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Abstract

Multiple suppression is a long-standing problem in seismic data pro-
cessing. This thesis focuses on the development of a multiple sup-

pression method based on the hyperbolic Radon transform.

The application of the Radon transform to the problem of multiple
suppression is reviewed. The classic multiple attenuation tool, the
parabolic Radon transform, is introduced and compared with the hy-
perbolic Radon transform. An algorithm was developed to compute
high resolution velocity gathers using an inversion procedure capable

of increasing the focusing power of the hyperbolic Radon transform.

The algorithm is tested with synthetic data and with a marine data

set from the Gulf of Mexico.
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Chapter 1

Introduction

1.1 Historical background

Seismic exploration is widely used in the oil and gas industry. Seismic data are
collected in the field, processed and then interpreted to provide a picture of the
subsurface geology. Improving subsurface imaging is a constant goal of these
steps, and this often depends on how well the data are processed.

The application of seismic imaging techniques has played a significant role
in hydrocarbon exploration. Seismic imaging techniques, however, assume that
the input data are free of multiples. It is well known, of course, that this is not
true. The presence of mutiple reflections, which are reflections that have been
reflected back into the Earth more than once, leaves us with incorrect seismic
images. Figure 1.1 is a diagram with the terminology often used in exploration
seismology to describe multiple reflections.

It is also important to stress that, as imaging techniques increase in complex-
ity, multiple attenuation methods become important at the time of imaging data
acquired in complex environments. Sub-salt imaging is a dramatic example (Hill

et al., 1999).
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Figure 1.1: Different types of multiples (After Sheriff, 1991).

In addition to sub-salt imaging, multiples also hamper the proper interpre-
tation of seismic data in amplitude versus offset (AVO) analysis (Foster and
Mosher, 1992). In this case the amplitude variation of primary reflections can
be contaminated by the presence of multiples. The interpretation of this type of
data can be quite cumbersome if multiples are not properly removed.

Multiple attenuation techniques have their roots in the early days of the devel-
opment of seismic processing methods. The introduction of common depth point
(CDP) acquisition and the development of common mid-point (CMP) stacking
method is recognized as the first attempt for multiple attenuation in stacked
sections (Hill et al., 1999). Another early technique is the use of predictive de-
convolution to eliminate multiples generated in the water column during marine
acquisition (Yilmaz, 1987).

In seismic processing it is assumed that reflection data are free of multiples. If
the primaries are contaminated with multiples, they can be misinterpreted as, or
interfere with, multiples. This is a problem with a long history, and not totally

solved yet. There are many methods that can be used to remove multiples,
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but they are only valid when their assumptions and prerequisites are met. In
many cases these assumptions are violated or the prerequisites are difficult or
impossible to attain; hence, multiple removal remain a problem.

Applied geophysicists have been working on multiple suppression problems for
a long time. With the industry trend toward more complex, costly, and challeng-
ing exploration targets multiple removal solutions have became more and more
advanced. For example, deep water exploration with a dipping ocean-bottom,
sub-salt and sub-basalt processing are environments where traditional methods
can fail and highly sophisticated multiple elimination methods are required. The
growing economic risk and complexity of these exploration and production ob-
jectives demand more advanced techniques and methods that can accommodate
less a priori information, fewer restrictions and unrealistic assumptions (Weglein,
1999).

In general, methods that can satisfy the demand of advanced exploration
techniques increase processing costs and require a dense sampling of the seismic
wave field. However, such surveys can still be accepted if they enable the removal
of multiples while preserving primaries. The extra cost of processing is not really
expensive compared with that of a dry hole (Weglein, 1999).

Multiple suppression methods can be classified in methods based on move-
out discrimination, methods that predicts the multiples using the wave equation
(Weglein et al., 1992; Verschuur, 1999), and stochastic methods where the predic-
tion of the multiples is done using prediction error filters (Taner, 1980). In this
thesis we will concentrate on methods that extract the multiple using the con-
cept of move-out discrimination. In particular, we will develop a linear transform
capable of isolating and discriminating multiples.

In general, multiple removal methods based on the concept of move-out dis-

crimination can be summarized as follows: CMP gathers are modeled as a super-
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position of waveforms with hyperbolic travel-time curves. The fact that multiples
and primaries exhibit different curvature permits one to use 2D linear transforms
to discriminate, isolate and filter the energy that corresponds to multiple reflec-
tions. Techniques that follows this scheme can be easily described in terms of
Radon transforms.

The Radon transform is a mathematical technique that has seen popular
usage in seismic data processing and image analysis in recent years (Zhou, 1994).
It is more commonly known as the slant-stack technique or the 7 — p transform,
which is a discrete Radon transform (Turner, 1990).

There are three types of Radon transforms: linear, parabolic and hyperbolic.
In general, one can say, that the linear Radon transform is a linear operator that
maps linear events in ¢ — z (time-offset) domain into points in the transformed
domain (often called the 7 — p domain). Similarly, the parabolic and hyperbolic
Radon transforms are capable of mapping parabolic events and hyperbolic events
to points, respectively.

The mathematical theory of the Radon transform can be found in the book
by Deans (1983). The fundamental properties were examined by Durrani and
Bisset (1984). For the linear 7—p transform, Chapman (1981) presented the exact
forms of the generalized Radon transform pairs for a point source in Cartesian
or spherical coordinates, and for a line source in cylindrical coordinates.

This thesis focuses on theoretical and practical aspects of the hyperbolic
Radon transform. The latter has been proposed by Thorson and Claerbout
(1985) as a means to improve the signal to noise ratio (S/N) of CMP gathers
and as tool for velocity analysis. These researchers have developed a non-linear
algorithm where the least squares error constraint on the reconstructed data is
used to estimate the Radon panel (designated by them as velocity-stack). They

have also imposed a minimum entropy constraint that is used to enhance the
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focusing power (resolution) of the transform.

Hampson (1986) proposed to implement the Thorson-Claerbout method in
the f-z (frequency-offset) domain after adopting the parabolic approximation.
The residual move-out (curvature) of seismic reflections after normal move-out
(NMO) correction can be approximated by a parabolic travel-time curve. Yil-
maz (1989), on the other hand, employed a #? stretching to validate the parabolic
approximation. In other words, the hyperbolic events in CMP gathers are trans-
formed into parabolic events and, consequently, the more efficient parabolic
Radon transform can be adopted. Fast versions of the Parabolic Radon Trans-
form were proposed by Kostov (1990) and Gulunay (1990). These researchers
realized that the Toeplitz structure of the parabolic Radon transform permits to
use fast solvers like Levinson recursion (Marple, 1987).

Sacchi and Ulrych (1995) introduced a frequency-domain sparse inversion al-
gorithm that improves the velocity resolution and can be used to reconstruct
near and far offset missing traces in a cost effective manner. This approach par-
allels the one of Thorson and Claerbout (1985), however, Sacchi and Ulrych have
adopted a parabolic Radon Transform rather than a hyperbolic one. Recently,
Sacchi and Porsani (1999) proposed a new method to further reduce the compu-
tational cost of the Radon Transform. In this approach the conjugate gradient
method is used in conjunction with fast algorithms that operate with circulant
matrices to efficiently compute the Radon operator.

The relationship between the CMP data and the corresponding transformed
gather can be obtained as the solution of an inverse problem. The relationship

between them can be written as

Lm = d, (1.1.1)

where d denotes the CMP gather, m denotes Radon gather and L denotes the
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Radon operator.

The linear and parabolic Radon transforms can be written in the f —2 domain
and, consequently, break down the problem into many small problems one at each
frequency in the signal band-width. This is not true for the hyperbolic Radon
transform, in this case we need to devise techniques to operate with large sparse
operators in the time-offset domain. Since L is a large operator, its inversion can
be quite cumbersome. In this thesis we will examine the problem of inverting
equation (1.1.1) using a new regularization scheme based on the Huber norm
(Huber, 1981). We will show that the Huber norm yields to high resolution

transforms.

1.1.1 Multiple elimination of CMP data

Removing reverberations from reflection seismograms has been a long-standing
problem in exploration geophysics. Multiple reflections often destructively inter-
fere with the primary reflections of interest. The most robust and effective way
to suppress multiples is stacking normal move-out corrected seismic gathers. Un-
fortunately, stacking does not eliminate all multiples. Also, stacking attenuates
multiples only in stacked seismograms (Yilmaz, 1987).

Traditional velocity-stack gathers consist of constant-velocity CMP stacked
traces. It emphasizes the amplitudes that follow hyperbolic travel-time trajecto-
ries in the CMP gather. Ideally, a hyperbolic event on a CMP gather maps onto
a point on a velocity-stack gather. Because a CMP gather only includes a cable
length portion of a hyperbolic trajectory, this mapping is not exact. The finite
cable length, discrete sampling along the offset axis and the closeness of hyper-
bolic summation paths at near-offsets cause smearing of the stacked amplitudes
along the velocity axis. Unless the smearing is removed, inverse mapping from

velocity space back to offset space does not reproduce the original amplitudes in
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the original CMP gather.

Usually, parabolic Radon transforms are used to obtain velocity-stack gath-
ers where one can suppress the multiples. The method involves a t?-stretching
or NMO correction. Time stretching and/or NMO correction maps reflection
amplitudes along hyperbolic move-out curves to those along parabolic move-
out curves. The CMP gather is Fourier transformed along the time axis. Each
Fourier component is then used in the least-squares minimization to compute the
corresponding Fourier component of the proper velocity- stack gather. Finally,
inverse transforming and undoing the stretching or NMO correction yield the
proper velocity-stack gather. During this inverse mapping multiples, primaries,
or all of the hyperbolic events can be modeled.

When the hyperbolic Radon transform is adopted there is no need of pre-
processing the data with the ¢? stretching or the NMO correction, Hyperbolic
Radon transforms operate directly on CMP gathers (after conventional process-

ing, i.e., muting, gain, etc).

1.1.2 Velocity analysis and resolution enhancement

There are three fundamental seismic data processes: deconvolution, CMP stack-
ing and migration. Velocity analysis plays a very important role in seismic data
processing. The velocities affect the last two procedures.

By using redundancy of information in CMP gathers, stacking can signifi-
cantly suppress uncorrelated noise, thereby increasing the S/N. It also can at-
tenuate a large part of the coherent noise in the data, such as guided waves and
multiples. The normal move-out correction before stacking is done using the pri-
mary velocity function. Because multiples have larger move-out than primaries,
they are under-corrected and, hence attenuated during stacking (Yilmaz, 1987).

Without correct velocities, the CMP data can not be stacked as expected, the
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events can not be enhanced, and the S/N can not be improved.

In traditional processing the velocities are obtained from velocity compute
using semblance analysis (Yilmaz, 1987). The resolution of the velocity spectrum
computed using semblance is often not good enough to discriminate primaries
from multiples. The high resolution hyperbolic Radon transforms can overcome

the aforementioned problem.

1.2 Scope of the thesis

This thesis describes the methods associated with Radon transforms in the time
and frequency domains. The scope of the thesis is a detailed study of the hy-
perbolic Radon transform in terms of inversion. The inversion is regularized by
the Huber norm, which is capable of leading to high resolution velocity panels.
Synthetic and real data from the Gulf of Mexico are used to test the algorithm.
In the real data example, I have successfully managed to remove multiple reflec-
tions in pre-stack marine data. The multiple attenuated seismic section displays

an important S/N enhancement.

1.3 Thesis outline

The structure of the thesis is as follows:

e In Chapter 1 I provide the motivation and scope of my research.

e In Chapter 2 I provide the background information required to understand

current technologies in multiple suppression.

e Chapter 3 focuses on the hyperbolic Radon transform in terms of traditional
least squares, and conjugate gradients (a semi-iterative algorithm often

used to solve large system of equations).
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e Chapter 4 introduces multiple suppression by means of a high resolution

hyperbolic Radon transform.

e Chapter 5 describes real data experiments. A marine data set from the

Gulf of Mexico is used to illustrate the results.

e Chapter 6 summarizes my research and provide a discussion of the most
relevant findings. 1 will also discuss possible future research directions.
Finally, I will discuss the advantages and weaknesses of de-multiple using

hyperbolic Radon transforms.
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Chapter 2

The problem of multiple

elimination

2.1 Introduction

Multiple suppression methods can be divided in three categories:

1. Methods that exploit move-out difference between primaries and multiples

(velocity discrimination).
2. Methods that exploit the periodicity of multiples.

3. Wave equation methods.

This thesis, as I have already mentioned, focuses on de-multiple methods
based on move-out discrimination. Primary reflections and multiples exhibit
different curvature in their travel-time curves. This feature is used to stack
out multiples, by summing along the travel-time curves associated to primaries
reflections and/or to design Radon transforms capable of mapping multiples and

primaries to different areas of the transformed domain.
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The travel-time curves of primaries and multiples are given in terms of normal
moveout (NMO) velocities. When the NMO correction is applied using the
velocities of the primaries, as is normally done to generate stack section, the
primaries are aligned while the multiples are under-corrected. This suggests
that CMP stacking itself is a viable method of multiple suppression (Yilmaz,
1987). It is well known that stacking far offsets works well to suppress multiples.
However, stacking near offsets works against multiple suppression since the move-
out difference between primaries and multiples is negligible. The simplest way
around this problem is to apply an inside mute to the CMP gathers before
stacking. Another problem then emerges: the outside mute. The severity of
this mute governs the amount of far-offset data left at early times for velocity
discrimination. If there is a severe multiple problem, an effort must be made
to preserve the maximum amount of far-offset data associated with the target

events.

2.2 Basic concepts of reflection seismology

In this section I will review some basic concepts and terminology utilized in
exploration seismology. Readers familiar with reflection seismology can skip this
section.

Seismic data are collected in the field by many pairs of sources and receivers.
Logistic and processing requirements often dictate the extent and sampling of a
seismic survey. In this section I will discuss some common terminology used in
reflection seismology. In particular, I will provide a review of common-mid-point

gathers and normal-move-out corrections.
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Common Shot Gathers (CSG)

Figure 2.1(a) shows the common shot gather. This type of acquisition geometry
is often used in the field to collect 2D data. Sources and receivers are moved
along the seismic line in order to sample the subsurface geology with seismic
waves. A CSG is a collection of seismograms with common source position,

mathematically one can express a CSG as follows:

D(xs = 2o, Zr, t),

where x5 (constant) is the source position along the seismic line, z, (variable) is
the receiver position and ¢ the time. The constant z; is used to indicate the fix
position of the source. In general, one obtains a collection of CSG by making z
a variable. A collection of CSG can be reorganized in common receiver gathers.

The latter can be indicated as follows

D(.Ts, Ty = Ty, t)a

please note that in this case we collect all the seismograms with the same receiver

position and different source position.

Common Midpoint Gather (CMP)

Each seismogram has associated a source and receiver position. In general, it
is more convenient to define the data volume in terms of two new variables:
midpoint and offset. We define offset as the distance between source and receiver

for a given seismogram

h=ux—x,.
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Now, we define the midpoint coordinate as the distance half away the source and

the seismogram

Ty + Ty
Ty = 5 .

A common midpoint (CMP) gather is defined as a collection seismograms sharing

the same midpoint position

D(z,, = zg, h,t).

In the last expression we have represented the data volume in terms of the h—z,,
variables. Similarly, we can define a common offset gather (COG) as a collection

of seismograms sharing the same offset

D (@, h = ho,1).

Seismic data are acquired using common shot gathers (CSG) and then re-organized
(using sorting algorithms) into other type of gathers (i.e., common mid point
gathers).

Figure 2.1(b) shows a CMP gather and the associated source-receiver positions.
In Figure 2.1(b) we also illustrate the CDP (common depth point position). For
a horizontal interface the horizontal CDP and CMP positions are equal. This is
not true for dipping interfaces.

Finally, it is important to mention that one may think that there is only one
geophone for each receiver point; this is not true. Usually, in order to eliminate
surface waves and ground noise, several geophones are placed at each receiver
position, this is often called a group or an array. A group of geophones can be
designed to operate like an analog filter to reject surface waves (Telford et al.,

1990).
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Figure 2.1: Seismic data field acquisition geometry. (a) A common shot gather.

(b) A common mid-point gather.

2.2.1 Root Mean Square (RMS) velocity

The energy generated by the seismic source propagates down into the Earth until
being reflected back by geological interfaces. Figure 2.2 is used to derive the
relationship that exists between the travel-time and offset for a single horizontal
layer. The travel-time curve for a perturbation traveling from source O to receiver

d can be expressed as

t_OA+Ad_\/(2do)2+h2_ adg W [, W (2.2.1)
v v I R E R B -

where t; is the two way travel-time at zero offset and the velocity V' is the medium

velocity. Equation (2.2.1) is the equation of a hyperbola. This is only true for
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Figure 2.3: Root mean square velocity
Figure 2.2: The relationship between

for multiple layer formations
offset and time.

the one layer case, what about multiple layers?
Let us look at the multi-horizontal-layer case illustrated in Figure 2.3. In this
case O is the source, the reflection from layer M is recorded at point S. The

travel-time along the ray path OM S can be expressed as

n
di
t=2 : 2.2.2
iz:; cos a; V; ( )
the corresponding offset is
n
T = QZdi tan a;. (2.2.3)
i=1

Equation (2.2.2) and (2.2.3) express the time offset relationship for seismic rays

in the multi-horizontal-layer case. Usually, we express the relationship in terms
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of the ray parameter p, which is defined from Snell’s law as

sinay  sin g sin oy sin oy,
= = =...= =...= . 2.2.4
= v Ty V. Va 224)

After combining equations (2.2.2), (2.2.3) and (2.2.4), one has

t= Z \/72‘/2, (2.2.5)
B pt; V2
T = Z i (2.2.6)

where t; is the vertical travel-time in the ith layer. The above equations are exact
expressions for the travel-time and offset relationships in a multi-horizontal-layer
case. For practical purposes a simplified form of the last two equations is needed.

When the following condition is satisfied

T < Z W2 +V2 (2.2.7)

where Vs is the maximum velocity in the n layers. Equation (2.2.5) and (2.2.6)

can be expanded into a geometric series (Telford et. al, 1990):

2=tp+ ) BaY. (2.2.8)
j=1

where to = 23" | t;. After some mathematical manipulations equation (2.2.8)

can be written as

22y a? _ 1[(2?:1 ti) Qi Vi) _ 1
° X:?:nl tiViQ 4 (Z?:l ti‘/’i2)4 (Z?:l ti‘/:iz)2

i=1 t;

Jzt + -+, (2.2.9)
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if terms with rank higher than z? are neglected, and after defining the following

new variable

V2 _ Z?:I ti‘/f

, 2.2.10
Z?:l ti ( )
then equation (2.2.9) can be written as
0 _ o, 2
£ =1+ g (2.2.11)

We have arrived an equation that relates offset and travel-time in the multi-
layer case. This expression is equivalent to the equation derived for the single
horizontal layer case. However, it is important to note that now the velocity
is not the velocity of the first layer (equation (2.2.1)) but Vg. The latter is
called the root mean squared velocity (RMS velocity). That is to say, when we
consider the relationship between travel-time and offset in a multiple-layer media
as a hyperbola, the correspondent velocity is the root mean squared velocity; this
is a special average of the velocities of the layers above the reflection point.

It is important to note that all of the above explanations are valid for the
horizontal case. For dipping interfaces, the relationship between travel-time and
offset can still be expressed via hyperbolic curves. However, the definition of Vi

also involves the dip of each layer.

2.2.2 Normal move-out correction

We have already shown that travel-times in a CMP gather can be approximated
by hyperbolic curves parametrized by the root mean squared velocity. If the
velocity of the reflection is known, one can removing the offset dependence from

the data. In other words, seismic reflections can be turned into horizontal events.
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This correction is called the normal move-out corrections (NMO). Mathemati-
cally, we can say that if the time of the reflection before NMO was given by
2
x
=2+ .
0 Vf%
then, after NMO, we have

2 =1;.

The latter is equivalent to remove the offset dependence from the data or, in
other words, to simulate an experiment where sources and receivers in the CMP
gather share the same position (Sacchi, 2001). This is an important step towards
the construction of a seismic section. The NMO corrected CMP gather can be
stacked (horizontal summation) to produce an enhanced trace. A collection of

stacked traces is called a seismic section.

2.2.3 Velocity analysis

Velocity analysis is the basis for determining the velocities required to apply the
NMO correction. In order to obtain velocity information, velocity analysis is
performed on selected CMP gathers or groups of gathers. The output of the
velocity analysis process is often given as a velocity spectrum, this is a panel
displaying velocities versus two way zero-offset time. The energy clusters in the
velocity spectrum represent a measure of signal coherency along the hyperbolic
trajectories (Yilmaz, 1987). Figure 2.4 shows a CMP and its velocity spectrum.
The vertical axis are the two way zero-offset travel-time. Primary velocities in
general increase with time (depth). On the other hand, multiples generated by

interactions in shallow layers exhibit low velocities.
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Figure 2.4: A CMP gather and its velocity spectrum.
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2.3 Radon transforms and multiple suppression

In the next section, two time-invariant Radon transforms will be described: the
linear Radon transform or 7 — p transform and the parabolic Radon transform.
In addition, we will present a third transform, the Hyperbolic Radon transform.
The latter is a time-variant transform. We will also present an algorithm to

compute time-invariant transforms in the frequency-space domain.

2.3.1 Linear Radon (7 — p) transform

Using the linear Radon transform a wavefront with linear moveout in ¢ — h can
be mapped to a point in the 7 —p domain. This process entails summation along
lines parametrized with the parameter p (slope or ray parameter). The linear

Radon or 7 — p transform is given by the following expression

o(r,p) = /‘00 d(t = 7+ ph, h)dh, (2.3.1)

00
where d(t, h) denotes the seismic signal, ¢ is time, and A is range of offset. It is
clear that this is an integration along lines defined by the formula ¢ = 7 + ph.
The transformed data, also called the 7 — p panel, is denoted by o(7,p). A
transform like this can be used to isolate linear events in ¢t — h. However, it is
important to stress that reflections in CMP gathers are described via hyperbolic
events and therefore, a linear Radon transform will not be capable of collapsing
hyperbolic events into clusters in the 7 — p panel. The linear Radon transform
can be utilized to remove ground roll in common shot gathers (Yilmaz, 1989).
A remaining problem is to define an inverse transform, this is a transform
that allows us to map o(7,p) to the original ¢ — h space. For that purpose we

define a forward Radon transform of the form



CHAPTER 2. THE PROBLEM OF MULTIPLE ELIMINATION 21

d(t,h) = /00 v(T =t — ph,p) dp, (2.3.2)

—o0
this is a transform that maps a point in 7 — p domain into a linear event in ¢ — h.
At this time it is important to stress that equations (2.3.1) and (2.3.2) constitute
a forward-adjoint pair. In other words, if equation (2.3.2) is a forward operator,
equation (2.3.1) is its adjoint. Some transforms, e.g., the Fourier transform, are
unitary transforms, that is the adjoint of the transformation is also the inverse
transform. This is not true for the Radon transform. In this case a procedure to

find an inversion formula is required. We will come back to this point in section

2.34.

2.3.2 Parabolic Radon transform

One can interchange summation along lines by summation along parabolic events,

(1, q) = /OO d(t =7+ qh® h)dh, (2.3.3)

o0

where h denotes offset, we will see that a transform of this type can be used to
remove multiple reflections. Similarly, one can obtain a transform to map data

inT—qtot—h,

d(t, h) = /_ T o(r =t — gh? q)dg, (2.3.4)

o0

Again, it is important to stress that equations (2.3.3) and (2.3.4) are not an

inverse pair; they constitute a forward/adjoint pair.

2.3.3 Hyperbolic Radon Transform

The hyperbolic Radon transform is defined in terms of the following expressions:
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Muﬂ:/deJ=Mﬁ+hywmm (2.3.5)

am@:/mumfzwﬁ—mmmm (2.3.6)

—o0
where t is the two-way travel-time, 7 represents the two-way zero offset time,
h denotes offsets, and v is the NMO velocity. This transform was originally
proposed by Thorson and Claerbout (1985) to improve the S/N of CMP gathers.
It is clear that the Hyperbolic Radon transform is the kind of operator that one
needs to process reflections in CMP gathers. In this case, the travel-time of
the reflections (hyperbolic travel-times) are matched by the integration curve of
the transformation. Unfortunately, the hyperbolic Radon transform is a time-
variant operator, and consequently, a fast implementation of the forward/adjoint
operators in the frequency-space domain is not possible. We will come back to
this point during the description of the frequency domain implementation of the

parabolic Radon transform.

2.3.4 Frequency domain algorithms

In this section we will present an algorithm to compute the linear and parabolic
Radon transforms in the frequency domain. I will derive the algorithm for the
parabolic Radon transform, but bear in mind that the same procedure is appli-
cable to the linear Radon transform.

We first define the discrete adjoint and forward parabolic Radon operators:

N
(r,q) =Y d(t =7 +q;hd, hy), (2.3.7)
k=1
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d(t, hy) = Z u(t =1t —q; hi,qj) - (2.3.8)

j=1

By applying the Fourier transform to equation (2.3.7) with respect to ¢, we get

N
U(w,q;) = ) Dlw, hi)e™" % . (2.3.9)
k=1

Similarly, we can apply the Fourier transform to both sides of equation (2.3.8)

to obtain the following expression

M
D(w, hy) =} U(w,gj)e "7, (2.3.10)

j=1

Equations (2.3.9) and (2.3.10) can be written in matrix form as follows:

U(w) = L7 (w)D(w). (2.3.11)

D(w) = L(w)U(w) . (2.3.12)

where U(w) and U(w) are M x 1 vectors containing the elements @(w, ¢;) and
u(w,q;) j =1: M, respectively. The N x 1 vector D(w) contains the elements
d(w, hg), k=1:N. The matrix L(w) is given by

efiwh%(h 67iwh%q2 e efiwh%qM

efiwh%(h e*iw’l%@ ... e*iWh%‘IM

Lw) = . o , (2.3.13)

e—iWh?vm e—iwh%’qu e—iWh?VQM
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The elements of the matrix L depend on the geometry of the input data gather
and the range and sampling of the parameter ¢q. At this point it is important to
mention that the adjoint operator (2.3.11) and the forward operator (2.3.12) do
not constitute an inverse pair. To compute the inverse operator we can define
two alternative pairs of transforms.

Radon pair 1

In this case we first assume that we have the data in the frequency domain. In
order to avoid notational clutter we also define D = D(w). One can use the

operator L¥ to compute U using equation (2.3.11)

U=L"D. (2.3.14)

Similarly, we can use the operator L to map back U to data space,

LU =LLYD. (2.3.15)

It is clear that if one wants to recover D the Hermitian form L L needs to be

inverted.

D = (LLY)'LU. (2.3.16)

To summarize, we have found an operator to compute the Radon transform and

its inversion formula,

LYD
D= (LLY)"'LU

Ch
I

(2.3.17)
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The last two equations constitute a forward/inverse pair. Notice that we have
not discussed the problem of invertibility of (L L), we have assumed that the
inverse exists. If the inverse does not exist we can always use the pseudo-inverse
(Strang, 1986). In this case, the inversion formula provides an approximation of

the form

D~ (LLH)'LU. (2.3.18)

where in the last equation the symbol t is used to indicate the pseudo-inverse.

Radon pair I1

We can think that the data are obtained as the result of a transformation L

operating on U,

D=LU. (2.3.19)

in this case, U becomes the unknown of our problem. We can design a Radon
forward operator by treating last equation as an inverse problem: given D, find
U. If the problem is under-determined (M > N) one solution to the last equation
is given by the minimum norm solution. This is the solution U that among all
possible solutions is the one with minimum norm. The minimum norm solution

is given by

Uninnorm = L (L LH)il D, (2320)

in this case, the transform pair is given by

Uminno'rm = L(LLH)_IDa
D = LU.

(2.3.21)
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When the problem is over-over-determined (N > M), the inverse operator can
be obtained by solving a least-squares problem. In this case we minimize the

following error function:

J=(D-LU)T(D-LU). (2.3.22)

Minimization of J with respect to u yields the desired least squares solution

U, = (L'L)'L"D, (2.3.23)

where (L”L)™'L7” is the least squares inverse of L. To avoid singularities or
near-singularities in the matrix LT L, the solution is constrained by incorporating

Marquardt’s damping factor into equation (2.3.23)

U, = (L'L +B8I)"'L"D. (2.3.24)

In this case the pair of transforms is given by:

U, = (L'L+ 81)~'L'D,
D~ LU.

(2.3.25)

So far, we have presented the forward, adjoint, and inverse parabolic Radon
transforms in the frequency domain. We have also defined two different ap-
proaches to obtain the forward/inverse pair (type I and II). It is important to
clarify, however, that in general we will use the parabolic Radon pair of type II.
The advantage of this approach is that the Radon panel can be obtained as the
solution of an inverse problem and, therefore, one can include constraints and/or

penalty terms in the formulation of the problem. This is important at the time
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of designing a Radon transform capable of focusing seismic events with similar
moveout (high resolution Radon transform).

The frequency domain algorithm to solve the Radon transform of type II
is extremely fast. First, one inversion is needed at each frequency in the band
that contains the seismic signal. In addition, the matrix L L is a Toeplitz form
(Kostov, 1990; Darche, 1990), therefore, fast inversion algorithms like Levinson’s
recursion (Marple, 1987) can be used to compute its inverse. This type of algo-
rithm can solve the system of normal equation (2.3.25) in a number of operations
that is proportional to M?, this is an important improvement with respect to
standard methods for a general Hermitian matrix with a cost proportional to

M3 (i.e., Cholesky decomposition).

2.3.5 Validity of the Parabolic Radon transform to pro-

cess seismic data

We have already mentioned that seismic reflections (primaries and multiples) are
organized in a CMP gather according to seismic events that follows hyperbolic
moveout curves. It is clear that a transformation that involves integration along
parabolic trajectories will not provide an optimal solution to our problem. Rather
than using a time-variant hyperbolic Radon transform, Hampson (1986) proposed
to modify the input data in order to transform hyperbolic events into parabolic
events. This is achieved by applying a NMO correction to the CMP gather using a
velocity law that is close to the velocity of the primaries. The residual moveout of
the reflections after NMO can be approximated by a parabola. Another method
to transform hyperbolic events into parabolic events is the ¢2 stretching proposed
by Yilmaz (1989).

In the following two points we describe the techniques proposed by Hampson

(1986) and Yilmaz (1989) to pre-process the seismic data before applying the
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parabolic Radon transform.

Parabolic Radon Transform after > (Yilmaz 1989)

In CMP gathers, the hyperbolic events are defined by

t2:72+h—2 (2.3.26)
R 3.

If we redefine the time axis by using the following transformation

equation (2.3.26) then takes the form

h2
t=1+ Ve (2.3.27)
Letting ¢ = % we end up with the expression of a parabola in stretched time
coordinates.

Parabolic residual moveout (Hampson, 1986)

If one applies NMO correction to the CMP gather with a velocity V,,,,, to a reflec-
tion parametrized with a velocity V, then the travel-time curve of the reflection

after NMO becomes

2 h2 2 h2
b=to+\[t+ 35—\~ 72—

nmo

(2.3.28)

After expanding equation (2.3.28) in Taylor series and keeping terms of order h?

one has

bmr L]
Y R Ve

nmo

). (2.3.29)
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Letting ¢ = ﬁ(% - V,%lmo

) we have, again, an expression for a parabola. Some-
times, it is more convenient to parameterize the parabola in terms of residual

moveout at far offset, in this case we can write

2

h2..’

mazxr

t=to+q (2.3.30)

now the parameter ¢ has units of time and it simply defines the time difference
of the parabola between h = 0 and A = hyyq,.

It is important to stress that we often prefer to use the NMO correction
with an approximate velocity law rather than the ¢? stretching. In fact, the ¢
transformation causes compression of data before 1 second and stretching after
1 second. Therefore there can be a potential problem of aliasing near ¢ = 0,
causing frequency distortion for shallow events. This can be avoided by using a
finer sampling along the #? axis (Yilmaz, 1989).

The range and sampling interval of the parameter ¢ is quite important. In
general, ¢ should span the velocities associated with primary and multiple reflec-
tions. A practical choice of the ¢ sampling increment is such that the number of

q parameters is set equal to the number of traces in offset space.

2.3.6 High resolution parabolic Radon transform

The parabolic Radon transform is widely accepted technique for multiple sup-
pression. The technique can be implemented in the frequency domain via a fast
algorithm that exploits the Toeplitz structure of the least squares Radon operator
(Kostov, 1990; Darche, 1990). Unfortunately, the resolution of the least-squares
Parabolic Radon transform is not often adequate to properly distinguishe events
with similar moveout curves (i.e., short period multiples). In order to overcome

this problem, Sacchi and Ulrych (1995) proposed a high resolution algorithm to
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increase the ability of the transform to distinguish events with similar move-out.
This algorithm is based on a procedure that attempts to find a sparse represen-
tation of the reflections in the parabolic Radon domain.

The high resolution parabolic Radon transform can be used to isolate mul-
tiples within a few milliseconds of residual move-out at far offsets. This is a
problem frequently encountered when dealing with short period multiple reflec-
tions in the Western Canadian Basin (Hunt et al., 1996).

One of the advantages of the high resolution parabolic Radon transform is
that the focusing power of the transform is considerably increased with respect
to the classical least squares parabolic Radon transform. Unfortunately, the high
resolution parabolic Radon transform leads to the inversion of an operator that
is Hermitian but does not exhibit a Toeplitz structure. The resulting Hermitian
operator can be inverted using Cholesky decomposition, in this case the com-
putational cost of the algorithm can be prohibitively high. Sacchi and Porsani
(1999) proposed a method to invert the Hermitian operator via the method of
Conjugate Gradients with the addition of a fast matrix times vector multiplica-
tion using circulant matrix.

Figure 2.6 and 2.7 compare the inversion results from least squares and high
resolution parabolic Radon transform. Figure 2.6(a) shows the synthetic data,
and 2.6(b) shows the inverted model by least squares. Figures 2.6(c) and 2.6(d)
show the inverted data and difference between the inverted data and original
data respectively. Figure 2.7 gives the results from high resolution parabolic
Radon transforms.

The fast high resolution parabolic Radon transform operates at a speed that
is comparable to the least squares Radon operator obtained by the Levinson
recursion. The efficiency of the algorithm is improved by an order of magnitude

with respect to the original algorithm.
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Figure 2.7: (a) Synthetic data. (b) Radon panel obtained by high resolution
parabolic Radon transforms. (c) Reconstructed data from Figure 2.7(b). (d) The

difference between original (Figure 2.7(a)) and inverted data (Figure 2.7(c)).
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2.4 Velocity discrimination in the f — £ domain
(Ryu, 1982)

If we apply a 2-D fast Fourier transform (FFT) to the CMP data with multiples,
the primary and multiple energy can be separated into two quadrants in the f-k
(frequency-wavenumber) domain. This is achieved by NMO correcting the gather
using a velocity function that is between the primary and the multiple veloci-
ties. The multiples are under-corrected, while the primaries are over-corrected.
On the f-k plane, the multiples and the primaries are mapped into two differ-
ent quadrants. The exception to this separation is the near-offset energy (both
primaries and multiples), that almost entirely maps along the frequency axis.
This is because multiples and primaries have no significant move-out difference
at near offsets.

Multiples can be suppressed by zeroing the quadrant corresponding to mul-
tiple energy in the f-k domain. After applying an inverse NMO correction (using
the same intermediate velocity function) one can restore the original move-out

of the primary reflections.

2.5 Velocity discrimination based on the peri-
odicity of multiples

The slant stack multiple suppression technique, which is based on predictive
criterion is discussed here. Alam and Austin (1981) and Treitel et al. (1982)
investigated predictive deconvolution application in the slant stack domain for
multiple suppression, this has been used in the case of vertical incidence and
zero offset data (Yilmaz, 1987). However, multiples are not predicted in time for

a given nonzero offset. The time separation between the multiple arrivals at a
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particular offset h are only equal if h = 0.

Taner(1980) first recognized that the time separation between arrivals is equal
along a radial direction. A trace can be constructed by pulling out the samples
along one of these radial directions. This trace, along which the angle of prop-
agation is constant, is called a radial trace. A radial trace in a layered medium
is called a Snell trace (Claerbout, 1985). In a layered medium, the Snell trace
would not follow a straight path, since its angle of propagation changes at layer
boundaries according to Snell’s Law.

Taner (1980) applied predictive deconvolution along radial traces to success-
fully eliminate long-period multiples. The magnitude of the time separations be-
tween multiples is different from one radial trace to another. However, the time
separations are equal along each of the slanted paths of summation. Therefore,
a predictive deconvolution operator can be designed from the autocorrelogram
of each p trace and applied to suppress multiples.

Since slant stack is a plane-wave decomposition, and since plane waves do not
have spherical divergence, input to the slant stack must not be compensated for
by geometric spreading. Preserving correct amplitude relationships is essential
for the effectiveness of slant-stack multiple suppression. The geometric spreading
correction is applied to offset data by using a primary velocity function. This
enhances the multiples in the data and destroys the amplitude ratio between
them. Predictive deconvolution in the offset domain would then not suppress

these multiples effectively.

2.6 Summary

In this chapter we have focused our discussion on the parabolic Radon transform
as a tool to discriminate primaries from multiples in CMP gathers. While the

technique seems to have a good conceptual basis, its performance on field data
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can be disappointing. There are several possible explanations for this. First, for
velocity discrimination techniques to be effective, significant move-out differences
must exist between the primaries and multiples. However, the inability to exploit
the large move-out between the primaries and multiples in the mute zone works
against the methods based on velocity discrimination. There is also a problem
caused by the application of geometric spreading correction, which is applied
using the primary velocity function. This type of correction usually results in
enhancement of multiple amplitudes.

One of the advantages of using parabolic Radon transforms is the possibility
of using fast algorithms in the frequency domain to invert the operator LT L.
This makes the parabolic Radon transform a very effective method to process

marine data sets where we usually need to process thousands of CMP gathers.
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Chapter 3

Multiple suppression with the

hyperbolic Radon transform

3.1 Introduction

An important step in normal move-out (NMO) and stacking for seismic reflec-
tion data involves the summation of data over paths represented by a family of
hyperbolic events. This summation process is a linear transform and maps the
data into velocity space. Examination of data in the velocity space is used for
analysis of subsurface velocities and filtering of undesired coherent events, in our
case multiples, but the filtering step is useful only if an approximate inverse to the
NMO and stack operation is available. One method of effective velocity filtering
is to use the operator LT (defined for NMO and stacking) and its adjoint L as a
transform pair, but this leads to unacceptable filtered output. Designing a better
estimated inverse to L than L7 is a generalization of the inversion problem. The
inversion process is complicated by missing data because surface seismic data are

recorded only within a finite spatial aperture on the Earth surface.
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3.2 The hyperbolic Radon transform and veloc-
ity stacks

The hyperbolic Radon transform involves mapping seismic reflections along hy-
perbolic trajectories in the time-offset domain to points in the time-velocity (or
slowness) domain. Then the conjugate (or transpose) transform maps the points
in the time-velocity domain to hyperbolic trajectories in the time-offset domain.
For conjugate mapping, the hyperbolic Radon transform is similar to velocity
analysis, which converts seismic traces in the time domain to velocity clusters in
the time-velocity domain. However, the conjugate hyperbolic Radon transform

can map points in velocity space back to the time-offset domain.

3.2.1 Forward and conjugate mapping

For typical seismic data, a CMP gather consists of hyperbolic events that repre-
sent reflections from the subsurface. According to the Dix equation formula (see

discussion in Section 2.2.1), the reflections in a CMP gather can be written as

B2

t?=1°+ x (3.2.1)
where 7 is the two way travel-time at zero offset, and v is the RMS velocity.
Equation (3.2.1) shows that the reflections in a CMP gather are hyperbolic.
Next, let’s look at the transformations that map the offset space into velocity
space and vice-versa. Let d(h,t) be the data in the time-offset space and u(v, 1)
be the transformed data in the time-velocity space. The mapping from the offset

space to the velocity space is achieved by summing over offset

(v, 7) = /hm d(h,t = \/72 + I2]?)dh, (3.2.2)

hmin
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where u(v, 7) represents the velocity gather. The variables h, v,t and 7 represent
the offset, velocity, time and zero offset travel-time respectively. Similarly, the
conjugate transformation (mapping from velocity space to offset space) involves

summation along the velocity axis

d(h,t) = / T v, = JE = TP do, (3.2.3)

where d(h,t) is the reconstructed CMP gather. Discretizing the equations (3.2.2)
and (3.2.3), one has

(v, 7) =Y d(h,t = /72 + h?[v?), (3.2.4)

and

d(h,t) =Y u(v,7 =/t = h?/v?). (3.2.5)

v

Figure 3.1 shows a CMP gather from the Gulf of Mexico data set, the offset
starts from —15993 ft (4874.7 m), the space interval is 87.5 ft (26.7 m). There
are 1751 time samples, the time sampling interval is 0.004 s. Figure 3.2 shows
the mapping of this CMP in velocity space by equation (3.2.4).

The result in velocity space shows artifacts arising from the limited aperture
of the CMP gather. The horizontal lines crossing the velocity panel are the effect
of near offset truncation. The reason for this effect will be shown later in section
3.2.3. Figure 3.3 shows the result of forward mapping. This is done by solving
the inverse problem which is discussed in next section. From the figure one can

not tell the difference between the original data and the inverted data.
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Figure 3.1: A CMP gather from the

Figure 3.2: The velocity gather solved
Gulf of Mexico data set. by least squares.

3.2.2 The inverse problem

Velocity estimation from a CMP gather can be regarded as linear inverse prob-

lems. Equation (3.2.5) can be written in matrix form as

d =Lm, (3.2.6)

where d is a column vector of size nt x nh, and m is a row vector of size nt x nv.

These panels (matrices) can be rewritten in lexicographic order, for example
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Offset (ft) x104

-1.4 -1.2 -1.0

Time (s)

dll d12 e dln dml

dyy  dyy - dyy d
o ? S (3.2.7)

dmn

Thus the dimension of L is (nt x nh x nt x nv). The operator L is the
time-variant forward mapping operator. Basically, the forward operator converts

points in time-velocity space into hyperbolic events in the time-offset domain.
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The transpose operator LT is a superposing operator. It sums the hyperbolic
trajectories in the time-offset domain and puts the energy into corresponding

points in velocity space. The transpose mapping can be written as

m = L"d. (3.2.8)

In order to compute m we need to solve a least-squares problem, in other words,

we need to minimize the sum of the squares of the error vector given by

e =Lm—d. (3.2.9)

This is equivalent to minimize the following objective or cost function:

J=e"e=(Lm—d)"(Lm — d). (3.2.10)

The least squares solution can be written as

m;, = (LTL)~'L7d. (3.2.11)

For a small data set of 100 traces, 5 s of data with a 0.002 s sampling interval
in time, the size of operator L can go up to (250000 x 250000). A matrix of this
size cannot be inverted by conventional methods. The best way is to employ an
algorithm to solve it in an iterative manner. The method of Conjugate Gradients
is a very powerful tool to solve large system of equations where the matrix does

not need to be explicitly provided.

3.2.3 Near and far offset effects

Near and far offset artifacts due to limited aperture are the main source of reso-

lution degradation in hyperbolic Radon transforms. In order to illustrate these
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effects, one data point at the very near offset is used to get the corresponding
velocity gather. Figure 3.4 shows the synthetic data in a CMP gather, Figure
3.5 shows the inverted velocity from Figure 3.4. The near offset effect looks like

a horizontal event across the velocity panel.

Offset (m) Velocity (m/s)
0 500 1000 1500 2000 0 2000 4000
0.5 0.5
e s 2 oSO A bb phA
E £ [T
1.0 1.0
1.5q 1.54

Figure 3.4: One data point at the near Figure 3.5: The forward mapping of
offset. Figure 3.4.

One can do the same thing to investigate far offset artifacts. A far offset data
point is used to obtain the corresponding velocity panel (Figure 3.6 and 3.7).
The velocity trajectory for this far offset point curves from the top to the right
of the velocity panel.

Consequently, a hyperbolic event in the time offset domain is inverted to a
point with horizontal and curvaceous artifacts. This is illustrated in Figures 3.8
and 3.9. To overcome the near and far offset artifacts, an offset proportional
weighting function can be used. The function can be designed in many ways.

One way is to allow far offset data to contribute more to the stack than the
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Offset (m) Velocity (m/s)
500 1000 1500 2000 2000 4q00

i
0.5 0.5 E

Time (s)
Time (s)
-

i 1.04 ’P"“Fy,
1.0 ey

1.5 1.54

Figure 3.6: One data point at far off- Figure 3.7: The inverted velocity
set. gather from Figure 3.6.

near offset data (Thorson and Claerbout, 1985). For far offsets, tapering can
effectively reduce the far offset artifacts (Kabir and Marfurt, 1999). However, in
order to prevent damaging the data, the weighting function should be considered

instead of tapering.

3.3 Inversion of hyperbolic Radon transform us-
ing the method of Conjugate Gradients

The hyperbolic Radon leads to the problem of solving the following system of

equations

Lm =d, (3.3.1)
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Offset (m) Velocity (m/s)
o 500 1000 1500 2000 o 2000 4000

0.5 0.5
2 2 bl‘-ﬁ '
(S ?{?V"HM (=

1.0 17 1.0

e l|
1.59 1.59

Figure 3.8: One hyperbolic event in Figure 3.9: The inverted velocity

data space. gather.

the problem needs to be solved with an iterative algorithm like CG. The size
of L makes the problem intractable for non-iterative solvers. We have already
seen that the system of normal equations that we need to solve has the following

form:

L"Lm = L'd, (3.3.2)

where the operator LTL is interpreted as the application of two operators: L
and LT. If the right side is denoted b = Ld. Then we have a new problem of
the form Am = b, where A = LT L

The method of CG is the most prominent method for solving sparse systems

of linear equations. CG is effective for systems of the form
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Ax =D, (3.3.3)

where x is an unknown vector, b is a known vector, and A is a known, square,
symmetric, positive-definite matrix.

CG is suited for the use with sparse matrices. If A is dense, the best course of
action is probably to factor A and solve the equation by back substitution. The
time spent factoring a dense A is roughly equivalent to the time spent solving
the system iteratively; and once A is factored, the system can be back-solved
quickly for multiple values of b. One can compare this dense matrix with a large
sparse matrix that fills the same amount of memory. The triangular factors of
a sparse A usually have many more non-zero elements than A itself. Factoring
may be impossible due to limited memory, and will be time-consuming as well;
even the back-solving step may be slower than the iterative solution. On the
other hand, most iterative methods are memory-efficient and run quickly with
sparse matrices.

Let A be an n X n matrix, and x and b are vectors, that is, n x 1 matrix,

A A - Am I by
Aoy Agy - A2n X2 _ b.2 ' (3'3'4)
Anl An2 Tt Ann Tp bn

The inner product of two vectors is written x”y, and represents the scalar-
sum Y ., x;y;. Note that xy = y”x. If x and y are orthogonal, then xy = 0.
In general, expressions that reduce to 1 x 1 matrix, such as x’y and x? Ax, are

treated as scalar values.
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A matrix A is positive-definite, if for every nonzero vector x

xTAx > 0. (3.3.5)

20

15

10

0.5xl+x2:—1

-10+

-15 | | | | | | |

Figure 3.10: 2D linear system example, the solution lies at the intersection of

the lines.

3.3.1 The Quadratic form

The quadratic form is simply a scalar, quadratic function of a vector with the

form

1
f(x)= EXTAX —b'x +c, (3.3.6)

where A is a matrix, x and b are vectors, and c is a scalar constant. If A is

symmetric and positive definite, f(x) is minimized by the solution to Ax = b.
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The ideas here will be demonstrated with the simple sample problem

2 1 2
A= b= ,c=0. (3.3.7)
05 1 ~1

The system Ax = b is shown in Figure 3.10. Generally the solution x lies
at the intersection point of n hyper planes, each has dimension n — 1. It is only
possible to show the case when the size of A is less or equal to 2 x 2. For this
specific problem, the solution is x = [2, —2]7. The corresponding contour plot of

f(x) is illustrated in Figure 3.11.

Figure 3.11: Contour plot of the quadratic form. Each contour has constant

f(x).

Because A is positive-definite, the surface defined by f(x) is shaped like a
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paraboloid bowl. The gradient of a quadratic form is defined to be

f(x) = 6_"2].8()() . (3.3.8)

The gradient is a vector field that, for a given point x, points in the direction

of greatest increase of f(x). Figure 3.12 shows the gradient vectors for equation

(3.3.8).
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Figure 3.12: Gradient f'(x) of the quadratic form. For every x, the gradient

points in the direction of steepest increase of f(x), and is orthogonal to the

contour lines (After Shewchuk, 1994).
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At the bottom of the paraboloid bowl, the gradient is zero. One can minimize
f(x) by setting f'(x) equal to zero. Applying equation (3.3.6) to (3.3.8), one
gets

: 1 1
f(x)= 5ATX +5Ax—b. (3.3.9)

If A is symmetric, this equation can be written as
f(x) = Ax — b, (3.3.10)

next, setting the gradient to zero, equation (3.3.3) is obtained, which the linear
system needed to solve. Therefore, the solution to Ax = b is a critical point
of f(x). If A is positive-definite as well as symmetric, then this solution is a
minimum of f(x), so Ax = b can be solved by finding an x that minimizes f(x).
If A is not symmetric, then equation (3.3.9) implies that CG will find a solution
to the system (AT + A)x = b, where (AT + A) is symmetric.

Why do symmetric positive-definite matrices have this property? Consider

the relationship between f at some arbitrary point p and at the solution point

x = A~'b. From equation (3.3.6) one can show that

fix+e) = L(x+e)'A(x+e)—b"(x+e)+c (by equation (3.3.6))
= ix"Ax+e"Ax+ je"Ae —b"x —bTe+c (by symmetry of A)
= xTAx—-bTx+c+elb+ lefAe—Dble
= f(x)+ ie"Ae.

(3.3.11)
If A is positive-definite, then the latter term is positive for all e # 0; therefore
x minimizes f. But if A is symmetric and not necessary positive-definite, one

has

F(p) = £+ (b~ %) A(p ). (33.12)
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If A is positive-definite as well, then from inequality (3.3.5) the latter term is
positive for all p # x. It follows that x is a global minimum of f. The fact that
f(x) is a paraboloid is our best intuition of what it means for a matrix to be
positive-definite. If A is not positive-definite, there are several other possibilities.
A could be negative-definite, the result of negating a positive-definite matrix, see
Figure 3.13, but held upside down. A might be singular, in which case no solution
is unique; the set of solutions is a line or hyper plane having a uniform value for
f. If A is none of the above, then x is a saddle point, and techniques like Steepest
Descent and CG will likely fail. Figure 3.13 demonstrates the possibilities.

(a) (b)

200 100

100

f(x)
(%)

<SS
SIS
SIS
SIS

-100

Figure 3.13: Contour plot of the quadratic form. Each contour has constant

f(x).

The values of b and ¢ determine where the minimum point of the paraboloid

lies, but do not affect the paraboloid’s shape.
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3.3.2 The method of Steepest Descent

In the method of Steepest Descent, one starts at an arbitrary point x(, and
then slides down to the bottom of the paraboloid. In other words, one takes a
series of steps x(1), X(2), . . . until one is close enough to the solution x.

When taking a step, the direction is chosen in which f decreases most quickly,
which is the direction opposite f (x;). According to equation (3.3.10), the direc-
tion is — f/(x;)) = b — Ax).

It is important to introduce some definitions. The error e; = x; — X
is a vector that indicates how far one is from the solution and the residual
r;) = b — Ax(; indicates how far one is from the correct value of b. It is easy
to see that r; = —Ae(;), and the residual can be thought of being the error
transformed by A into the same space b. More importantly, r;) = — f (X)),
and also the residual should be considered as the direction of steepest descent.

Suppose one starts at [—2, —2]7. Following the steepest descent direction
gives the solid line in Figure 3.14(a).

Figure 3.14(b) shows the intersection of the surfaces. Along the direction

shown in Figure 3.14(a) choose a point

X(1) = X(0) + ar(). (3313)

The purpose is to choose « to minimize f along a line. Figure 3.14(c) shows
the parabola defined by the intersection of the surfaces shown in Figure 3.14(b).
The next step is to take a direction which is orthogonal to the gradient at the
bottom of the hyperbola. The new gradient is also orthogonal to the gradient
of the previous step, see Figure 3.14(d). The method of steepest descent is
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Figure 3.14: (a)From at [—2, —2]", take a step in the direction of steepest descent
of f. (b) Find the point on the intersection of these two surfaces that minimizes
f- (c) The parabolic intersection of the surfaces. (d)The gradient at the bottom
point is orthogonal to that of the previous step (After Shewchuk, 1994).

summarized as follows

I'(i) - b—AX(i), (3314)
I‘T | P
(3)" (4)
gy = (3.3.15)
I'z;)AI'(Z-)
X@i+1) = X@) —|-Oz1'(i). (3316)

The solution-finding path for the steepest descent is shown in Figure 3.15.
For each step, the gradient is orthogonal to that of the previous step.
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Figure 3.15: The solution seeking path of the steepest descent (After Shewchuk,
1994).

3.3.3 The method of Conjugate Gradients

The method of steepest descent often finds itself taking steps in the same direc-
tion as earlier steps (see Figure 3.15). It would be better if it got it right the first
time, which is why the method of CG is used. Pick a set of orthogonal search
directions d(), d(1),,...,d,—1). In each search direction take exactly one step,
and make that step just long enough to reach x. After n steps, the solution is
reached.

The solution is to make the search directions A-orthogonal instead of orthog-
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onal. Two vectors d; and d(;) are A-orthogonal, or conjugate, if
dfyAd) = 0. (3.3.17)

Replacing the definition of a(; in steepest descent by

_ dore_ 3.3.18
a(i)_dTAdi’ ( )
(5) 8@
the CG are defined as
d(o) = I‘(O) =b-— AX(O), (3.3.19)
rlor;
()" (@)
au) = EUE (3.3.20)
dz)Ad(i)
Xi+1) = X@) +a@da, (3.3.21)
r(i+1) = I'(Z-) - Oj(i)Ad(i), (3.3.22)
B ra+1)r(i+1) (3 3 23)
G+1) = — 1o 3.
()T
diry = rg + Buryde- (3.3.24)

The later is the algorithm we have used to invert the hyperbolic Radon trans-

form.

3.4 Examples

The goal for multiple suppression is to remove as many multiples as possible,
leaving the primaries untouched. The de-multiple algorithm can be summarized

as follows:
e Invert the hyperbolic Radon operator to compute the velocity panel m.
e Filter the primaries in the velocity panel and retain the multiples.

e Map the multiple panel obtained in the previous step to the offset-time

space using the operator L. This is our estimate of the multiples.
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e The multiple free data are then obtained by subtracting the estimated

multiples from the original data.

Figure 3.16(a) shows the muting operator that I have designed to separate
multiples from primaries in the velocity gather. Figure 3.16(b) shows the previous
panel after muting. Figure 3.16(c) shows the multiples obtained by transforming
back the velocity gather to data space using the operator L. Figure 3.16(d)
shows the data after de-multiple, in this case the multiple were subtracted from
the original data.

To decide if the multiples have been successfully removed or not, a quality
control measure is needed. The latter can be done by plotting the velocity
spectrum after and before de-multiple. A velocity analysis program was used to
compute the velocity spectrum (semblance) as discussed in section 2.2.7.

Figure 3.17 shows the velocity analysis for both the original data and the
data after multiple removal. In Figure 3.17(d), one can see that the multiples
have been properly removed, but the result is not perfect. There is still a trace

of residual multiple energy leaking in the primaries.

3.5 Summary

In this chapter we discussed a numerical procedure to invert the time-variant
hyperbolic Radon operator. Since this type of operators cannot be posed in the
frequency domain a strategy to solve large systems of equations is required. In
our research, we have found that the method of conjugate gradients provides an
efficient manner to invert the hyperbolic Radon operator. One of the advantages
of CG is that the matrix does not need to be defined. In our algorithms, the CG
requires only to know how to compute inner products of the form Lx and LTy

without knowing the actual structure of the matrix.
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Figure 3.16: (a) The cut off line in the velocity panel for multiple suppression.
(b) The primary part of the velocity is cut off, leaving the multiple part. (¢) The
multiple velocities mapped back into the data space. (d) the primaries obtained

by subtracting multiples from the original data.
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Figure 3.17: (a) Original data. (b) The data after multiple suppression. (c)
Velocity analysis of Figure 3.17(a). (d) Velocity analysis of Figure 3.17(a).
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Chapter 4

Resolution enhancement

4.1 Introduction

In the previous chapter we discussed the problem of inverting the hyperbolic
Radon operator using least squares. In particular, we have centered our discus-
sion around the problem of using the method of conjugate gradients to solve the
system of normal equations that arises in the least-squares solution.

It is important to mention that to guarantee the stability of the inversion we
often use an extension of least squares called penalized least-squares or damped

least squares. In least squares we minimize the following cost function

J=(Lm-d)”(Lm-d). (4.1.1)

The minimization of J leads to the least squares solution

m = (L"L)"'L"4d. (4.1.2)

It is clear that when writing the last formula we have assumed that the matrix

(operator) LT L can be inverted. Unfortunately, this is a large operator where
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some of its eigenvalues are quite small (often below machine precision). A tech-
nique to stabilize the inverse entails the definition of a penalized cost function of

the form

J=Lm-d)?(Lm-d) + pgm’m. (4.1.3)

The second term in the right hand side of the last equation is the penalty term.
This term forces the solution to be small, or in other words, forces the solution
to be of finite size. Minimizing the penalized cost function with respect to m

leads to the damped least squares solution

m = (L'L + puI)~'L74d. (4.1.4)

If the > 0 the new matrix (LT L + puI) is a positive definite form, and there-
fore, invertible. The parameter p is often called the trade-off parameter of the
problem.

This is a very simple way of stabilizing the inverse problem. However, damp-
ing the solution can lead to resolution degradation (Sacchi and Ulrych, 1995).
In order to overcome this problem, we will redefine the penalty term in terms of
a norm capable of estimating solutions that exhibit certain degree of sparseness.
This concept has been originally proposed by Thorson and Claerbout (1985) to
invert velocity stacks. In their approach the damping term ym?m is replaced
by a minimum entropy norm. This is a norm that enables one to retrieve sparse
solution.

In this thesis, the quadratic penalty term is replaced by a Huber norm. The
Huber norm has the property of behaving like a standard quadratic norm for
small values of its argument while under-emphasizing large amplitudes. We will
see that the Huber norm leads to an inversion strategy useful at the time of

computing high resolution hyperbolic Radon transforms.
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4.2 High resolution hyperbolic Radon transform

When data and velocity gather are written in lexicographic order, the hyperbolic

Radon transform becomes

Lm ~ d. (4.2.1)

In the previous chapter we have used the method of conjugate gradients to

solve the system of normal equations of the form

my, = (L'L + pI)~'ATd. (4.2.2)

Rather than using quadratic regularization we introduce a new regularization

term of the form

J =||Am — d|> + pR(m), (4.2.3)
where $(m) can be defined by the Huber norm or Cauchy criteria as

Rp(m) = ZPH(mz’/U) (4.2.4)

Re(m) = ZPC(mi/G) (4.2.5)

where subscript “C” to denote functions associated with the Cauchy criteria,

and “H” for the Huber norm.

Cauchy norm regularization

The Cauchy norm is given by the function

pe() = In(% +1). (4.2.6)
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Comparison of Different Norms
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Figure 4.1: A: Euclidean norm. B: Cauchy norm. C: Huber norm (a = 0.01).

Minimizing equation (4.2.3), with p defined by equation (4.2.6) yields

m¢ = (L'L + uQ¢) 'L, (4.2.7)
where Q¢ is a diagonal matrix with elements given by:

2

m? + 202"

Qeyi = (4.2.8)

Huber norm regularization

The Huber norm is given by
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Figure 4.2: Q values for different model elements. For smaller model elements,

Q is big, for bigger model elements, Q is smaller. ¢ = 0.5.

2?2 /2 lz] < a
pn(z) = : (4.2.9)
alz| —a?/2 |z] > a
where a is a threshold value that needs to be defined. After minimizing equation

(4.2.3), with the regularization term given by the Huber norm (equation (4.2.9))

we obtain

my = (ATA + uQp)tATq, (4.2.10)

where the elements of )y are

El

IA
S

Qu,ii = | : (4.2.11)

M)
al¥ o
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Figure 4.3: Elements of the matrix QQ versus model elements m.

4.2.1 Solution of the system of equations

When the Cauchy or Huber norm are adopted as regularization terms we need

to solve a non-linear problem of the form:

(L"L+xQ(m))m = L'd, (4.2.12)

where the Q(m) is the diagonal matrix that arises after using the Cauchy or
the Huber penalty term. The last equation can be solved using iteratively re-
weighted least-squares (IRLS) (Scales, 1987). Let us assume that the solution at

iteration k is m*, then IRLS solves the following problem:

(L'L + ¢ Q(m*)) mF*! = 1.7 d. (4.2.13)

The system at iteration k£ + 1 is solved using the method of conjugate gradients.
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It is clear that now we have two iteration loops; one to solve the CG problem;
the other to update the nonlinear term Q(m). In general, we have found that
only 5 — 6 updates are required to find the solution. As per the CG internal

iterations we have used the following stopping criterion:

|Jk _ Jk—1|
| JE + JEL

where ¢ = 107 — 107%. In general, one can start the algorithm with the null

<€

solution, m® = 0.

4.2.2 Hyper-parameter selection

In this section we discuss the problem of estimating the hyper-parameters p,
o and a required by the Huber norm. In general, the Cauchy norm and the
Huber norm give similar results. Moreover, the convergence of the inversion
is quite similar in both cases. Therefore, we will concentrate on the analysis
of the Huber norm. This is the norm that we have adopted in our numerical
simulations.

From Figure 4.2 and 4.3, we can see that ao is a threshold parameter. Before
going to the next step, the significance of Q has to be explained in detail. In our
inversion we are simultaneously constraining the solution to honor the following

two equations:

Lm~d

(4.2.14)
Q/?m~=~0

The first equation states that we want a solution that fits (within some error
bounds) the data; whereas the second equation states that the weighted average

Q!?2m should be small. Let us expand the term Q/?m
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(4.2.15)

o 0 o v ) Lo

Equation (4.2.15) suggests that the elements of Q should be defined in such a
way that a large weight should be given to model parameters (m;) that should
be small, and a small weight to model parameters that should be large. One can
interpret these weights as the inverse of a variance; where a small variance means
that the parameter is not allowed to fluctuate. The elements ¢; are a function
of the model parameter m;. The weights ¢; will serve to enhance large model
parameters and to de-emphasize small values of m;. This is consistent with the
idea of finding a sparse solution. In other words, a solution that can represent
the data with the minimum number of clusters in velocity space.

The criteria to choose the parameters a, o and p is described as follows.

Equation (4.2.11) can be re-written as

Q 7 Imi<ao (4.2.16)
Hjii = . L.
: G Imi| > ao

02|M|
ag

Introducing a new variable m. = ao, where m, is chosen as some percentage

of the maximum expected value of m;, i.e.,

me = 0.01 max|[m;]

then the regularization term becomes:
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Quii = — (4.2.17)
T U gmn fmil >me

The unknown term o2 can be absorbed by the tradeoff parameter u in equation
(4.2.10). This new parameter is estimated by trial and error after analyzing the
data misfit. In other words, we looked at the error panel (original data minus the

reconstructed data) and select u in such a way that data are properly reproduced.

4.3 Source wavelet deconvolution

Our original operator L is modified in order to contain a source wavelet term.

The new hyperbolic Radon operator can be written down as follows:

d=WLm (4.3.1)

If m is a collection of spikes in the 7 — v space (velocity space), then Lm is
a superposition of full band wavelets with hyperbolic move-out in data space.
The operator W is a temporal convolution with a source wavelet that makes the
seismic data band-limited. This is quite important since it helps to fit the data
which is naturally band-limited.

In our algorithm we need to specify the adjoint operator of WL. The adjoint
is given by LTW?. We have already seen that L is a stacking along hyperbolic
events. The operator W7 is the adjoint of convolution, this is the correlation of
a vector in model space with the wavelet (Claerbout, 1992).

The source wavelet in our algorithm is a band-limited zero phase finite length

filter.
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4.3.1 Convolution and Correlation

In the following section, I will show that convolution and correlation are a for-
ward/adjoint pair.
For two vectors, b = (b1, b2) and x = (x1, Z2, x3), the convolution of the two

vectors are defined by

y = bxx
== (blabZ) * (:Lllaan'T?))
= (bl.’El, bQ.’El -+ bl.’L'Q, bQCEQ + b1$3, b2$3), (432)

where y present the output vector, and * represents convolution. The convolution

can also be written in matrix form,

U1 b1 0 0
e
Y2 2 b1 0O
Ys 0 by by
x3
Y4 0 0 b
where the multiplication can be shortened as
Y = Bx, (4.3.4)

the operation Bx convolves vector b with x, whereas the operation B”y cross

correlates b with y, which can be written in matrix form,

Y1
33’1 bl b2 0 0
! Y2
Xy = 0 b1 bQ 0 ; (43 5)
Ys
xh 0 0 by b
- y4 =
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this is the same as the definition of cross-correlation of two vectors,

x = by
= (b17b2)'(y17y27y37y4)

= (b2y1: blyl + b2y2; b1y2 + b2y37 bly?, + b2y4, b1y4), (436)

where “.” denote cross-correlation.

4.4 Examples

The validity of the Huber norm regularization is demonstrated using synthetic

and real data examples.

4.4.1 Synthetic data examples

Figure 4.4 shows the synthetic example used to test Huber regularization algo-
rithm. The near offset is at hy=40 m, the offset increment is Ah=50m, the total
number of samples is nt=800, and the temporal sampling rate is At=0.004s.
Figure 4.4(a) and 4.5(a) show a primary at time 0.8 s, and its multiple at 1.6 s.
The horizontal axis is offset, the vertical axis is time. In these examples, there
are 800 time samples and the sampling interval (At) is 4 ms. The offset starts
at 40 m. The offset interval is 50 m. The velocity axis starts at 500 m/s and
ends at 5000 m/s. There are 40 velocity samples.

Figure 4.4(b) shows the inverted velocity using the Huber norm. By com-
parison with Figure 4.5(b), it is obvious that the Huber inverted velocity has a
more focused energy distribution than that of damped least squares. Next, the
inverted velocities are mapped back into data space. The velocity gather is first

muted to eliminate the primaries. Figure 4.4(c) and figure 4.5(c) show inverted
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Figure 4.4: (a) Synthetic data. (b) Velocity gather obtained by inverting the hy-

perbolic Radon transform using the Huber norm regularization. The parameters

adopted in this simulation were p=>500, m.=0.08, vo=500mM/5, Vme;=5000m/s,

and a total number of velocity traces nv = 40. (c¢) Multiples obtained after

muting figure (b). (d) Primaries obtained after subtracting the multiples from

the data.
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Figure 4.5: (a) Synthetic data with parameter given by hq=40, Ah=50, nt=800,

dt=0.004s. (b) Damped least-squares solution obtained using the method of con-

jugate gradients. The parameters used in the inversion were p=>500, vo=500m/s,

Vmae=5000m/s, nv=40. (c) Inverted model of multiples using damped least

squares. (d) Result of subtracting multiples from the data.
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velocity gathers obtained with the Huber norm regularization and damped least
squares respectively. In the next step, the multiples are subtracted from the
data. The estimated primaries obtained with the Huber norm regularization

and damped least squares respectively are shown in Figure 4.4(d) and Figure

4.5(d).

4.4.2 Real data examples

In this section a CMP from a sub-salt data set is used to illustrate the multiple
removal. The field geometry information is listed in Table 5.1 at the beginning
of the next chapter. The CMP is processed using the Huber regularization and
least squares, the results of which are shown in Figure 4.6 and 4.7, respectively.
Figure 4.6(a) shows the original data of CMP 1000. Then the data are mapped
to velocity space by inverting the hyperbolic Radon transform using the Huber
regularization , as shown in Figure 4.6(b). The resolution of the velocity space
is quite good, and the multiples and primaries are well separated. A mask is
applied to the velocity panel to cut off the primaries, leaving only the multiples.
In the next step, the multiples are mapped back to data space. The result is
shown in Figure 4.6(c). In this figure, there is no event above 4 s because the
very first multiple, the water bottom multiple, appears at 4 s. After subtracting
the multiples from the original data, we obtained the primaries. Figure 4.6(d)
shows the primaries obtained using the Huber norm inversion procedure.

By comparison, Figure 4.7 shows the results obtained using damped least-
squares. Figure 4.7(a) shows the original data, CMP 1000. Figure 4.7(b) is the
velocity obtained by damped least-squares. Note that the resolution is not quite
good, amplitude smearing introduced by finite aperture is the major source of
resolution degradation. Figure 4.7(c) and 4.7(d) are the multiples and primaries

obtained by muting 4.7(b).
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Figure 4.6: Field data example. The CMP gather was inverted using the Huber
norm regularization method described in this chapter. (a) CMP 1000 from a Gulf
of Mexico marine data set. (b) Inverted velocity panel. (¢) Multiples obtained
by muting the primaries in velocity space. (d) Primaries, this is the result of

subtracting multiples from the original data shown in Figure 4.6(a).
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Figure 4.7: (a) CMP #1000 from the Gulf of Mexico. (b) Damped least-squares

inversion. (c) Multiples obtained. (d) Model of primaries.
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It is important to stress that the high resolution velocity gather obtained
with the Huber regularization allows us to design a better mute that the velocity

gather obtained using damped least-squares.

4.5 Summary

In this chapter I have proposed a new strategy to invert the hyperbolic Radon
transform that is used to compute velocity gathers for de-multiple. In this new
method a Huber norm regularization term included in the formulation of the
inverse problem to construct a velocity gather that is sparse.

The method of conjugate gradients play a major role in obtaining the solution
of our inverse problem. The hyperbolic Radon operator, as we have already
discussed in the previous chapter, cannot be inverted by direct methods. In the
presence of a non-quadratic regularization term (i.e., Huber and Cauchy norms)
iterative re-weighted least-squares has proven to be an effective algorithm to

solve our problem.
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Chapter 5

Field data experiments

5.1 Introduction

In this chapter, we use the hyperbolic Radon transform to process a marine data
set from the Gulf of Mexico. These data have been provided by Western Geo-
physical to several academic and industrial research groups to test new multiple
attenuation technologies.

The Gulf of Mexico data set has severe sub-salt imaging problems. Multiples
are more problematic than usual despite the fact that they are weak. This is
because the primaries below the salt are weak and the primary-multiple ratio
is usually low. Therefore, removing the multiples without touching primaries
is a critical concern at the time of processing these data. The depth of the
water column is approximately 1500 m. First and second order multiples can be
easily identified because of their periods which is about 2 s. The data acquisition
parameters are given in Table 5.1.

Figure 5.1 shows the stacked section of the data set before multiple suppres-
sion. Please note that the time axis starts at 1.5 second. In this figure, the most

significant first order multiples below the salt body are indicated with arrows.
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CDP numbers 818-2618
number of traces per shot 183
shot interval 87.5 ft
group spacing 87.5 ft
farthest offset -15993 ft
nearest offset -68 ft
number of samples per trace 1751
time sampling interval 4 ms
starting time 1.5s

Table 5.1: Field acquisition parameters for the Gulf of Mexico data set.

Note that a large part of the multiple problem is caused by surface multiples that
are not related to the water bottom. For example, multiples that bounce upward
twice from the the top of the salt, or once each from top and bottom of the salt.
From 6.0 second downward, a series of second order multiples can be observed.
A common effect in this environment are zones with weak multiple energy, such
as in the areas around CDP 1400 and 2550, which are right next to zones with
strong, focused multiple energy around CDP 1300 and 2300. These effects are
due to the flanks in the water-bottom and sub-bottom reflectors which act as
a lens. Note also that since the top and the bottom are not very continuous
many diffractions can be observed. This effect is more obvious in the multiples

generated in the salt boundaries (Verschuur, 1999).

5.2 Real data processing procedures

The following procedures are applied in order to remove the multiples from the

data set.
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e Sort shot gathers into CDP gathers.

e Apply gain function to compensate for geometric spreading. The gain used

in this study is a #? function.

e Compute the velocity gather for each CDP by inverting the hyperbolic
Radon transform using the Huber regularization strategy outlined in chap-

ter 4.

e Design a mask or muting function to retain the multiples in velocity space.

This mask is assumed to be variant from CDP to CDP.

e Map the muted velocity gather to data space to generate a model of mul-

tiples.

e For each CDP, subtract the multiples from the original data to generate a

model of primaries.

e Use normal moveout correction and stacking to generate a multiple free

seismic section.

e Perform velocity analysis at selected CDP locations to verify that the al-

gorithm has been able to remove the multiples.

Figure 5.2 shows a CMP gather from the real data set. This is CMP #1000
located at the right hand side of the stack in Figure 5.1. Figure 5.2(b) shows the
primaries in this CMP (multiples removed). Figures 5.2(c) and 5.2(d) show the
velocity spectra computed using velocity analysis for Figures 5.2(a) and 5.2(b),
respectively. The later illustrates that the multiples have been properly removed.

Figure 5.3 shows the estimated multiples and the associated semblance panel.
After multiple removal the primaries are NMO-corrected. Figures 5.3(c) and

5.3(d) show the NMO-corrected original data and the NMO-corrected primaries.
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In the Figure 5.3(c) the under-corrected multiples are clearly visible. After multi-
ple removal the under-corrected multiples have been eliminated. The only events

left are the primaries, see Figure 5.3(d).

5.3 Final stack after multiple removal

After the multiples are removed from the CDPs, each CDP is summed along the
offset to compute a stacked trace at each CDP location. Figure 5.4 shows the
result of the final stack. The final stack shows that the reflections below the salt
body are more visible than before de-multiple. Also, the diffraction patterns at
CDP 1350 are clearly imaged. By comparing with Figure 5.1, it is obvious that
the multiples from 6.0 to 6.5 s, and CDP 1000 to 1300 are well removed and that
the reflections are clear. The salt body in Figure 5.1 is also imaged much better

in Figure 5.4.

5.4 Techniques used to improve the computa-
tional efficiency of the algorithm

When dealing with real data it is extremely important to optimize the de-multiple
algorithm as much as possible in order to minimize turn-around times. This is a

summary of the techniques used to speed up the de-multiple algorithm:

Select 7 dependent velocities When solving the inverse problem, we adopt 7
dependent velocities to decrease the size of the hyperbolic Radon transform
operator. The shaded area in Figure 5.5 defines the range of velocities used

by the algorithm.

Windowing the CMP gather The size of the hyperbolic Radon operator can
be further decreased by avoiding areas of the CDP that have been muted.
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5.5 Summary

In this chapter, the high resolution hyperbolic Radon transform was successfully
applied to remove multiples from a marine data set from the Gulf of Mexico.

The hyperbolic Radon transform was inverted using the Huber regularization
method proposed in Chapter 4. It is important to stress that the high resolution
velocity gather obtained with this method permits one to easily define a muting
operator to isolate multiples from primaries. Semblance panels computed via
velocity analysis were used as a quality control tool.

For large data sets an simple implementation in a PC cluster can substan-
tially decrease computing time. In other words, each processor in the cluster can
process one CDP at the time. Since there is no communication between proces-
sor the scalability of the program is guaranteed. The latter is quite important
when dealing with large marine data sets where thousands of CDPs have to be

processed during multiple removal.
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Figure 5.1: Stacked section from the Gulf of Mexico data set. The data are

severely contaminated by multiples.



CHAPTER 5.

Offset (ft)
-1.4 -1.2

Time (s)

Velocity (ft/s)
4000 5q00

x104
-1.0

6090

Figure 5.2: (a) Original data. (b) The estimated primaries. (c) Velocity analysis

FIELD DATA EXPERIMENTS

81

Offset (ft) x104

-1.4 -1.2 -1.0

(b)
Velocity (ft/s)
4000 5000 6000
1 =%
-
=" |
) B
4 =
4 —
- -E__
51 —
6
7<é
(d)
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Figure 5.3: (a) Multiples separated from the original data. (b) Velocity analysis
of Figure 5.3(a). (c) NMO-corrected original data. (d) NMO-corrected primaries.
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perbolic Radon operator.
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Chapter 6

Conclusions

In this thesis I have discussed the problem of multiple removal in reflection seis-
mology using the Radon transform. In particular, I have focused my research
on the problem of inverting the hyperbolic Radon transform. This is an alterna-
tive to the popular time invariant parabolic Radon transform often used in the
oil/gas exploration industry.

One of the advantages of the Parabolic Radon transform is that there exist
very fast algorithms that operate in the frequency domain. This is not true for
the hyperbolic Radon transform. It needs to be implemented in the time-offset
space. Therefore, its inversion becomes a difficult task. We have developed an
inversion methodology that uses the method of conjugate gradients. The method
of conjugate gradients is capable of inverting any linear operator as far as the
inner products Lx and LTy are defined. In other words, the operator L does not
need to be explicitly defined as a matrix.

In Chapter 4 we explored the problem of designing a high resolution velocity
gather by introducing the Huber norm regularization term in the formulation of
our inverse problem. It is important to mention that there are other norms (i.e.,

Cauchy) that can be used to improve resolution in velocity space. However, the
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simplicity of the Huber norm and its similarity to the classical quadratic norm
makes it very attractive for the task of inverting sparse model.

In Chapter 5 I have successfully applied the hyperbolic Radon transform to a
field data de-multiple problem. I have processed a marine data set from the Gulf
of Mexico. These particular data have become a benchmark to test de-multiple
algorithms. It is important to stress that the results obtained in Chapter 5
coincide quite well with those obtained by other researchers using wave equation
de-multiple methods (see for instance, the special issue of The Leading Edge of
January 1999).

At this point it is important to mention that more research needs to be done in
order to further improve the computational efficiency of the hyperbolic Radon de-
multiple algorithm. The computational cost of the hyperbolic Radon transform
is about 4 — 5 times the cost of the parabolic Radon transform. Reducing the
computational cost of computing/inverting the hyperbolic Radon transform is

an interesting research avenue to explore in the future.
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