domain. When the Fourier transform is

applied, they become

(LF) (r,5,w) = / Afr, x, 8)e %) f(x)dx (2.3.4)

and

(CR)(w) = w*W (w)R(w). (2.3.5)

2.3.2 The discrete forward operator

The earth’s properties may be discrete, such as the Earth’s mass, or continuous,
like its density. Continuous properties of the earth may be approximated as dis-
crete by assigning an average value of the property to each cell of a tomographic
grid. To approximate this realistically, a large number of cells are necessary.
Geophysical data are already discrete, because they are recorded at regularly or
irregularly sampled spatial locations.

When working with discrete rather than continuous properties, the linear
operators can be thought of as matrices, and the parameters that they act on as

vectors. The discrete forward problem is expressed as

d = CLf, (2.3.6)

where d and f are vectors of the data and acoustic potential, and the matrices C
and L are the convolution and integrator operators. The convolutional operator,
C, can easily be placed in matrix form using the method described in Appendix

C. The operator matrix=, L, is constructed by placing an amplitude term in the
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matrix in order to weight the magnitude of the acoustic perturbations. These
weighted terms are placed at time samples in the data space that match the
traveltime between the source, receiver, and current point in model space. If this
sounds complicated and non-intuitive, you are reading correctly. This is why it

is preferable to use subroutines as operators, discussed further on in this chapter.

2.3.3 Adjoint modeling

The opposite of forward modeling is adjoint modeling. Adjoint modeling is based
on adjoint operators, which are analogous to taking the transpose of a matrix.
In certain problems, the transpose is a good approximation to the direct in-
verse, and the linearized scattering problem falls into this category (Claerbout,
1992). Discrete inverse theory uses forward and adjoint modeling to numerically
approximate the inverse.

The adjoint modeling operator is thus

) = L) d(r,s, 1), (2.3.7)

where f(x) is recovered acoustic potential, and d(r,s,t) are scattered wavefield

data. By using the definition of a transpose, one can write

fx) = £7CTd(r,s,1). (2.3.8)

This states that the adjoint to the forward modeling operator involves first un-
doing the convolution with the time derivative of the source signature, and then

reversing the summation over the traveltime isochron. Suppose that d’' = C*d

(CTd) (r,s,w) = d(r,s,w)W*(w) w?, (2.3.9)
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where the conjugate of the wavelet is denoted W*(w). The integral expression

for £LTd' becomes

ETd, /// I‘ » Yo, W (yOaS:w) d,(I‘,S,(U) dr ds dw’ (2310)

where all source and receiver combinations are integrated over, and ygo is an
arbitrary point within the model space. G§(r,yo,w) indicates the adjoint or

conjugate Green’s functions, defined as

G(r, yo,w) = A(r, yo) e *7¥0). (2.3.11)

The forward linear Born operator transforms information from the model space
to the data space. The adjoint operator reverses this transformation. This
movement in time and space is why an adjoint operator is often referred to as
a backprojection or operator: it projects the information moved by the forward
operator back to where it originated from. This idea is evident in the change of
sign that occurs in the adjoint Green’s functions.

Using the definition of the scattered wavefield expressed in the frequency
domain (2.1.16), and the notation of Green’s functions, the model recovered by

adjoint modeling can be rewritten as

f( 0) = (L7d') ( ////w Gy (r,y0,w) Gy(¥yo, 8, w) X

Go(r,x,w) Go(x,8,w)W (w)W*(w) f(x) d*xdrdsdw. (2.3.12)

Integrating the Green’s functions and wavelet of equation (2.3.12) over source-
receiver geometry and frequency results in a single kernel K(yo,x). The integral

can then be written as
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Flyo) = / K (yo,%) f(x) d*. (2.3.13)

Equation (2.3.13) would become the inverse operator if the kernel were a
delta-like kernel. Comparing equations (2.2.6) and (2.3.13) indicates that the
weighting function in the asymptotic inverse collapses the kernel to a delta-like
function that ensures the correct magnitude of the acoustic potential. However,
when using adjoint operators, the kernel does not completely collapse to a delta
function. This occurs because even though Green’s functions are defined as the
impulse response of a linear system (Snieder, 1998), integration takes place over
a finite region for a limited source-receiver geometry. As well, the adjoint of the
wavelet is not the same as its inverse, and further inaccuracy results. Therefore,
the kernel is an approximation to a delta function, resulting in a solution that is

a blurred version of the original image (Figure 2.1).

2.3.4 The discrete adjoint operator

When working with discrete expressions of the model and data, the adjoint op-
erators are implemented as matrices. In keeping with previous notation, the

discrete adjoint operator is expressed as

f=[L"C"]d. (2.3.14)

It is interesting to note that the adjoint of the convolution operator is cross-

correlation (see Appendix C).

2.3.5 Subroutines as operators

In simple examples it is easy to work with matrices. However, as the problem

becomes larger and more complicated, the matrices are not so simply defined. It
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Figure 2.1: (A) The original acoustic potential f(x). (B) Synthetic data created
by the forward operator d = CLf. (C) The smeared acoustic potential recovered
by the adjoint operator f = L7CTd. Note that the adjoint recovers a blurred
version of the true perturbation. This is because the adjoint is not an inverse

operator, only an approximation to it.
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is possible to circumvent the need for matrices by simply writing subroutines that
perform the same action. For instance, instead of building a matrix convolution
operator C, the forward and adjoint operations can be performed by convolution
and cross-correlation subroutines.

In order to check that two subroutines are true adjoints of each other, the
dot-product test is used. Suppose y = Gx, where G and G are the forward

and adjoint operators respectively. One can state

y'(Gx) = (y' G)x, (2.3.15)

or

vy (Gx) = (GTy)"x. (2.3.16)
The dot-product test, as described by Claerbout (1992) contains these steps:

e Create two vectors of random numbers, x; and ys,.

e Compute y; = Gx; and x, = G'y, using the programs for the forward

and adjoint operators.

e Equation (2.3.16) states that y7y, = x1 x5 .

If this last relation is satisfied, G is a true adjoint of G.

2.4 Implementation of Modeling Operators

To retain the flexibility to handle arbitrary source-receiver geometries, the solu-
tion is constructed using operators rather than the asymptotic inverse. The more

complex nature of the forward and adjoint operators means that subroutines as
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operators are preferable to creating matrices. An algorithm is written to create
forward and adjoint models for a 2D acoustic, constant density earth. Data are
represented in the time domain. The pseudo-code for the subroutine is given
below. The algorithm can also be thought of as a mapping function which moves

between model and data space, as illustrated in Figure 2.2.

# Subroutine to perform forward/adjoint modeling operators
if adjoint operator
then correlate wavelet with data: diemp= c’d
endif
for itraces = all receivers for each source
for x = all (x,z) positions in 2D earth model
distance = [x-r| + [|x-s|
# where r and s are 2D position vectors of receivers and sources

time = distance/velocity

if forward operator

then create data from potential: Lf = diemp

diemp (itrace,time) = dyemp (itrace,time) + A(r,x,s)*f(x)
elseif adjoint operator

then create potential from data: LTdtemp =f

f(x) = f(x) + A(r,x,s) *dyemp (1trace,time)

endif

endfor

endfor
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Figure 2.2: A pictorial representation of the modeling subroutine that maps

between model and data space.

if forward operator

then convolve wavelet and data:

endif

d = Cdirmyp
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2.5 Summary

In this chapter, the linear scattering integral arising from the Born approximation
was derived. This integral can be expressed as a filtered form of the generalized
Radon transform. Taking advantage of this, the inverse to the linear scattering
problem is found using an asymptotic inverse of the GRT. This is a method of
direct inversion.

The direct inversion solution is only applicable for specific source-receiver
geometries, so that a new analytic formula must be used each time these geome-
tries change. The technique of discrete inversion does not have this limitation
because the problem is solved numerically. The forward and adjoint discrete
modeling operators are derived from the linear scattering integral. This enables
a numerical approximation to direct inversion to be placed within the framework

of discrete inversion.
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Chapter 3

Discrete inverse theory

Discrete geophysical inverse theory is the study of computational techniques to
solve the linear inverse problem. The solution to the inverse problem is found
by minimizing the difference between the observed data and synthetic data for
an Earth model. Within this chapter, the synthetic data are computed using
the discrete operators described in Chapter 2. These operators are adapted from
the direct inversion of the linear scattering problem using the GRT. This will
combine the computational advantages of direct inversion with ability to adapt
to any source-receiver geometry possessed by the numerical, discrete approach.

The error between the observed and synthetic data is defined in terms of the
Lo norm. This definition of error is stated in the cost function: a mathemati-
cal expression of the desired characteristics of the solution. Constraints on the
solution are also included in the cost function as terms known as regularization
terms.

Most geophysical problems fall into the category of ill-posed problems. These
require constraints on the Earth properties to retrieve a stable, unique solution.
The most common constraint is to enforce a smooth solution (Constable et al.,

1987; Duquet et al., 2000). This is desirable because a smoothly varying earth
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with the simplest possible structure is retrieved.

The solution to the discrete inverse problem can be found using either di-
rect or indirect computation (Strang, 1986). Direct computation is unrelated
to direct inversion methods, and involves direct matrix inversion to find a nu-
merical solution. This method requires the discrete operators to be in matrix
form. Indirect computation finds the solution in an iterative manner, and works
with operators in matrix or subroutine form. The indirect method is the most
common technique for solving large geophysical inverse problems because of its

computational advantages.

3.1 Classifications of discrete inverse problems

Inverse theory makes no assumption as to the completeness and accuracy of the
data. The classification of the problem will depend on the number of known data
and unknown model parameters, N and M respectively (Menke, 1984). A simple
example of an inverse problem is fitting a line to multiple points, where the data
points are designated as a vector d = [dy, do, d3, ...]". The model parameters to
be recovered are slope, s, and intercept, b, so that m = [s, b]7. The statement of

the discrete inverse problem is given by

M
di=)» Gymj, i=12,...N (3.1.1)

j=1
where G;; is the i7" element of the matrix operator G. The matrix operator

linearly relates data and model space.

3.1.1 The even-determined problem

The inverse problem will have one definite solution when there is exactly enough

information to determine the problem uniquely. In the case of fitting a line, this
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occurs when there are two data points without noise, or N = M. This situation
never occurs in geophysical inverse problems, because it is impossible to gather
noise-free data, and to evaluate all of the earth’s material properties within every

cell of a tomographic grid.

3.1.2 The over-determined problem

The over-determined problem occurs where there are more observations than
unknowns (N > M). The linear problem could possibly have three or more
points that do not lie along one straight line. There is no perfect solution to
this problem, so inverse theory seeks to find the best solution. The least squares
approach defines the best solution as one where the error, or distance between
each point and the best fit line, is minimized. Using the definition of the L,

norm to define distance, the cost or objective function to be minimized is

N
J(m) = |dP —dref
=1
= (d-Gm)"(d — Gm). (3.1.2)

Within this expression, the predicted or synthetic data are defined d”"*? = Gm.

3.1.3 The under-determined problem

An under-determined problem has less observations than unknowns (N < M).
An example of this type of problem is fitting a line through one data point.
There are an infinite number of solutions that fit the data perfectly. To solve
the problem, one solution must be defined as more desirable than the others by
imposing a constraint. Within the cost function, the extra term that describes

the constraint is known as the regularization term.
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A popular constraint is to enforce a minimum norm solution, or one that has
a minimum Euclidean length. At this point, the assumption is that the data are
free of noise and inaccuracy so that the solution must satisfy Gm — d = 0. The

cost function becomes

J(m)=)"(d-Gm)+m'm, (3.1.3)

where AT is a vector of Lagrange multipliers.

3.1.4 The ill-posed problem

Most geophysical problems lie in the category of ill-posed problems (Menke,
1984). This type of problem is neither purely under- or over-determined. It
characteristically has more observations than unknowns, but these observations
are not linearly independent. Thus, they give redundant information about the
problem. An example of this would be a scattered wavefield travelling through
the same tomographic cells for repeated experiments, while others are never
crossed. Some areas of the grid have no information, while others may have
multiple observations for particular model parameters.

Within this particular example of the ill-posed problem, the observations
are known to be noisy and inaccurate. The inverse problem is governed by the

relation

d=Gm+n, (3.1.4)

where n is Gaussian noise.
The cost function of an ill-posed problem contains a data misfit term and a
constraint term to satisfy its mixed-determined nature. In this example, an Lo

measure of misfit is chosen, and the constraint is a minimum norm solution
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J(m) = (d — Gm)"(d — Gm) 4+ ym’m. (3.1.5)

The parameter p defines the amount of weight or priority given to satisfying
the minimum norm constraint versus the data misfit term. This parameter is
appropriately named the weighting or trade-off parameter. The first term of the
cost function is known as the data misfit term, while the second term is called the
regularization term. Neither term can be perfectly satisfied, so the best solution
is a compromise between the two.

The optimum weighting parameter is different for each inverse problem. How-
ever, both the data misfit and constraint term must be satisfied to a certain
degree to retrieve a realistic solution. If the weighting parameter is set to zero,
the solution will fit the observations completely: both the data and the noise.
The minimum norm constraint will be ignored completely.

Conversely, as the weighting parameter approaches infinity, all efforts will be
put towards minimizing the model norm. This will create a null solution that
does not fit the data. A larger weighting parameter also creates a smoother
solution, as more effort is made to cluster the values near zero.

To find the minimum of the cost function, the derivative of the function with

respect to the model parameters is set to zero

VJ(m) = i[de —d’Gm - m”’GTd + m"GT"Gm + ym’m], (3.1.6)
Oom

so that

VJ(m) = 2GT"Gm — 2G"d + ;2m = 0. (3.1.7)

For details on the derivative of a cost function with respect to a vector see

Appendix D. This reduces to the damped least squares solution
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m = (G'G + uI) *G"d. (3.1.8)

The matrix GTG is in general not invertible for ill-posed problems (Strang,
1986). Adding the diagonal term contributed by the weighting parameter pre-
vents the instability associated with inverting zero terms. This addition is
known as damping or pre-whitening, hence the damped least squares (DLS)

solution (Claerbout, 1992).

3.2 Quadratic constraints

Constraints on the solution are expressed as regularization terms in the cost
function. The constraints discussed here result in a quadratic cost function, and
therefore, a linear inverse problem. In geophysical inverse problems, the most
common type of constraint is one that enforces smoothness. This is because the
properties in the earth’s layers often change along a continuous gradient in depth.
As well, a solution with minimum variation is the simplest one: overly compli-
cated structures that have a lesser chance of being realistic are avoided (Constable
et al., 1987).

The minimum norm regularization term forces the solution values to cluster
around zero. In this way, the damping term acts as a smoothing operator. Other
forms of constraints to find simple Earth models are implemented by minimizing
variation between adjacent cells in a tomographic grid. These constraints can be

implemented as weighting functions within the DLS solution.

3.2.1 Weighting functions

When there exists prior knowledge about the solution or experiment, it may be

desirable to give more credence to certain observations than others. Commonly,
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data with a great amount of error or noise are given less weight in the solution.
This is expressed within a weighting matrix in the cost function. The new cost

function will be

J(m) = (Wq[d - Gm])"(Wq4[d — Gm]) + p(W,m)' (W,m), (3.2.1)

where W4 and W, are the weighting matrices on the data misfit and model

parameters respectively. The resulting solution is

m = (GTW4 " W4G + yW,' W) 'GTW, " Wad. (3.2.2)

Within the previous equation, the combined data weighting matrices are
equivalent to the inverse of the covariance matrix of the data, WqlWq =
C,' (Menke, 1984). The diagonal of the covariance matrix corresponds to the
variance of the recorded data. Therefore, values with large variance or limited
accuracy receive little weight, and those with small variance or greater accuracy
are heavily weighted. The model weighting terms are related in the same way to

the covariance of the prior model parameters.

Flat and smooth constraints using weighting matrices

Weighting matrices can be used to enforce flat or smooth solutions. Minimizing
the first derivatives of the model norm will create a solution that has little change
between adjacent parameters: a flat solution. In the same vein, minimizing the
second derivatives of the model norm will create a solution with minimum abrupt
changes between sets of parameters. This results in a smooth solution. Both of
these constraints limit the variation of the solution, and construct simple Earth

models.
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The derivatives can be written as weighting matrices that act on the vector of
model parameters. These are constructed using a finite difference approximations

to first and second order derivatives. For example

1 -1 0 0

0O 1 -1 0
Dl =

0 O 1 -1

0 O 0 1

and

1 -2 1 0

0O 1 -2 1
D2 ==

0 O 1 =2

0 O 0 1

Within the solution to the cost function, the model weighting matrix of equa-
tion 3.2.2 is replaced by the derivative matrix. A flat solution will be retrieved

by

m= (G'G +uD]D;)"'G"d, (3.2.3)

and a smooth solution by

m = (GG + uDID,)'G"d. (3.2.4)

Smoothing can be enforced in both the horizontal and vertical directions in two

dimensional problems. In these cases, the matrix of model parameters will be
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placed into a vector using lexicographic notation. The derivative matrices for
such cases will be determined by which model parameters are adjacent in the

vector m.

3.3 Solving the discrete inverse problem

3.3.1 The direct algorithm

A direct approach to solving the inverse problem involves two steps. First, the
analytic solution is found by minimizing the cost function. This gives an expres-

sion for the estimated model parameters, such as the DLS solution

m = (G'G + pul) 'G"d. (3.3.1)

The solution is found numerically by directly recovering the inverse of the matrix
(GTG + uI). The inverse can be found using any number of computational
schemes, such as Gaussian elimination. See Strang (1986) and Press et al. (1988)
for a further discussion of numerical techniques. It is not efficient to solve an
inverse problem directly when the matrix to be inverted is large or sparse. In

both cases, less time consuming methods exist.

3.3.2 Minimization of the cost function

In situations where the direct solution is not the most effective approach, one
can use the cost function itself to find a solution. The cost function associated

with the damped least squares solution,

J(m) =m’G"Gm - d”Gm - m"G"d +d”d + ym"m, (3.3.2)
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is an example of a quadratic equation. Rather than finding the solution directly,
one can minimize the cost function using a gradient algorithm. These methods
are known as gradient methods because they rely on the gradients of the cost
function to guide them toward the minimum. The simplest of these approaches

is the steepest descent algorithm.

Steepest Descent

An example of a quadratic function is the cost function 3.3.2. When the matrix G
is positive definite, this function creates a paraboloid (Figure 3.1). The steepest
descent algorithm begins at a point my, and moves in the direction opposite
the largest gradient, effectively sliding down to the minimum of the function as
illustrated in Figures 3.2 and 3.3. The drawback to this simple method is that
it is only able to change directions at finite steps. In essence, it is unable to
turn to follow the curves and slopes of the function. Strang (1986) describes
the algorithm “like a skier who can’t turn; he goes forward until his path begins
to climb”. In certain situations, like when in a narrow valley, this causes the
algorithm to take many repetitive steps to correct its path. Because of this

disadvantage, the more sophisticated conjugate gradient method is preferred.

Conjugate gradients

The conjugate gradient (CG) algorithm works in much the same way as the
steepest descent method. The difference is in the direction of descent: to pre-
vent tracking back and forth, this algorithm will proceed in a direction orthogonal
to all previous steps. In this way, the CG scheme arrives at the minimum more
quickly. Scales (1987) describes an algorithm to solve least squares problems,
adapting the classic CG algorithm of Hestenes and Stiefel (1952). This method

is known as conjugate gradients for least squares (CGLS), and its structure is
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Figure 3.1: The cost function in equation 3.3.2 containing a positive definite
matrix G will be a paraboloid. Contours drawn beneath the function indicate

constant J(m).
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Figure 3.2: The gradient of the quadratic function indicated by the direction
and magnitude of quivers superimposed on the contour plot. Steepest descent
moves in the direction opposite to the largest gradients to find the minimum

point where the gradient is zero.

Figure 3.3: The directions of steepest descent as it enters a narrow valley.
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shown below.

# CGLS Subroutine
Initilization

so = d - Gmg

ro = po = GT'(d - Gm)

# where 1y is the residual and py the gradient in model space

2 = Gpo
for k = 0,1,
alphay 1 = (r}rr)/(q}qr), ¥ to determine step size

mg1 = M + alphag ips,

# arrive at new point myy1 in model space by moving along gradient direction

Sk+1 = Sk — alphagii19k,
Ter1 = Glspi1, # update residual
betayy; = (rf, Tp1)/ (xfre),

Pk+1 = Tgy1 + betap 1Pk,

# update direction py+1 orthogonal to previous directions

Ut+1 = G Pry1-
end
Augmented matrices

The CGLS algorithm contains only one matrix operator, G. To obtain the DLS
solution a system of augmented matrices is used. The inverse problem is written

in terms of the augmented operator matrix and data vector

GAm:dA. (333)
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The augmented operator is defined as

G
G = , (3.3.4)
Vil

where G is size N X M, i is a scalar, and I is an identity matrix size M x M.

The augmented data vector is

d
dy = : (3.3.5)

VA

where d is a vector length N x 1, and z is a vector of zeros, length M x 1.

The CGLS algorithm will recover the least solution

m = (GLG,) 'G%d,

_ [(GT Jit?) \/pr ]_I(GT Jir?)

= (GTG +pul)'G"d. (3.3.6)

VA

Following the same procedure, the augmented matrix of a flat solution (3.2.3) is

G
Gy = , (3.3.7)

Vit Dy
where G is size N X M, p is a scalar, and D, is the first derivative matrix, size

M x M. The augmented data vector remains (3.3.5). The augmented matrix of

a smooth solution (3.2.4) simply replaces D; with Ds.
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3.3.3 Computation time

The CGLS algorithm of the previous section recovers the solution in an indirect
way. Rather than performing a direct matrix inversion, the solution is found by
iteratively performing forward and adjoint modeling. Computation time may be
minimized by exploiting this characteristic of the indirect algorithm. Subrou-
tines that perform the forward and adjoint modeling actions, Gm and G’d, can
replace matrices. In this scheme, the matrix operator is not stored directly, so
memory is saved (Scales, 1987). Additionally, when the matrix G is sparse, the
operator subroutines will reach the solution more quickly than matrix multipli-
cation, which performs unnecessary computations.

Lastly, because the CG algorithm moves successively toward the solution,
it can be stopped at any time. The interim solution is often acceptable, so

computing time may be minimized in this way (Scales and Smith, 1994).

3.3.4 Determining weighting parameters

If there is enough knowledge about the data, a simple numerical test can be done
to determine weighting parameters. To perform the x? test, the noise must be
Gaussian, have a zero mean, and a known variance of ¢,, (Tarantola, 1987). The

noise estimate for a specific value of the trade-off parameter p will be

n(p) =Gm((p) —d. (3.3.8)
The x? value is defined as
T
n(p) n(p
() = 2L RG). (339

For Gaussian distributed noise, the expected x? value lies in a range deter-

mined by the number of observations, N. Any value x%(x) ~ N = +/N will be a
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good choice. Thus, using this information, an appropriate weighting parameter

may be chosen.

3.4 The behavior of quadratic constraints

In Chapter 2, the numerical forward and adjoint modeling operators for the linear
scattering problem were described. In this section, these operators are placed
into the framework of discrete inverse theory. This creates the hybrid iterative
inversion method referred to as migration/inversion (Jin et al., 1992; Thierry et
al., 1999). The integral and the convolutional operators described in Chapter 2

are combined into the Born operator, B = CL, to create the inverse problem

J(m) = (d — Bm)"(d — Bm) + gR(m), (3.4.1)

where R(m) is a regularization term. Three methods of achieving solutions
with minimum variation are compared: the minimum norm, flat, and smooth
constraints. All of the examples are performed on acoustic, constant density
media. The model parameters consist of acoustic velocity perturbations, and the
data of seismic traveltime and amplitude information.

In the first example, a 1D case is created by allowing the model to vary
only with depth, and by placing the source and receiver at the same horizontal
position at the earth’s surface (a zero-offset experiment). Because the problem
is a simple one, the modeling operators are put in matrix form. A direct solution
is found by inverting the matrices using a subroutine provided by Matlab.

Figure 3.4 shows the velocity model and source wavelet. The background
velocity model is set to be a homogeneous 2000 m/s, from which the acoustic
perturbation is calculated, and used to create the synthetic data. One percent

Gaussian noise is added to the data. Three different weighting parameters are
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compared for the damped least squares solution. It is apparent that when the
weighting parameter is too large, most of the effort is directed towards minimizing
the model norm. This results in a solution with a small magnitude that does not
fit the data well. Conversely, as the trade-off parameter becomes too small, all
of the emphasis is placed on fitting the observed data, including the noise. This
creates artifacts in the solution. The best solution determined by the x? test is
the one corresponding a misfit value of 250, or approximately to u = 0.9 x 1076.

The behavior of the solution response to the weighting parameter, p, is further
explored in Figure 3.5. The x? test demonstrates that the data misfit and chi-
squared values will increase with the trade-off parameter. This follows from the
simple definition that a larger weighting parameter results in less emphasis on
fitting the data, and more on minimizing the model norm. It then makes sense
that the model norm is inversely proportional to the trade-off parameter. The
final curve in Figure 3.5 is the trade-off curve: illustrating that one can have
either a low value of misfit or model norm, but not both.

Two dimensional examples are larger, and so direct matrix inversion is no
longer feasible. Therefore, the 2D examples are created using a CG algorithm
with forward and adjoint modeling subroutines. The source-receiver geometry of
the next two examples is seen in Figure 3.6.

The first inversion is performed on a simple perturbation of one pixel (Fig-
ure 3.7). Three percent Gaussian noise is added to the synthetic data, and
solutions for the three constraints are recovered. Figure 3.8 compares the cross
sections of the solutions. This figure illustrates that the DLS solution puts the
most emphasis on fitting a solution near to zero, and has the smallest magnitude.
The D, smoothing creates a smoothly varying solution opposed to the flat one
retrieved by the D; constraint. This is because it minimizes variation over a

larger number of adjacent velocities.
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Figure 3.4: The velocity model (A), and source wavelet (B) are used to generate
seismic data (C) with the forward operator. One percent Gaussian noise is added
to the synthetic data. The damped least squares solutions for three different
values of the weighting parameter are compared in (D). Both the source and

receiver are located at the Earth’s surface, where depth = Om.
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Figure 3.5: The x? test, where the dashed line indicates the desired misfit value
found by the number of observations (A). Also shown are the model norm as a
function of the weighting parameter, y, (B), and the trade-off curve for the misfit

and model norm (C).
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Figure 3.6: The source-receiver geometry of the 2D examples.

The inverse problem is solved using the conjugate gradient algorithm to find
the minimum of the cost function. Theoretically, the algorithm will recover the
exact solution in n iterations, where n is the largest dimension of the matrix
operator. However, due to round-off error, this does not occur. It is standard
practise to pick a stopping criterion that analyzes the changes in the solutions as
the algorithm proceeds (Scales and Smith, 1994). Often, the solution obtained
before n iterations is very close to the final one. In this way, an acceptable
solution may be obtained more rapidly using a less stringent stopping criterion.
The minimization of the cost function for the DLS solution is shown in Figure 3.9.
After the algorithm has reached 100 iterations, the solution changes very little.
A comparison of four different solutions retrieved as the algorithm converges
(Figure 3.10) shows that as little as 50 iterations could produce an acceptable

solution.
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Figure 3.7: A 2D inversion using the iterative approach of conjugate gradients.
Shown here are the acoustic perturbation (A), the source wavelet (B), synthetic
data (C), the solutions to the minimum norm (D), flat (E), and smooth (F)
constraints. The weighting parameters are p = 10 (D), py, = p, = 2 (E), and
e = iy =2 (F).
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Figure 3.8: A comparison of the cross sections at 20 m depth of the three solutions

in Figure 3.7.

The second inversion is done for a 2D step function illustrated in Figure 3.11.
Again, the inversion is performed for minimum norm, flat and smooth con-
straints. A comparison of the cross sections at 30 m depth illustrates the differ-
ence in the recovered images ( Figure 3.12). Similar to the last example, the DLS
solution has the smallest magnitude, as it seeks to be near zero. The emphasis
on keeping continuity between adjacent pixels is seen in flat constraint, while the

smooth constraint allows more variation.

3.5 Summary

Within this chapter, an overview of discrete inverse theory is given. This tech-
nique relies on forward and adjoint modeling to approximate numerically the

inverse. The numerical modeling operators have been derived from the analytic
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Figure 3.9: The magnitude of the cost function plotted against the number of

iterations performed by the CG algorithm. The algorithm is recovering the DLS

solution for the problem shown in Figure 3.7. The solution converges at 250

1terations.
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Figure 3.10: The solution recovered by the conjugate gradient algorithm at: (A)
10, (B) 50, (C) 100, and (D) 250 iterations.
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Figure 3.11: The second 2D inversion using the iterative approach of conjugate
gradients. Shown here are: the acoustic perturbation (A), synthetic data (B), and
solutions to the minimum norm (C), flat (D), and smooth (E) constraints.The

weighting parameters are p = 20 (D), p, = p, = 15 (E), and p, = p, = 15 (F).
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Figure 3.12: A comparison of the cross sections at 30 m depth of the three

solutions in Figure 3.11.

migration technique using the GRT. This results in a hybrid migration/inversion
algorithm that combines the advantages of direct and discrete inversion.

It is explained that the majority of geophysical inverse problems fall into
the category of ill-posed problems. This type of inverse problem requires a con-
straint to retrieve a stable, unique solution. The regularization terms of common
constraints have been introduced, and compared in the examples. I show how
the DLS solution is encouraged to cluster around zero, and is comparable to a
smoothing function. Minimizing the first and second order derivatives of the
model norm both minimize variation in the solution, but have different effects.
The former creates a flat solution, while the latter, a smoothly varying one.

Finally, the numerical algorithms to solve the discrete inverse problem are
discussed. It is pointed out that direct numerical techniques are only useful

in small problems. For larger problems, an iterative algorithm that searches
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the cost function for its minimum is more effective. Iterative schemes have the
added advantage of being able to implement the forward and adjoint modeling
operators as subroutines, saving memory. As well, the number of iterations may

be truncated, while still retrieving a close approximate to the exact solution.
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Chapter 4

Sparse inversion techniques

Solutions of limited variation have the advantage of avoiding irregular or large
deviations in the recovered Earth model (Constable et al., 1987). These do
not often make sense, and are not encouraged. However, there are situations
where more variation is desired, and a smooth solution is not appropriate. This
occurs in the geophysical problem of inverting for reflectivity information. Like
smoothness, sparseness in the solution is enforced through the regularization
terms of the cost function.

Once a reflectivity series is known, the relative impedance profile can be
recovered by integrating the reflection coefficients (Waters, 1978; Walker and
Ulrych, 1983). When sparseness is enforced on the first derivatives of a model
parameter, the resulting solution will be blocky, or piecewise continuous. This is
evident in the blocky impedance profile.

Within this thesis, the non-linear sparse regularization term introduced by
Charbonnier et al. (1997) for medical imaging will be tested for geophysical
applications. This constraint has the advantage of being especially suited for
blocky inversion problems. It is also easy to linearize.

In this chapter, sparse constraints are introduced as prior probability density
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functions in the Bayesian framework. The constraint of Charbonnier et al. (1997)
is referred to as a modified Cauchy prior, due to its similarity to a Cauchy
probability distribution. The exponential and Cauchy distributions, common in
sparse inversion techniques, are also introduced.

All three sparse constraints result in non-linear inverse problems. Because
they are weakly non-linear, the technique of iteratively re-weighted least squares
(IRLS) can be applied to solve them in a linear, iterative manner (Scales and
Smith, 1994). The effectiveness of these constraints is compared in the 1D
impedance inversion problem. This is an ideal problem to test with, because
both the recovered sparse reflectivity and blocky impedance profiles reveal prop-

erties of the solution.

4.1 Bayes Theorem

Bayes theorem combines prior knowledge of the model and data, expressed
as probability distributions, in order to make judgements about the recovered

model (Scales and Smith, 1994). Bayes theorem states that

P(m) P(d, m)
P(d)

P(m,d) = (4.1.1)

P(m) represents the probability distribution of the model parameters, m, known
prior to collecting data. It is referred to as the prior distribution of m. The like-
lihood function, P(d, m), describes how knowledge of the data modifies the prior
knowledge. The distribution of the data, P(d), plays the role of a scaling func-
tion. Finally, the posterior distribution term, P(m, d), indicates what is known
about the model parameters given the information provided by the observed
data (Box and Tiao, 1992). In other words, it is the probability that the model

is correct given a certain set of observations (Ulrych et al., 2001).
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Bayes theorem is commonly expressed without the normalization factor as

P(m,d) x P(m) P(d, m). (4.1.2)

A more thorough exploration of Bayesian methods is discussed by Box and

Tiao (1992), or Ulrych et al. (2001).

4.1.1 Derivation of the DLS solution using Bayes theorem

In the case of noisy data,

Gm—d=n, (4.1.3)

where n is the noise vector. The likelihood function is assigned to be the distri-

bution of the noise

P(d, m) = P(n). (4.1.4)

It is assumed that the noise has a Gaussian distribution, a mean value @ and a

variance o2. The probability function in this case is

P(n;) = ;02 erp (_1 (n; — ﬁ)Q). (4.1.5)

2Qm TO'Q

Assuming the mean value of the noise, 7, is zero, this term can be neglected. If
the noise is uncorrelated and the variance of each noise sample remains constant,

the total probability of the noise vector is



CHAPTER 4. SPARSE INVERSION TECHNIQUES 99

1 “1 &,
= W@xp (T‘Z ;nz>
= Kiexp (2%12 nTn> . (4.1.6)

The model parameters are represented by the vector composed of elements
m;, 1 =1,2,... M. These parameters are also assumed to have Gaussian distri-
bution, be uncorrelated, and have a variance 2, and a mean of zero. The prior

probability is then

P(m) = Qro2 )il exp (W m m)

-1

The likelihood probability function has been set to the probability of the noise.
Then, by substituting the likelihood (4.1.6) and prior (4.1.7) distributions into

Bayes rule (4.1.2), the posteriori distribution will become

—1 —1
P(m,d) « K1 Ky exp (ﬁ me) exp (2— nTn) ) (4.1.8)

2
m g

This can be rewritten, using the relation n = Gm — d

-1 -1
P(m,d) x K; Ky exp (— me> exrp (27‘2 (Gm — d)"(Gm — d)) .

(4.1.9)

One way to choose a solution is to find a set of model parameters such that

the posterior probability, P(m, d), is maximized. The solution is known as the
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maximum a posterior: estimator or MAP. Maximizing the posterior function is

the same as finding the minimum of

1 1
—InP(m,d) o —InK; K, + 57 m’m + 52 (Gm—d)"(Gm —d). (4.1.10)

m

The term —InK; K, is a constant, and will not change the solution that minimizes

—InP(m,d). Therefore, solution is found by minimizing

2
(Gm—d)"(Gm —d) + — m"m. (4.1.11)
Um

This takes the form of the following cost function

J(m)=(Gm —d)"(Gm —d)+ ym’m. (4.1.12)

where the weighting parameter is defined by the variance of the data and model

parameters

The Bayesian MAP solution reduces to the same cost function as the mini-
mum norm problem (3.1.5), which leads to the damped least squares solution.
Thus, Bayesian inversion gives another perspective on the same problem, where
minimizing an Lo norm of the model parameters corresponds to a Gaussian prior

probability distribution.

4.1.2 Gaussian prior probability functions

The constraints enforced to stabilize the inverse problem can be considered prior
information. By viewing the prior probability distributions, one can more intu-

itively understand the constraints placed on the solution.
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The probability of an Ly norm gives a Gaussian distribution

M

P(m) = Wexp (% ;(mi —m)> , (4.1.14)
where 0?2, is the variance and T is the mean. Gaussian probability functions are
shown in Figure 4.1. Equation (4.1.13) states that the weighting parameter in the
DLS solution is inversely proportional to the variance of the model parameters.
Therefore, in the Bayesian framework, a larger trade-off parameter is the same
as having a prior distribution with less variance. This implies that the solution
will be more strongly constrained to zero, and this is evident in the narrower
probability distribution. When the mean of the model parameters is not equal

to zero, this is equivalent to a minimum norm solution subject to a reference

parameter. A solution near to the mean or reference parameter is enforced.

4.1.3 Probability functions to enforce sparse solutions

Thus far, only Gaussian probabilities have been considered. As one might sus-
pect, different norms will have associated probability functions and characteristic
solutions. Another type of solution is a sparse solution. It is characterized by a
series that is primarily zeros, with a few non-zero spikes (Figure 4.2). When a
sparse solution is required, the L, norm is no longer appropriate. The correspond-
ing Gaussian probability function has a distribution tightly centered around the
mean, which will constrain the solution to smoothly vary around zero. Two
probability distribution which do create sparse solutions are the exponential and
Cauchy distributions.

The exponential prior distribution, when used to construct a MAP solution,
corresponds to the minimization of the L; norm of the model parameters (Taran-

tola, 1987). The L; norm is defined as the absolute value of a function
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Figure 4.2: An example of a 1D sparse series.

= Z Im; — . (4.1.15)

The exponential probability distribution is defined

P,,,(m) = % erp ( Z |m; — m|1> . (4.1.16)

Another distribution used to enforce sparseness is the Cauchy function (Taran-
tola, 1987; Sacchi, 1997; Sacchi et al., 1998). The Cauchy probability distribution

function is given by

(4.1.17)

M
P auc :
Cauchy (1) (mom) 11 14 (my —m) /o2, ]

It is easily seen that the exponential and Cauchy functions differ from the Gaus-

sian one in that they have narrower distributions at their peaks, and approach
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Figure 4.3: The probability distributions for Gaussian, exponential, and Cauchy

functions that have a mean, m = 0, and variance o2 = 4.

zero more slowly away from the mean (Figure 4.3). This is referred to in the
literature as a probability function having a long-tailed distribution. These dis-
tributions are more tightly centered around zero, and so less non-zero values are
present in the solution. Further, because of the long-tailed shape, the non-zero
values have more freedom to deviate from zero than in the Gaussian distribution.
This results in a solution of mostly zeros, with a few larger values interspersed:

a sparse solution.

MAP solution to an exponential prior distribution

Within this section, the MAP solution to an ill-posed problem using an expo-
nential prior is derived. As explained previously, the likelihood function P(d, m)

is equal to the probability of the noise. Assuming that the noise has a Gaussian
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distribution with a mean of zero, the likelihood function is

—1
202

P(d,m) = P(n) = K, exp ( (Gm - d)"(Gm — d)) : (4.1.18)

The prior is set to be an exponential distribution, with a mean of zero

P(m) = K, exp (;—1 Z|m,-\> | (4.1.19)

The posteriori term combines the two, becoming

P(m,d) «x K; Ky exp (% (Gm —d)"(Gm — d)) erp (;—:L Z \m,\) .
= 20

Finding the maximum of the posterior function is equivalent to finding the

minimum of —{nP(m,d), or

M
1 1
T'Q(Gm—d)T(Gm—d) +U—22|mi|, (4.1.21)
moi—1
which can be written as the cost function
J(m) = (Gm — d)"(Gm — d) + p R(m), (4.1.22)

where the weighting parameter, ;1 combines the constant variance terms. The

regularization term, R(m), is defined

R(m) = Z Imy] . (4.1.23)
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Minimizing this cost function results in a non-linear problem. The minimum is

found by taking the gradient

0
VJ(m) = m (Gm —d)"(Gm — d) + u R(m)
0
_ T T
= 2G'Gm —-2G'd+u 8mR(m). (4.1.24)

The derivative of the regularization term is

0 my
—R = 51 = —. 4.1.25
e T0m) = sign(my) = (7 (4.1.25)
Subsequently,
OR(m) mi1
om1 [m1|
VR(m) = 327;) = ':i‘ . (4.1.26)

Oms3 |ma3|

In order to write the equation in weighted DLS form, the regularization gradient

is expressed

|ma|
0 ﬁ 0 0 Mo
VR(m) = > . (4.1.27)
0 0 @ 0 ms
0 0 0

VR(m) = Qm, (4.1.28)
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where the diagonal matrix Q is defined

1

mg|

Qi (4.1.29)

To prevent instability when small model parameters are present, the matrix Q

is usually modified to

Img|~t if fmy| > €

Qi =
el if |my| <e,

where € is a small, positive parameter (Scales and Smith, 1994).
When all the constants are collected together in the weighting parameter, the

solution to the cost function becomes

G'Gm - G'd+pQm=0. (4.1.30)

Note that since Q is a function of the model parameters, m, the solution is found

by solving a non-linear equation.

MAP solution to a Cauchy prior distribution

The prior distribution is set to be a Cauchy distribution (4.1.17) with zero mean,
and the likelihood distribution remains Gaussian (4.1.18), as in the previous

section. The posterior distribution then becomes

M
1
P(m,d) X KlKQ[Hm]X
i=1 i/ Ym

exp (2_—1 (Gm — d)"(Gm — d)) | (4.1.31)

o2
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Using the definition that 1/a = exp (In(1/a)) = exp (—In(a)), the posterior

distribution can be defined as

M
P(m,d) x K;Kjezxp (Z—ln(l—i—m?/afn)) X

i=1

erp (% (Gm — d)"(Gm — d)) : (4.1.32)

Finding the maximum of the posterior function is equivalent to finding the

minimum of

M
1 T 2,2
5.3(Gm—d)7(Gm—d) + Zl In(1+m?/o2), (4.1.33)
which can be written as the cost function
J(m) = (Gm — d)"(Gm — d) + pR(m). (4.1.34)
The regularization term is defined
M
R(m) =) in(l1+m?/oZ), (4.1.35)
i=1
and its derivative is
0 2 1
— = — —_— . 4.1.36
By T = G T e o (4.1.56)

The constant term, U%, is absorbed into the weighting parameter u, and is no
longer included as part of the regularization gradient. Thus, it can be stated

that
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OR(m) 1
omy 2m 1+m? /o2,
OR(m) 1
VR(m) = | o™ | = |2 e
oms L 14m2/o2,
This is rearranged into
s 0 0 0
14+mi/o,
1
VR(m) —9 0 1+m3/02, 0 0
1
0 0 j—yre) 0
0 0 0

Finally, the gradient of the regularization term is

VR(m) =2 Qm,

where the diagonal matrix Q is defined

1
S 1+mifoZ’

Qii

mo

ms
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(4.1.37)

(4.1.38)

(4.1.39)

(4.1.40)

The solution to the cost function is again given by a non-linear equation

GTGm - G'd+ 1 Qm=0.

MAP solution to a modified Cauchy prior distribution

(4.1.41)

The focus of this work is the sparse constraint used by Charbonnier et al. (1997).

Their regularization term is presented within the cost function, rather than as
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a Bayesian prior distribution. These two have been shown different perspectives
of the same problem, and so the derivation of the solution is continued from the

statement of the cost function. The cost function to be minimized is again

J(m) = (Gm — d)"(Gm — d) + pR(m). (4.1.42)

The regularization term is defined

; : mrﬁ 57 (4.1.43)

where 0§ is a scaling parameter. The derivative of the regularization term is

(me/0) (4.1.44)

This can be rearranged into

0 1 my

R(m) =25 b (4.1.45)

Bmk

The constant term, 6%, becomes part of the weighting parameter y, and is no
longer included as part of the regularization gradient. Thus, the gradient is

defined

OR(m)
oma 2 M1 [Ty 7T
OR(m) 1
VRm)=| %™ | = 22 TG | (4.1.46)
OR(m) 1
ams 2 M3 [ 0)7T2

This is rewritten
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TG /7T 0 0 0 ) [m
0 : 0 0
VR(m) = 2 [1+(m2 /5P 1 ? (4.1.47)
0 0 e O |7
0 0 0
Finally, the gradient of the regularization term is
VR(m) =2Qm, (4.1.48)
where the diagonal matrix Q is
1
Qi = (4.1.49)

[1+ (mi/8)**

The similarity to the previously discussed Cauchy prior distribution constraint,

1
1+ (mifom)’]”

is apparent. For this reason, this sparse constraint will be referred to as the

Q(Cauchy) W = (4150)

modified Cauchy prior distribution. The non-linear solution to the cost function

again reduces to

G'Gm - G'd+pQm =0. (4.1.51)

4.2 Solving the non-linear problem

All the sparse regularization terms introduced result in non-linear expressions.

The degree of a non-linearity in a problem will determine the optimum solution



CHAPTER 4. SPARSE INVERSION TECHNIQUES 72

method. There are four general techniques of solving non-linear problems (Taran-
tola, 1987). The first method is known as systematic exploration, or the exhaus-
tive search technique. It consists of systematically trying all combinations of
model parameters to find the solution. This method will work equally well for
all degrees of non-linear problems. However, as one might suspect, it is extremely
time consuming, not very realistic, and not recommended except for very small
problems.

The second class of algorithms to solve non-linear problems are the stochastic
ones. These are useful for strongly non-linear problems, where the cost function
is multimodal, because they search a wide portion of the model space. Included
in this category are Monte Carlo techniques, Simulated Annealing (Kirkpatrick
et al., 1983), and Genetic Algorithms (Scales and Smith, 1994).

Gradient methods are most suited for solving quasi-linear problems. As the
name suggests, these techniques involve using the gradient of the cost function
to search for the minimum. Examples include the Newton method and its mod-
ifications, steepest descent and the conjugate gradients method. They can be
used for all degrees of non-linear problems, but run the risk of becoming stuck
in a local extremum in multi-modal functions.

Finally, if the non-linear problem is quasi-linear, one can approximate it as
a linear problem and solve it iteratively. This method is known as iteratively
re-weighted least squares (IRLS) for reasons which will be discussed further on.
Following the example of Scales and Smith (1994), I demonstrate how the inverse

problem subject to the three sparse constraints may be solved using IRLS.

4.2.1 Solving sparse inverse problems with ITRLS

The solution to a cost function containing an non-linear sparse regularization

term is
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-1
m=|G'G+pQ| G'd. (4.2.1)

The matrix Q is a diagonal matrix defined in terms of the vector m. The
definitions of this weighting matrix for the exponential, Cauchy, and modified
Cauchy prior distributions were derived in the previous section. This solution

may be found iteratively by setting

-1
m‘ = |G'G+puQ""'| G'd, (4.2.2)
where
Q" = Q(mF ). (4.2.3)

The index k£ indicates the iteration number. The algorithm follows the steps

listed below, outlined by Sacchi (1997).

1. Assume an initial vector of model parameters, m. This can be set to a

default vector of zeros if there is not enough information to begin elsewhere.
2. Select the trade-off parameter.

3. Compute the matrix GTG, and the value of Q° from the initial vector of

model parameters.
4. Tteratively solve the non-linear equation (4.2.2).

5. Proceed until the following tolerance criterion is satisfied

‘ ch _ ch—l |
(17% |+ .7=11) /2

< Tolerance, (4.2.4)

where J* is the cost function evaluated at iteration k.
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6. Evaluate the x? criterion using the data misfit to determine if the trade-off

parameter should be adjusted.

It can be seen that the iterative solution resembles the weighted damped least
squares solution, as described by equation (3.2.2). The weighting matrix Q is
updated, and hence the solution is re-weighted at each iteration. It is from these
properties that the iteratively re-weighted least squares (IRLS) algorithm derives
its name.

The weighting matrices for each of the three sparse constraints award a weight
inversely proportional to the corresponding model parameters. Very small or zero
values are awarded resulting in a solution that is primarily zeros, except where

it is necessary to deviate from this range to satisfy the data.

4.3 Applications to acoustic impedance inver-
sion

4.3.1 Reflection coefficients and acoustic impedance

According to Snell’s Law, reflected and refracted (transmitted) waves will occur
at boundaries between two different media (Beck, 1991). As an incident wave
encroaches on a boundary, its energy will be partitioned into reflected and re-
fracted waves. The magnitude of energy that each wave receives is indicated
in their amplitudes, and depends on the contrast in material properties at the
boundary. An extreme boundary will transmit very little energy, and reflect al-
most all of it. This is obvious in the simple thought experiment of sending a
transverse wave along a rope to a fixed point on a wall. As the wave comes to
the interface between air and solid, it will be reflected back at approximately the

same magnitude.
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This behavior can be described mathematically, and gives rise to a defini-
tion of the ratios of the amplitudes of the incident, transmitted, and reflected
waves (see Appendix B). For a 2D acoustic medium, where the incident wavefield

approaches perpendicular to the interface dividing 2 materials

Atrans _ 2 P1C2

= ; 4.3.1
Ain, pi1€1 + p2ca ( )

The subscripts on density p, and acoustic velocity ¢ indicate which material the
property relates to. Note that the wave travels from material 1 into material 2.
The ratio in equation (4.3.1) is also known as the transmission coefficient. In a

similar vein, the reflection coefficient is found by

Arefl _ P2C2 — 1€y

= . 4.3.2
A pic1 + p2ca ( )

The reflection coefficient, or reflectivity, can also be written in terms of acoustic

impedance, I = pc, as

L-L
L+

(4.3.3)

In geophysics, one of the most common representations of the earth is as
a layered model, where p, and c; represent the density and velocity of the k*
layer. One can relate the reflection coefficient and acoustic impedance of each

layer, assuming a normal incidence wave

Ipy1 — I
Tp = ——————— . 4.3.4
S AR A ( )

The impedance values are calculated from wavefield data recorded in time, so it

is more convenient to express this relation in time
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I(t+1) - I(%)
It+1)+1(t)

r(t) = (4.3.5)

Assuming that the difference between the two impedance values is small, it can

be approximated that I(t+ 1) =~ I(t)

LT+ 1) —I(8) _ I(AD)

B ENESORET R (4.3.6)

r(t)

This relation can be written as a differential when the reflection coefficient is rel-
atively small (r < 0.3) (Waters, 1978; Walker and Ulrych, 1983). The reflectivity

is approximated

r(t) =~ 570 ~ 5

dI(t) _ & In[I(1)]
U S (4.3.7)

When this equation is integrated with respect to time, an expression for the

relative impedances occurs

In ;((ti)) = /to 2r(n)dn, (4.3.8)
II((;)) = exp [Q/to r(n)dn] . (4.3.9)

Assuming that to = 0, the impedance at time ¢ becomes

I(t) =1(0) exp [2/0t7“(77)d77] , (4.3.10)

where I(0) is the initial impedance value.
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4.3.2 The convolutional model

The relationship between reflectivity and seismic information is expressed in the

convolutional model

s(t) =1(t) ® w(t), (4.3.11)

that includes terms for the seismogram, s(t); source waveform, w(t); and the
earth impulse response, I,.(t). The earth’s impulse response includes the reflec-
tion coefficients as well as all other physical responses. These other effects include
geometrical divergence, anelastic absorption, wavelet dispersion, transmission
losses across boundaries, multiple reflections and mode conversions (Oldenburg
et al., 1983; Margrave, 1998). By combining many of these terms with the source
waveform term, as well as assuming that the data has been processed to remove

as many of the earth’s other effects as possible, the convolutional model becomes

s(t) = we(t) @ r(t) + n(t). (4.3.12)

In this expression, n(t) is Gaussian noise, r(t) is the reflectivity series, and we(t)
is the earth filter that includes the source wavelet. All effects accounted for in
the earth filter term are those considered stationary, or those that do not change
as the wave propagates forward in time and depth.

A fundamental problem in retrieving the reflectivity series from the seismo-
gram is that the source wavelet and resulting seismic data are bandlimited. This
creates a null space in the frequency domain, and the recovered Earth model will
be bandlimited. To demonstrate this, a simple example is created (Figure 4.4).
The earth filter is set as a 30 Hz Ricker wavelet. A synthetic seismogram is cre-
ated by convolving the wavelet with a random reflectivity model. The frequency

spectrum of this model is displayed in Figure 4.5.
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Figure 4.4: The reflectivity series (A) and wavelet (B) used to create the synthetic

seismogram (C). One percent Gaussian noise is added to the synthetic data.
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Figure 4.5: The frequency spectrum of the wavelet, reflectivity and seismogram of
the simple model. It is clear how the bandlimited wavelet truncates the spectrum

of the seismic data.
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4.3.3 The discrete inverse problem

The convolutional model can be posed as a discrete inverse problem

s=Wr+n. (4.3.13)

The matrix W is the earth filter presented in convolutional form (see Appendix
C). This problem is non-unique, due to the missing frequency information in the
data. Therefore, it must be regularized to retrieve a stable and unique solution.
The most common constraint is a sparse constraint on the reflectivity.

A sparse solution creates the most simple earth model possible: the one with
the least number of layers. In addition, enforcing isolated spikes in the reflectivity
series approximates a superposition of delta functions. This will increase the
frequency content, following from the fact that a delta function has a white
frequency spectrum. The two most common methods of enforcing sparseness in
impedance inversion are prior Cauchy or exponential probability distributions
(Oldenburg et al., 1983; Sacchi, 1997; Djikpesse and Tarantola, 1999).

The cost function is

J(r) = (Wr —s)T(Wr —s) + u R(r), (4.3.14)

where R(r) is a function to enforce sparseness. Once the reflectivity solution is
found, the impedance series can be recovered using equation (4.3.10). The DLS
solution is compared to solutions of three sparse constraints: the exponential,
Cauchy and modified Cauchy prior distributions. The non-linear problems are
solved using IRLS. Finally, because the 1D problem is relatively small, the oper-
ators are kept as matrices, and inversion is performed using a Matlab function.

The recovered reflectivity is displayed in Figures 4.6. The narrower peaks

within the reflectivity series recovered by the sparse constraints indicate a broader
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Figure 4.6: The reflectivity series recovered by DLS (A), and the exponential
(B), Cauchy (C), and modified Cauchy (D) prior distributions.

frequency content than the DLS solution. The frequency spectrums of the re-
flectivity (Figure 4.7) show that though all the sparse solutions increase the
bandwidth beyond the 80 Hz of the data. The Cauchy and modified Cauchy
priors recover the most accurate reflectivity estimates and frequency spectrumes.
The recovered impedance profiles are displayed in Figure 4.8. The best solu-
tion is recovered by the modified Cauchy distribution. The piecewise continuous
solution manages to retain sharp discontinuities while preserving smooth, planar
areas. This agrees with previous studies that find the modified Cauchy distribu-
tion to be especially suited for blocky inversion (Charbonnier et al., 1997).
Within the geophysical industry, it is a general rule that further constraints
on the reflectivity problem are necessary to recover a suitable solution. The

most common technique of adding constraints is to use prior information of
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Figure 4.7: The frequency content of the reflectivity recovered by DLS (A), and
the exponential (B), Cauchy (C), and modified Cauchy (D) prior distributions.
Note that each frequency spectrum is scaled to a maximum of one for display

purposes.
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Figure 4.8: The impedance series recovered by DLS (A), and the exponential
(B), Cauchy (C), and modified Cauchy (D) prior distributions. The reference

impedance series of the model is represented by the dashed line.



CHAPTER 4. SPARSE INVERSION TECHNIQUES 84

the geological model. When an oil or gas well is drilled, information about
the velocity and density of the surrounding material is recorded. Impedance
information calculated from these measurements will constrain the model, and
assist in increasing frequency bandwidth. Knowing that the impedance is a
function of the integral of the reflectivity, constraints can be directly placed on

the reflectivity inversion. The new cost function will become

J(r) = (Wr —s)"(Wr —s) +a(Cr —¢)"(Cr —¢) + p R(r). (4.3.15)

The matrix C is a simple integrator operator, and « is the associated weighting
parameter. The vector of impedance constraints, ¢, is in the form of the left-hand

side of

%ln [II((;))] = /to r(n)dn. (4.3.16)

The same synthetic data are used in the inversion. The three sparse prior
distributions are tested, and 4 impedance constraints are given. The recovered
reflectivities and impedances are displayed in Figures 4.9 and 4.10. Finally,
the frequency spectrums of the three solutions are compared in Figure 4.11. It
is apparent that the solutions match our earth model more closely, and that
frequency content is increased. Again, the modified Cauchy prior distribution
selects the best solution. Not only does it allow the sharp discontinuities in the

impedance profile, but the constant layers are relatively smooth and artifact free.
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Figure 4.9: The reflectivity series recovered by the exponential (A), Cauchy (B),

Reflectivity

and modified Cauchy (C) prior distributions, subject to 4 impedance constraints.
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Figure 4.10: The impedance series recovered by the exponential (A), Cauchy (B),
and modified Cauchy (C) prior distributions, subject to 4 impedance constraints.

The reference impedance series of the model is represented by the dashed line,

and the constraints by stars.
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Figure 4.11: The frequency content of the reflectivity recovered by the expo-
nential (A), Cauchy (B), and modified Cauchy (C) prior distributions, subject
to 4 impedance constraints. Note that each frequency spectrum is scaled to a

maximum of one for display purposes.
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4.3.4 Behavior of the hyperparameters of the modified
Cauchy prior

Recall that the modified Cauchy prior results in a solution

—1
b = [GTG + Q] GTd, (4.3.17)
where
kol = ! (4.3.18)
[T+ (miTh )2 -

This particular prior distribution has a greater flexibility in specifying model
constraints because of its two hyperparameters: g and 6. In this section, the
interaction and behavior of the weighting terms are explored. In order to isolate
the parameters solely in the sparse regularization term, an impedance constraint
is not added to the cost function.

A series of tests on synthetic data are performed to understand the roles that
0 and p play in determining the solution. A seismogram is created by convolving
a 35 Hz Ricker wavelet with a known reflectivity series, and adding one percent
Gaussian noise (Figure 4.12). The first step is to confirm that our understanding
of the limiting cases of the regularization term is correct. To test this, u is held
constant, while the values of the scaling parameter § are varied. The recovered
values for reflectivity are shown in Figure 4.13.

It is shown that when § is too large, sparseness is not enforced. Correspond-
ingly, when § is small, the solution becomes very sparse. This follows from what
one would expect from the regularization term: that ¢ is inversely proportional
to the amount of weight placed on the regularization term.

The next test is to determine how the two parameters affect the data misfit

of the solution. Using the x? test, it is found that there are multiple pairs of
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Figure 4.12: The reflectivity series (A) and wavelet (B) used to create the syn-
thetic seismogram (C). One percent Gaussian noise is added to the synthetic

data.
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Figure 4.13: The recovered reflectivity for 3 different values of the scaling pa-

rameter, §, when the trade-off parameter, y, is held at a constant 107
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Figure 4.14: A logarithmic plot of x? versus the trade-off parameter y, for varying

values of the scaling parameter J.

parameters that will give the same misfit (Figure 4.14). As expected, larger
values of the trade-off parameter or smaller values of the scaling parameter ¢ will
increase misfit.

To better understand the multiple solutions, three different solutions that
have the desired x? value are examined. The recovered values for reflectivity are
displayed in Figure 4.15. There is a single solution that is most accurate. When
the scaling parameter is small with respect to the reflectivity, the solution is very
spiky, and so a small p is necessary preserve fidelity to the data. If ¢ is large
with respect to r, the solution approaches a damped least squares solution. In
order to preserve a small misfit, u becomes large to keep the entire solution close
to zero, compensating for the lack of sparseness.

The final test is to explore the behavior of the cost function as the parameters

are changed. The cost function is redefined as:
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Figure 4.15: Solutions for the reflectivity that all have the same desired value of

x? = 200.
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J=M+puR, (4.3.19)

where M is the misfit term, (Wr — s)T(Wr — s), and R is the regularization
function, R(r). Figures 4.16 (A) and (D) show again that the data misfit, and the
magnitude of the cost function, are proportional to 4 and inversely proportional
to 0. The regularization function decreases for larger p values, as one would
expect (Figure 4.16(B)). Like the misfit term, it is inversely proportional to 0.
For larger values of 9, the denominator of the re-weighting matrix in equation
4.3.18 will approach 1, and the weight on the regularization function will decrease.
As 0 decreases, the denominator will become large, the fraction will approach
unity, and the weight on the regularization function will increase.

Figure 4.16 (C) illustrates the regularization function multiplied by the trade-
off parameter. One might be tempted to believe that this plot describes the
symmetry of the inverse problem, but it does not. The figure simply shows
that the magnitude of the regularization function is scaled by the corresponding

trade-off parameter.

4.4 Summary

In this chapter, the Bayesian definition of constraints as prior probability dis-
tributions has been introduced. A Gaussian prior probability distribution will
enforce a smooth solution that clusters around zero. Sparse constraints cor-
respond to long-tailed distributions that have a greater area tightly centered
around zero, but allow larger magnitudes in the few samples that deviate from
zero. The exponential, Cauchy, and modified Cauchy probability distributions
are all examples of sparse constraints. These sparse constraints result in non-

linear inverse problems. Fortunately, the problems are quasi-linear, and so IRLS



CHAPTER 4. SPARSE INVERSION TECHNIQUES 94

(A) (B)

0 5 -6 -4 -2 0 2 4
Log,, 1 Log,, 1
Figure 4.16: Different components of the cost function plotted against u for
varying values of the scaling parameter 0: the data misfit term (A), the regular-
ization term (B), the regularization term multiplied by the weighting parameter

(C), and the complete cost function (D).
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can be used to find the solutions in an iterative, linear manner.

The modified Cauchy function is compared to Cauchy and exponential prior
distributions within impedance inversion. It successfully recovers sparse reflec-
tivity series, and is especially suited for recovering blocky profiles. The examples
show that the modified Cauchy prior is able to recover sharp discontinuities
separated by flat, planar areas more successfully than the other distributions.
Finally, the behavior of the two hyperparameters of the modified Cauchy prior

is explored.
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Chapter 5

Blocky inversion techniques

5.1 Introduction

The idea behind blocky inversion techniques is simple: a function will become
piecewise constant if its first order derivatives are sparse. This is seen in blocky
impedance inversion. A sparse reflectivity will result in an impedance, I o
f . Tkdk, that is blocky. Blocky inversion is not only applicable in areas where the
model image consists of blocks, but can be used anywhere sharp edges divided
by planar features are present. It has the effect of sharpening and focusing the
image, and in this way reducing the effects of noise and blurring.

The blocky inversion constraint explored here has been introduced in the
previous chapter as the modified Cauchy prior distribution. In the context of
blocky inversion it will be referred to as the Edge-Preserving Regularization
(EPR) function. This regularization technique has been successfully applied to
gravity data (Portniaguine and Zhdanov, 1999), magnetic resonance imaging for
medical applications (Charbonnier et al., 1997; Barone, 1999) and radio astron-
omy (Molina et al., 2001).

Within this chapter, the applicability of the EPR function for 2D acoustic
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migration/inversion problems will be tested. I show the half-quadratic technique
of linearizing this function is equivalent to using IRLS (Geman and Yang, 1995;
Charbonnier et al., 1997). The linearization of the inverse problem creates a DLS
solution weighted with first order derivative flatness constraints. The flatness
constraint can be thought of as a form of smoothing, and so this is referred to as
a weighted, smoothed solution. The re-weighting matrices, or auxiliary variables
in the half-quadratic linearization, detect the presence of edges. Once detected,
the smoothing terms are turned off at these locations. In this way, the algorithm
allows large variations separated by continuous planes.

To date, the standard constraints for migration/inversion schemes are a damp-
ing or smoothing term (Jin et al., 1992; Thierry et al., 1999; Duquet et al., 2000).
Therefore, all tests of the EPR function will be compared against the DLS solu-

tion.

5.2 The Edge-Preserving Regularization (EPR)
function

The EPR function has the same form as the modified Cauchy regularization func-
tion. Its different behavior occurs because it acts not on the model parameters,

but on their derivatives

J(m) = (Gm — d)"(Gm — d) + p, R(Dym) + p1, R(D,m), (5.2.1)

where p, and pu, are the weighting parameters placed on the regularization terms
in the horizontal and vertical directions. Dy and D, are matrix forms of the

derivative operators defined
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(Dem)i; = (mig1; —may)/0

(Dzm)” = (mi’jﬂ - mi,j)/é . (522)

The indices, 1 = 1,2,... M, and j = 1,2,... M,, encompass the total number of
horizontal and vertical cells in the 2D Earth model, size M, by M,. Note that the
constant widths of the tomographic cells are absorbed into the scaling parameter
present in the derivative function. The regularization functions enforced on the

derivatives are defined as

R(Dym) = mz:ch)([Dwm]l)
RD,m) = > &([D.ml), (5.23)

1=1
where the 2D model parameter derivatives are placed into vector form using
lexicographic notation. The model parameters within the data misfit term of the
cost function are also expressed in this form. The function ®(¢) is chosen to be

the modified Cauchy prior distribution

£2
O(t) = —. 2.4
=1 (524)
The solution to this function found using IRLS is
—1
m* = | GTG + ;D" Q" 'Dy + 11,D,'Q,*'D, | GTd, (5.2.5)

where Qx and Q, are diagonal matrices with elements from the recovered solution

at iteration £k — 1
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(Qz) 3" ! (5.2.6)

and

1
[1+ ([D.m]y™) 2]

@)y ' = (5.2.7)

5.2.1 Half-quadratic regularization and IRLS

The solution to the non-linear cost function using IRLS intuitively makes sense.
However, a more formal proof of the soundness of this type of solution has been
presented using the Legendre transformation, called half-quadratic regulariza-
tion (Geman and Yang, 1995; Charbonnier et al., 1997). The purpose is to
introduce a new function having the same minimum as the non-linear one. This
new function has the advantage that it may be solved linearly (Geman and Yang,
1995). In order to do this, a new variable is introduced, such that the regular-

ization term is expressed

O (t) = min,[®* (¢, w)]. (5.2.8)

Subsequently, the cost function can be rewritten as

J(m) = ming,q[J"(m,qx, q,)]
= Ming, q|(Gm —d)"(Gm — d)

o 3 PP @)+ Y O (Do) (0] (5.2.9)

In the 2D problem, two auxiliary variable vectors, qx and q,, are introduced.

The new regularization function ®* becomes quadratic with respect to m when
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the auxiliary variables are fixed, and therefore a linear solution occurs. This is

demonstrated in the next section.

5.2.2 The Legendre Transformation and auxiliary vari-

ables

The Legendre transformation is defined as

F*(y) = ming[yx — F(z)] . (5.2.10)

The transformation will find the y-intercept F*(y) of the line yzr — d that is
tangent to the function F(z). It will map a function from [F'(z), z] (function vs.

x) space to [F*(y),y| (y-intercept vs. slope) space. The transform also has the

property

F*(y) = LT[F(z)], (5.2.11)

and

F(z) = LT[F*(y)], (5.2.12)

where L7 represents the Legendre transformation. Using this transform, ®(t)

and ®*(t, w) are defined to be a Legendre pair

O(t) = ming[®*(t, w)]

d(t) = min,lwt* — ¥(w)]. (5.2.13)

By using the definition
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U(w) = mingt> w — ®(t)], (5.2.14)

and equation 5.2.4, it is simple to calculate that

U(w) =2¢/(w) —w—1. (5.2.15)

The minimum of [t? w — ®(¢)] occurs at

1 o' (t)
= = . 2.1
YT Oree T (5.2.16)
From this it can be written that
O*(t,w) = [wt* — V(w)], (5.2.17)

or in terms of the previously defined variables

*((Dam)i; (@))) = (@)1 (Dom)i — ¥((gz))]
*((Domi, (¢2)) = [(g:)i (Dam)} — ¥((g:))]. (5.2.18)

The solution to the cost function containing the new regularization terms
(equation 5.2.9) will become quadratic with respect to m when the auxiliary
variables are fixed. The solution to the original cost function is easily found,

because

®(Dym) = ming, [2*(Dxm, qy)]

&(D,m) = ming, [®*(D,m, q,)] (5.2.19)
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and the minimum values of the vectors qx and q, have already been defined

analytically as

. _ ®'(D;m), 1
min (¢z); = 2(D,m); ~ (1+ (Dzm)7)?
min (g.); = ®'(D,m), — 1 (5.2.20)

2(D,m), (14 (D,m)})?’
The solution to the modified cost function will be solved iteratively: alterna-
tively minimizing the cost function with respect to the model parameters m and

the auxiliary variables, qx and q,. The solution then becomes

-1
f = [ GTG + p Dy’ Qi 'Dy + uzDzTsz‘lDz] GTd, (5.2.21)

where the weighting matrices are defined in terms of the minimum auxiliary
variables (5.2.20): Q"' = diag((¢.)f ™), and Q"' = diag((g.)F™"). This
matches the IRLS solution exactly. Therefore, the Legendre transformation is
found to be a more mathematically formal way to justify the approach of an

IRLS solution.

5.2.3 Edge detection and preservation using EPR

As discussed in the Chapter 4, the solution to the modified Cauchy cost function
takes the form of a weighted minimum norm solution. In the case of the EPR
cost function, derivative terms are introduced, and the solution is one of a DLS
solution weighted by the first order derivatives to yield a flat solution. Because
enforcing flatness can be considered a form of smoothing, this will be referred
to as a smooth solution. The weighting matrices, Qx and Q, locate the pres-
ence of edges, and adjust the amount of smoothing applied to the solution. By

examining equation 5.2.20, it is easily seen that if the derivative of the model
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is small (no edge), the auxiliary variable will approach 1, and full smoothing is
applied. Conversely, if the derivative of the model is large (an edge is present),
the auxiliary variable will approach zero, and the smoothing term is turned off.
In this way, the algorithm will mark the location of the edges, and adjust the
amount of smoothing in order to preserve them.

Which discontinuities are preserved depends on the threshold value chosen
to specify an edge as opposed to noise. This threshold value is controlled by the
scaling parameter ¢ (see Figure 5.1). In the background areas of the model, the
algorithm is able to apply homogeneous smoothing and encourage a piecewise
smooth solution. This is an advantage over other sparse regularization methods,
where smoothing is weak, and implemented by enforcing limited variation (Port-
niaguine and Zhdanov, 1999).

The EPR algorithm will first be tested on a 1D model. Assuming a zero-
offset experiment, or one where the source and receiver are in the same location,
the traveltime data of a horizontally homogeneous earth are measured. The
modeling and migration operators are implemented as matrices in Matlab. The
velocity model, source wavelet, and synthetic traveltime data are displayed in
Figure 5.2. The background velocity is chosen to be a homogeneous 2000 m/s,
and the acoustic perturbation is then computed to create synthetic data.

This simple experiment again reveals that multiple pairs of the parameters
p and ¢ will give the same value of x?, or data misfit (Figure 5.3 A). Because
the interaction of these parameters is identical to that of the modified Cauchy
function shown in Chapter 4, the discussion will not be repeated. The second part
of the figure illustrates three solutions sharing the same x? value. It is clear that
only one solution is appropriate. Only the correct combination of parameters
will yield a solution that is piecewise continuous, and so even without prior

information of the model, one should be able to pick out the correct solution.
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Figure 5.1: A 1D depth model, the scaled derivative, and weight on the smooth-

6=0.5 0=2.

ing term for three different values of the scaling parameter, §. As J becomes
small, the derivatives are magnified, and all discontinuities are classified as edges.
Smoothing at these locations is minimized, indicated by the near-zero weights.
As the scaling parameter becomes large, none of the discontinuities qualify as

edges, and the weights are near 1 indicating full smoothing.
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Figure 5.2: The velocity model (A), source wavelet (B), and synthetic data with

one percent Gaussian noise added (C).
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Finally, Figure 5.3 C displays the effect that the scaling parameter § has on
the solution when p is held constant. A large scaling parameter will result in
small values for the scaled derivative. The weighting term will approach one,
and the smoothing operator receives near full weight. Therefore, the solution of
a large 0 value will approach a smoothed solution. On the other hand, when the
scaling parameter is small, the scaled derivative will be magnified. The weighting
term will approach zero to turn off smoothing, and preserve the discontinuities.
A very edgy solution is expected for the small scaling parameter. However, the
solution displayed is edgy only in one area. The explanation for this is the

interaction of the two parameters.
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Figure 5.3: (A) A logarithmic plot of x2 versus p for different values of §. (B)
Solutions for different parameter pairs of 4, and p, all sharing the optimum 2
value for this problem. (C) The initial model, solutions for 3 values of §, and the

DLS solution, where p = 10710,



CHAPTER 5. BLOCKY INVERSION TECHNIQUES 108

5.2.4 The interaction of the weighting and scaling param-

eters

The last example demonstrated that the discontinuities in the solution are not
controlled solely by the scaling parameter, . They are also influenced by the
weighting parameter, u. The reason for the strong influence is that in the first
iteration of the algorithm, no edges are detected, because the initial model is set
to zeros. Therefore, full smoothing is applied to the model, and the weighting

parameter for this iteration becomes a combination of the two parameters

pl=He (5.2.22)

where u! denotes the vertical weighting parameter for the first iteration of the
algorithm. It is apparent that a large value of u,, or a small value of § will create
a large weighting parameter that will enforce a very smooth solution. It is this
combination of parameters that creates the initial solution that the edges are
detected and classified from.

Figure 5.4 shows the progression of both the solution and the weighting ma-
trix as the algorithm progresses for the edgy solution (6 = 0.01) obtained in Fig-
ure 5.3 C. The small value of the scaling parameter combines with the weighting
parameter to enforce a very smooth solution in the first iteration. Thus, when
the edges are identified and preserved, there are not as many as one would ex-
pect. The progression of the algorithm for the smooth solution (§ = 1) and the

best solution (§ = 0.1) of the same problem are shown in Figures 5.5 and 5.6.
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Figure 5.4: The solution, and values of the weighting matrix (dashed line) as

the EPR algorithm progresses from the second (A) to the fifth (D) iteration of

the edgy solution. The weighting terms have a maximum value of one for full

smoothing, and a minimum of zero to turn off smoothing. Note that the first

iteration is not shown because the solution is set to zero, and the weighting terms

are all unity to enforce full smoothing.
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Figure 5.5: The solution, and values of the weighting matrix (dashed line) as the
EPR algorithm progresses from the second (A) to the fifth (D) iteration of the

smooth solution.
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Figure 5.6: The solution, and values of the weighting matrix (dashed line) as the
EPR algorithm progresses from the second (A) to the fifth (D) iteration of the

best solution.
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5.3 Application of EPR to synthetic data

5.3.1 2D examples

To begin testing the application of EPR to 2D models, the simple examples
introduced in Chapter 2 are used. All of the examples in this section will be
compared with the DLS solution, as that is the standard inverse solution in
migration/inversion schemes (Jin et al., 1992; Thierry et al., 1999; Duquet et
al., 2000). The geometry, source signature, and synthetic data can be found in
Figures 3.6, 3.7, and 3.11. A comparison between the DLS and EPR solutions
for the point scatterer and the step perturbation are seen in Figures 5.7 and
5.8 respectively. Both solutions converge within 5 iterations. Cross section of
the solutions are portrayed in Figures 5.9 and 5.10. It is clear that the blocky
inversion technique creates a more piecewise continuous solutions, while still
being able to smooth the noise.

To further test the algorithm, a more complicated example is tested. A larger
grid, and a more geologically realistic perturbation are included. Synthetic data
are created using the source-receiver geometry in Figure 5.11, and 5 percent
Gaussian noise is added. The DLS and EPR solutions to the inverse problem
are displayed in Figure 5.12. The EPR solution converged within 5 iterations
of the algorithm. Figure 5.13 shows the progression of the updated model as it
is refined by the algorithm. The weighting matrices, Qx and Q,, clearly mark
the positions of the edges, and turn off the smoothing at these locations. The
EPR technique recovers an almost perfect solution, the exception being made at
the horizontal edges of the model. At these locations there is not enough data
coverage to resolve the model, due to the source-receiver geometry.

Lastly, the minimization of the cost function is illustrated in Figure 5.14.

Each minimization of the newly updated IRLS solution is achieved within 100
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Figure 5.7: The acoustic perturbation (A), the DLS solution (B), and the solution

using EPR (C). The parameters corresponding to these solutions are: p = 10

(B), and 0, =6, = 0.5 and p, = p, =1 (C).
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Figure 5.8: The acoustic perturbation (A), the DLS solution (B), and the solution

using EPR (C).The parameters corresponding to these solutions are: p = 20 (B),
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Figure 5.9: A comparison of the cross sections at 20 m depth of the two solutions

in Figure 5.7.

ﬂ .

Figure 5.10: A comparison of the cross sections at 30 m depth of the two solutions

in Figure 5.8.



CHAPTER 5. BLOCKY INVERSION TECHNIQUES 116

0‘7VVVV¥VVVV¥VVVV¥VVV¥7
201 b

40+ .
60F .

80 b

Depth (m)
[
o
2

1201 1
140F |
160F 1
180F ¥ Sources [
VY Receivers
0 50 100 150

Offset (m)
Figure 5.11: The source-receiver geometry of the dipping layer model.

iterations of the conjugate gradient algorithm. It is easily seen that these updated
solutions help to accelerate the solution towards convergence. As well, the first
iteration of the algorithm is the “work-horse” of the algorithm, and those after
it are simply refinements on the algorithm. Because of this, it is important to

select parameters that will yield an optimum solution in the first step.

5.3.2 Pitfalls to avoid

As one might suspect, finding the correct combination of two hyperparameters
can involve some effort. The x? test can be used to assist, but this technique
is only helpful if the noise level in the data is known, or can be estimated with
accuracy. As previously demonstrated, there are multiple combinations of the
hyperparameters that will yield the same data misfit. Even with the assistance of
the x? test, a discriminating user is necessary. There are techniques of estimating

the hyperparameters (Geman and Reynolds, 1992), but they are not used in this
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Figure 5.12: The acoustic perturbation (A), synthetic data (B), the DLS solution
(C), and the EPR solution (D).The parameters corresponding to these solutions
are: p =200 (C), and §, =0, = 0.35 and p, = p, = 8 (D).
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Figure 5.13: The weighting matrices Qx and Qg , and the updated model at

iterations 1, 3, and 5 of the EPR algorithm. At the first iteration, the model is

homogeneous, so the weighting matrices apply full smoothing by default.
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Figure 5.14: The magnitude of the cost function plotted against iteration number.

The iterations at which the weighting matrices are updated are marked by stars.

study.

However, hyperparameter selection can be reasonably achieved using visual
evaluation. Previous examples have shown that even though multiple pairs of
parameters will give the same data misfit, only one will retrieve a piecewise
continuous solution. The wrong selection of hyperparameters is immediately
obvious, but viewing the updated solutions and the weighting matrices at each
iteration assists in evaluating which parameter is incorrect. If the final solution
is the only evaluation, it can be difficult to decide which parameter to adjust.
The effects of choosing wrong hyperparameter pairs are shown in the following
examples.

The first example is one where both the weighting parameter y, and the scal-
ing parameter 0 are the wrong magnitude. Figure 5.15 displays the progression

of the algorithm through 5 iterations. In the first iteration, the combination of
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the two parameters does not yield a large enough weight to recover a solution
that smooths the noise. In the following iterations, the smaller scaling parameter
indiscriminately classifies the discontinuities due to noise as edges, as well as the
desired ones. This has the effect of not only preserving these noisy patches in
the solution, but amplifying them as well. The final solution, known as the noisy
solution, is obviously contaminated by noise. Here it is clear that even if the
earth model is completely unknown, this combination of parameters is incorrect.
To fix this solution, one would increase ¢ until only large scale edges are marked
and preserved. At the same time, y should be increased until the first solution
is a smooth one, with as few discontinuities due to noise as possible, while still
retaining a clear image.

The second common problem in choosing the parameters is finding a scaling
parameter which will encompass all of the edges in the solution. There can
be a wide range of magnitudes of discontinuities. If the noise in the solution
creates discontinuities larger than the smaller magnitude edges, the user must
choose between a noisy solution, or one that may smooth some of the features.
Fortunately, because the first iteration is a smoothing operator, most problems
of these types are avoided. However, one must be careful to make sure the scaling
parameter will mark all of the edges. In the second example (Figure 5.16) the
final solution itself does not indicate any problems. Further scrutiny of the
weighting matrices, Qx and Q, reveal that only some of the edges are being
marked and preserved. This solution is referred to an the under-marked solution.
The algorithm is able to recover a fair estimate of the initial model by simply
satisfying data misfit term of the cost function, but this is not the best solution
possible.

Figure 5.17 compares the DLS solution with the three models recovered by

the EPR algorithm so far: the optimum, noisy, and under-marked solutions.
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Figure 5.15: The weighting matrices Qx and Q,, and the updated model at
iterations 1, 3, and 5 of the EPR algorithm.
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Figure 5.16: The weighting matrices Qx and Qg , and the updated model at
iterations 1, 3, and 5 of the EPR algorithm.



CHAPTER 5. BLOCKY INVERSION TECHNIQUES 123

What is dramatically striking is that even erroneous solutions are retrieving a
model comparable or superior to the DLS solution. In the case of the noisy
solution, it is obvious that the parameters must be adjusted to minimize the
noise. Contrary to this, the under-marked solution does not have any glaring
indicators, except for the fact that the boundaries are not razor sharp. This is
a subtle change, and without the comparison of a better solution, it might be
unrealistic to notice. The algorithm is robust though, and the solution, even with

the wrong combination of scaling parameters, is better than the DLS solution.

5.3.3 A non-homogeneous background model

Thus far, only homogeneous background models have been considered. The algo-
rithm is easily adapted for non-homogenous background models: all that is nec-
essary are traveltime and amplitude tables in order to calculate the background
Green’s functions. Traveltime tables are calculated using a simple ray-shooting
algorithm implemented in Matlab. A four layer background velocity model is
created, and the acoustic perturbation used in the previous examples is super-
imposed on top. The inversion is for the same acoustic perturbation, and this
solution is added to the background velocity model to retrieve the final solution.
It should be noted that in theory, a table of amplitude data should be computed
as well. The approximation of constant velocity amplitude calculations is used
for simplicity. This does not create a problem with synthetic data, but might if
real data were to be inverted.

The velocity model, synthetic data, and its solutions are displayed in Fig-
ure 5.18. The EPR solution converged within 5 iterations of the algorithm.
Again, the superiority of the algorithm for recovering high resolution images is

shown.
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Figure 5.17: The optimum (A), noisy (B), under-marked (C) solutions of the EPR
algorithm compared with the DLS solution (D). The arrow indicates the fuzzy
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Figure 5.18: The layered velocity model (A), synthetic data (B), DLS solution
(C) and EPR solution (D).The parameters corresponding to these solutions are:

@ =100 (C), and 0, =6, = 0.5 and p, = p, = 50 (D).
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5.4 Summary

In this chapter, the EPR function has been evaluated for applications to 2D
acoustic inversion. It has been shown that the half-quadratic method of lineariz-
ing the problem is equivalent to the IRLS method. This linearization creates a
re-weighted flat solution. Because the flatness constraint can also be thought of a
type of smoothness constraint, this is also referred to as a re-weighted smoothed
solution. The re-weighting matrices detect edges that are then preserved by
turning off the smoothing at appropriate locations.

The disadvantage of the EPR function is that two parameters must be chosen
to create a constraint. However, it is shown that it is not difficult to visually
evaluate the parameters. The algorithm should generate a piecewise continuous
solution, and even if there is no knowledge of the earth model, it is obvious
when the parameter combination is incorrect. In other words, the artifacts due
to incorrect parameter selection are easily identified, and are very difficult to
mistake as part of the earth model. Finally, even when incorrect parameter
combinations are chosen, the recovered image has a higher resolution than the
DLS solution.

Traditional smoothing constraints must compromise between smoothing noise
and preserving edges. In contrast, the EPR algorithm can apply a large degree
of smoothing without smearing the edges of the solution. In this way, the EPR
function recovers high resolution images, superior to those found by traditional

migration/inversion schemes.
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Chapter 6

Conclusions

Within this thesis, the linear scattering problem has been posed as an inverse
problem. In Chapter 2, discrete forward and adjoint modeling operators were
adapted from the direct inverse solution that uses the inverse GRT. These oper-
ators were then implemented in the framework of discrete numerical inversion in
Chapter 3. This combined technique is known as migration/inversion (Thierry et
al., 1999). It has the advantage of being computationally efficient and the ability
to solve problems containing any source-receiver geometry (Bleistein, 1987; Jin
et al., 1992).

The inverse scattering problem remains ill-posed, and so constraints must
be enforced to retrieve a stable and unique solution. To date, the standard
constraint for migration/inversion schemes is a damping or smoothing term (Jin
et al., 1992; Thierry et al., 1999; Duquet et al., 2000). This technique tends to
blur the boundaries of acoustic properties within the layered earth. In contrast,
a blocky inversion would preserve these edges. This type of inversion constrains
the first derivatives of a function to be sparse, resulting in a piecewise continuous
solution. The regularization term introduced in medical imaging by Charbonnier

et al. (1997), is particularly attractive because of its ability to apply any level of
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smoothing to planar areas without destroying the resolution of edges.

This regularization term is found to be very similar to the Cauchy probability
distribution, and is referred to as a modified Cauchy function. In Chapter 4, it
is first tested against the common sparseness constraints enforced by the Cauchy
and exponential distributions in the 1D impedance inversion problem. All three
prior probability functions result in quasi-linear problems. These problems may
be solved in a linear, iterative manner using IRLS. It is shown that the modified
Cauchy function recovers sparse reflectivity series as well as the standard con-
straints, but is especially suited for recovering blocky impedance profiles. The
examples show that it is able to recover sharp discontinuities separated by flat,
planar areas more successfully than the other prior distributions.

The modified Cauchy function is then applied to the 2D acoustic, constant
density migration/inversion problem in Chapter 5. Within this context it is
referred to as the Edge-Preserving Regularization (EPR) function. This name
arises from the fact that in its IRLS form the weighting matrices of the algorithm
detect the position and magnitude of edges. The amount of smoothing applied
by the flatness constraint is then varied according to the classification of the
discontinuities. In this way, the algorithm allows a solution containing large
variations separated by continuous planes.

Traditional smooth constraints must compromise between smoothing noise,
and preserving edges. In contrast, the EPR algorithm can apply a large degree
of smoothing, without smearing the edges of the solution. In this way, the EPR
function recovers high resolution images, superior to those found by traditional
smooth constraints. As well, testing has shown that the EPR algorithm is robust.
Even when incorrect parameter pairs are chosen, the recovered solution is higher
resolution than the standard smoothed image.

The first disadvantage of EPR is that two parameters must be selected.
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Proper selection depends on a good understanding of the interaction of these
parameters. This occurs when not only the solution is evaluated, but also its
progression in conjunction with the weighting matrices. Further, EPR is com-
putationally more expensive than other migration/inversion schemes. The con-
ventional minimum norm, smooth solution can be retrieved by solving the linear
inverse problem once to retrieve the DLS solution. In contrast, the EPR scheme
converges within 2 — 6 iterations of a weighted, DLS solution.

This algorithm has a higher computational cost than those used to recover
standard smooth solutions. It also requires high frequency data so that the
asymptotic approximation to the Green’s functions remains valid. For these
two reasons this technique is not recommended for large scale seismic surveys.
It is instead more applicable to small, detailed studies, such as cross-well and
environmental imaging. In these applications the need for a precise image will
justify the cost.

In conclusion, the modified Cauchy prior distribution has been found to re-
cover very accurate solutions to both 1D impedance inversion and 2D migra-
tion/inversion problems. I recommend that further study be done on the suit-
ability of the algorithm for seismic imaging. Specifically, the EPR method should
be tested on suitably processed finite difference data, and then on real data. Au-
tomatic hyperparameter selection should also be explored. Finally, applications

to other geophysical areas of EM, gravity and GPR imaging may be of interest.
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Appendix A

The scalar wave equation

This derivation follows the explanation and terminology of the second chapter of

Lay and Wallace (1995).

A.1 Strain

The motions within a solid can be described by a vector field, u(x, t). This field
describes the motion of every point in a medium of a continuous distribution
of particles. It is assumed that the motion undergone is a straining, or internal
deformation. The deformations can be classified into two types: normal strains
and shear strains. Normal strains are measures of elongation only, while shear
strains include information of angular deformation.

The three dimensional strain matrix includes nine term:

€11 €12 €13
€91 €99 €93 . (All)

€31 €32 €33

The normal strains, €1, €29, and €33 give the relative length changes in the
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coordinate directions. The remaining six shear strains give the angular changes

of each coordinate direction with respect to the other directions.

A.2 The relation between strain and displace-
ment

The strain is related to displacement derivatives by the relation

1 8uZ 8uj
o= = A21
ij 2 (83:]- * 83:1-) ( )
1
= 5(’(1,1"]' -+ uj,i) s (A22)

where the final expression is in indicial notation. This relationship holds if both
the strain and displacement derivatives are small. The trace of the strain tensor

is called the cubic dilatation, and also relates to the displacement vector

8U1 aUQ 8’&3
0=c¢ e + % + O V-u (A.2.3)

A.3 Stress

Two types of forces can act upon a continuum: body forces and contact forces.
These forces will depend either on the volume (body force) or surface area (con-
tact force) of the material. Stress, o, is a contact force, and can be expressed in

tensor form as

. AF;
Oij = llmAAi_)OA—A]- . (A31)
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Here, Fj is a small force acting in the j direction on a surface area A; that has
a normal in the ** direction. Combining information from all directions in the

3D system results in the stress tensor

011 012 013

091 O 093 | - (A.3.2)

031 032 033
As in the case of strain, diagonal terms describe normal stresses, and all others
describe shear stresses. The equilibrium equations require a balance of spatial
gradients of the stresses in a medium for that medium to be in stable equilib-

rium (Lay and Wallace, 1995). These equations are summarized

80’i]‘

=0. A3,
50 =0 (A.3.3)

To maintain equilibrium, the moments of the body must also be zero. This

results in a symmetric stress tensor, where

Oij = 0y - (A34)

A.4 Equation of motion

The force per unit volume of a body of density p is

62?1/1'

ot

p (A.4.1)

The force per unit volume is also equal to the combined action of the body

and contact forces
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Baz-j

]
a.’Ej

fi+ (A4.2)

where f; is the body force per unit volume. The contact force is defined in terms
of stress, because stress is defined as force per unit area A.3.1. Combining these

two definitions of force with Newton’s Law yields the equation of motion

aQ’LLZ’ aO'ij

(A.4.3)

The homogeneous equation of motion describes the case where body forces are

not, considered

82’&1' _ 80,-]-
p 8752 N a’L‘j ‘

(A.4.4)

Hooke’s law describes the relation between stress and strain, and therefore,
can be used to define a relation between displacement and stress. The general

form of Hooke’s law is

Oij = Cijki €kl - (A.4.5)

The elastic moduli of the tensor Cjj; describe the medium’s material prop-
erties. An isotropic elastic substance has only two independent elastic moduli,
called the Lame constants, A, and u (Lay and Wallace, 1995). These are related

to the general elastic tensor

Cijrr = A0y O + (bik dj1 + it Oj ), (A.4.6)
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where ¢ represents the Kronecker delta function. Including this in Hooke’s law

(A.4.5) results in

035 = [ A 0ij O + 11 (ke 650 + Gir O ) | €xa - (A.4.7)

Using the identity that g€ = €xg, this can be rewritten as

045 = A €Lk 5ij + 2/1,6ij = /\05” + 2,U'eij . (A48)

The equations of strain-displacement (A.2.2), Hooke’s law (A.4.5), and the
homogeneous equation of motion (A.4.4) can be combined to yield an equation
of motion for an isotropic linear elastic medium not subject to body forces.

Considering only the x direction in the homogeneous equation of motion

6211,1 . 80'11 60'12 80'13

o = 0uy | Ozp | Oxy (A.4.9)

Hooke’s law and the strain-displacement relations for this direction yield expres-

sions for the strain

8u1 8?1,2 8’&3 6u1
=A0+2 =\ 2 — A4l
ou ou
019 = 2/.1/612 = /_1/ (a—x; + a—xj> 5 (A411)

and

0 0
0'13:2,&613:,& ( “ + U3> . (A412)

Ozs  Om
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Combining equations (A.4.10), (A.4.11), and (A.4.12), and assuming that A and

w1 are constant throughout the medium yields

= + +
P o oz, om oz? = 0xi  0r3

82U1 _ 80 8 811,1 + 81@ 8u3 6211,1 82U2 62U3
8:51 6372 8:103 H ’
(A.4.13)

Using the identities of cubic dilatation, 6, and the Laplacian, V2 uy, gives

= = . A.4.14
P (AJru)é,leruV Uy ( )

The same relations in the y and z directions yield

0%u 00
and
0%u 00
P 8t23 =(\+ “)a_xg + V2. (A.4.16)

In vector form, these three expressions combine to create a three dimensional

homogeneous equation of motion

2
p%—tl; =M+ wV(V-u)+pViu. (A.4.17)
Using the vector equation
Viu=V(V-u)— (VxVxu), (A.4.18)

the equation of motion subsequently becomes

0%u

Pam = A+2p)V(V-u)— (pV xV xu) (A.4.19)
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A.5 Helmholtz’s theorem

Helmholtz’s theorem states that any vector field u can be written in terms of a

vector potential ¥, and a scalar potential ® as

u=Ve+4+V xVU, (A.5.1)
if
Vx®=0, (A.5.2)
and
V- U =0. (A.5.3)

Substituting Helmholtz’s theorem (A.5.1) into the vector equation of motion

(A.4.19), and using the identity (A.4.18) gives

\Y% ()\+2/L)V2<I>—p8827§ +V x ,uVQ\II—pa;T;II] =0. (A.5.4)
Thus, the equation will be satisfied if each bracketed term goes to zero. By
letting
o= 2T2E (A.5.5)
p
and

B = \/%, (A.5.6)
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equation (A.5.4) will be solved if

2p - ——— = A5,
V- os =0, (A.5.7)
and

. 10°T A

This yields a scalar wave equation for the potential ®, having a velocity, «,
that is known as the P wave velocity for pressure, or longitudinal waves. The
vector wave equation for potential ¥ has a velocity 3, that is known as the S
wave velocity for shear, or transverse waves. Both of these potentials describe a
wavefield, or a system of waves. The displacement due to the P and S waves are

found by computing the gradient or curl of the respective potentials.
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Appendix B

The reflection coefficient

Following the derivation of Lay and Wallace (1995), the incident P (longitudinal)
wave is described by a 2D plane wave solution to the potential discussed in

Appendix A

@Z’n = AineIpiw(p$1+ﬂ1$3_t) . (BO].)

Here p = sin(i)/c is the horizontal slowness and 7, = cos(i)/c is the vertical
slowness in medium 1, where i is the incident angle of the wave. The velocity ¢
is P-wave velocity, x; and x3 are the horizontal and vertical directions, and ¢ is
time.

The reflected and transmitted waves are described in the same manner

(Drefl = Areflexpiw(pxl_mxs_t) ) (B02)

and

(btrans = Atransexpiw(pzl+n2z3_t) . (BO3)
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Therefore, the waves in the 2 different mediums are summarized as

(1)1 = (I)zn + (I)refl , (B04)

and

CDQ = (I)tra,ns - (B05)

The next step is to enforce boundary conditions. Firstly, we ask that dis-

placement be continuous across the boundary, or that at 3 = 0:

0d, 00,
A=A - B.0.6
Substituting equations B.0.4 and B.0.5 into this expression results in
™m (Am - Arefl) = 772Atmns . (B07)

The second condition we impose is that stress be continuous across the boundary

or that

033 = AVD + 2uez3 = 035 - (B.0.8)

The variables A and i are the Lame parameters, o represents stress, and € rep-
resents strain. Because this derivation is for acoustic waves solely, it is assumed
that 4 = 0. However, it should be noted that the final answer is valid for solids

as well. Hence it is imposed that

)\1V2(I)1 = )\QVQ(I)Q . (B09)
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Using the definition that V2® = —w?/c? @, this becomes

M

c2

A
(Am + Arefl) = 0_22 Atrans . (BOlO)

Next, using the definition that A, = p,c? where p is density, and combining

equations B.0.7 and B.0.10 we arrive at

Arefl _ P21 — P17)2
A, pime + pam

(B.0.11)

This equation defines the reflection coefficient or reflectivity R. In the vertical

incidence case, (7 = 1/c; and 7o = 1/¢3)

R = P2C2 — P1C1

. (B.0.12)
pi€1 + pace

The reflection coefficient can also be written in terms of impedance, where I = pc

Ih—1T
R=2"1
L+ 1

(B.0.13)
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Appendix C

The convolutional operator

The convolutional of two continuous series, ¢, and z is defined (Margrave, 1998)

y(t) = /0(7') x(t—7)dr. (C.0.1)

When these series are discrete, the convolution is expressed as

Y = chxjfk : (C.0.2)
k

The example below demonstrates how easily convolution can be achieved by

placing the vector ¢, into a matrix operator C

/cl 0 0 O (xl\ ( Ty

Co C1 0 0 To T1Co + ToCy
0 ¢ ¢ O x3 | = | 22 + x3C1 | - (003)
0 0 Co C1 T4

oo o))\

The conjugate, or adjoint of the conjugate operator is defined as CTy = x.

I3Co —+ T4Cq

By again using the simple example we find
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(01 C2

&

Co

C1

e}

Co

1

0)

C2

(?Jl\

Y2
Y3
Ys

\{)

This can be rewritten as the summation

Tj = E CkYj+k -
k

(y101 + yQCQ\
Y2C1 + Y3C2
Y3C1 + YaCo
YaC1 + Y5C2

NP

In continuous form, the summation becomes the integral

(1)

/b(t) y(t+7)dt,

148

(C.0.4)

(C.0.5)

(C.0.6)

which is the definition of cross-correlation (Margrave, 1998). Hence, the conju-

gate or adjoint of convolution is cross-correlation. Both the forward and adjoint

discrete operators may be placed into matrix form.
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Appendix D

The DLS solution

Inverse theory solutions requiring finding the minima of quadratic functions. It
is necessary to take the derivatives of matrix and vector combinations. The cost

or objective function of the minimum norm solution is

J(m) = (d — Gm)"(d - Gm) 4+ ym’ m. (D.0.1)

The cost function can also be written in summation notation as

(D.0.2)

where j and k are dummy variables. Following the derivation of Menke (1984),

the terms are multiplied out to yield

M M M M N
ZZ m; myg Z ngGzlc_zz m; Z ngdz+
j=1 k=1 =1

M M

XNI: Z > my (D.0.3)

: k=1
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The derivative of the first term is

9 M M M M M N
amq Z Z mg my Z Gl] sz = Z Z [5quk + mjékq] Z Gij Gz‘k
j=1 k=1 i=1 j=1 k=1 i=1

M N

Note that the derivatives of the form 0m;/0m; reduce to the Kronecker delta

d;5. The derivative of the second term is

9 M N M N
-2 9 [Zm] ZGZJdZ _QZéquGijdz
71 j=1 i=1 j=1 i=1
N
:-QZQW. (D.0.5)
i=1

The derivative of the third term is zero, since it does not depend on the model

parameters, but only on the data.

é%[}:lezo. (D.0.6)
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—

= 2u i my, (D.0.7)

The minimum of the cost function is found by combining all the derivatives

and setting the resulting equation to zero
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M N

N M
q i=1 k=1

k=1 =1

= 0. (D.0.8)

When written in matrix notation, this reduces to the linear equation

G'Gm+pym—-G'd=0. (D.0.9)

The solution to this equation yields the well-known DLS solution

m=(G'G +puI)"'G"d. (D.0.10)



