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Abstract

This thesis presents an acoustic migration/inversion algorithm that inverts seismic re-

flection data for the angle dependent subsurface reflectivity by means of least-squares

minimization. The method is based on the primary seismic data representation (single

scattering approximation) and utilizes one-way wavefield propagators (‘wave-equation

operators’) to compute the Green’s functions of the problem. The Green’s functions link

the measured reflection seismic data to the image points in the earth’s interior where an

angle dependent imaging condition probes the image point’s angular spectrum in depth.

The proposed least-squares wave-equation migration minimizes a weighted seismic

data misfit function complemented with a model space regularization term. The regu-

larization penalizes discontinuities and rapid amplitude changes in the reflection angle

dependent common image gathers - the model space of the inverse problem. ’Rough-

ness’ with respect to angle dependence is attributed to seismic data errors (e.g., incom-

plete and irregular wavefield sampling) which adversely affect the amplitude fidelity of

the common image gathers. The least-squares algorithm fits the seismic data taking their

variance into account, and, at the same time, imposes some degree of smoothness on the

solution. The model space regularization increases amplitude robustness considerably.

It mitigates kinematic imaging artifacts and noise while preserving the data consistent

smooth angle dependence of the seismic amplitudes.



In least-squares migration the seismic modelling operator and the migration operator

- the adjoint of modelling - are applied iteratively to minimize the regularized objective

function. Whilst least-squares migration/inversion is computationally expensive syn-

thetic data tests show that usually a few iterations suffice for its benefits to take effect.

An example from the Gulf of Mexico illustrates the application of least-squares wave-

equation migration/inversion to a real-world dataset. The efficient implementation of

the algorithm is a challenge and had to be confined to two spatial dimensions (i.e., 2-D

earth). Fortunately, distributed computing accelerates the computational turnaround of

least-squares migration/inversion greatly. Therefore, given the rapidly evolving com-

puter technology, it is conceivable that 3-D least-squares migration/inversion will be-

come amenable to a practical implementation in the near future.
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Introduction

Seismic imaging of geological subsurface structures and the inversion for seismic reflec-

tivity are powerful tools for the detection, interpretation and the appraisal of hydrocar-

bon reservoirs. The seismic reflection method can be understood as a multi-source and

multi-receiver scattering experiment. Seismic sources and receivers are placed at the

earth’s surface. The sources emit seismic energy into the subsurface at varying locations

and the receivers record the earth’s response as a function of time and position relative

to the source. The goal of seismic imaging/inversion is to invert the recorded response

(wavefield seismograms) for the subsurface properties. To this end a stepwise, linearized

imaging/inversion strategy based on the primary (i.e., single scattering) wavefield rep-

resentation has been adopted in this thesis. One distinguishes between imaging and

inversion, although, this distinction is not sharply defined and quite often subject to de-

bate (Wapenaar, 1996). Roughly, imaging aims at producing a map or an image of the

position and distribution of the reflecting boundaries and objects by back-propagating

the surface wavefield. In addition to that, inversion attempts to invert for the magnitude

variations of the angle dependent subsurface reflectivity. The inverted reflectivity is re-

lated to the medium’s detail structure and contains information about the local rock and

pore-space properties. In exploration seismology, imaging is usually termed (depth or

time) migration. Migration is less demanding than inversion in terms of wavefield am-

plitude preservation, the phase (i.e., travel-time) is the primary concern. In inversion one

demands both correct phase and correct amplitude information. Hence, the proper dy-

namic treatment of the recorded wavefield becomes an issue. Since, in a practical sense,

migration can be regarded as a less ambitious form of inversion, the umbrella term mi-

gration/inversion is frequently used to emphasize this close relationship.

The primary data representation invokes a number of simplifications to make the
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Figure 1: Seismic energy partitioning for a compressional wave (P wave) impinging on a plane
interface in an elastic continuum at an angle

�
. Both reflected and transmitted compressional (P)

and shear (S) waves result. The discontinuity separates regions of different compressional- and
shear wave velocity and density, ��� , ��� and � , respectively.

generally non-linear inverse problem tractable. The inversion is tackled by a stepwise,

linearized approach and is based on certain assumptions regarding the physical pro-

cesses responsible for the seismic data. Essentially, the inversion process consists of three

stages: surface related pre-processing (e.g., surface related multiple suppression) , angle

dependent reflectivity migration/inversion and target related post-processing (medium

parameter inversion) (Berkhout and Wapenaar, 1990).

Most notably, the primary data representation handles only single scattering data.

Multiply scattered data are treated as noise, and multiple suppression is a key ingredient

in the first processing stage.

The second stage involves wavefield back-propagation and reflectivity estimation. A

macro- or background velocity model for wavefield back-propagation is inferred from

the travel-time related attributes of the surface wavefield with the help of velocity analy-

sis or tomographic techniques. Based on the independently obtained macro-velocities the

surface wavefield is back-propagated (migrated) into the subsurface where the reflection

angle dependent target reflectivity is estimated. The procedural separation between the

determination of the long wavelength properties (macro-velocities) and the estimation

of the short wavelength attributes (reflectivity) is a typical characteristic of the stepwise,

linearized inversion approach.

The third stage attempts to infer detailed medium parameter information from the

inverted reflectivity. It is important to realize that, in exploration seismology, one deals

2



mostly with fairly regular interfaces that separate geological units of different physical

properties. Hence, the scattering process is usually treated, somewhat undiscriminat-

ingly, as specular reflection scattering. The earth is generally described as an elastic

continuum with many discontinuous interfaces. Figure 1 illustrates elastic specular re-

flection and transmission scattering for the simple two layer case. In this situation, the

well-known Zoeppritz equations (Aki and Richards, 1980) govern the wave energy par-

titioning at the interface as a function of medium parameters (i.e., compressional- and

shear wave velocity and density), and angle of incidence. Elastic mode conversions be-

tween compressional (P) and shear (S) waves occur as the waves undergo scattering.

Supposing migration/inversion can provide a reliable estimate of the angle dependent

reflection coefficient (ideally, for all involved wavefield modes), Zoeppritz’s equations

allow then to invert for the medium parameters above and below the interface. This is

not an easy task, since non-linearity, non-uniqueness etc. complicate the inverse prob-

lem. Finally, the inverted medium parameters can be interpreted in terms of rock and

pore-space properties.

The outlined processing flow has many shortcomings that can hamper a successful

and unambiguous inversion. For instance, the single scattering assumption means that

wave modes are allowed to change their type only once during propagation. Transmis-

sion losses are neglected entirely. That is, single scattering also implies that the medium

contrasts have to be somewhat weak. Furthermore, where the local interface curvature

is significant compared to the dominant wavefield wavelength, the description of scat-

tering in terms of a specular reflection process breaks down; a more general theory than

Zoeppritz’s equations that relates the scattering angle spectrum with the medium prop-

erties is then required. In practice, however, inversion based on the described strategy

has oftentimes been successful within its limitations. Rather than an inversion for abso-

lute values, seismic imaging/inversion is a science of anomalies (Castagna, 1993). The

inversion for relative parameter variations and deviations from certain expected aver-

age values has proven to be a realistic goal. The detected anomalies hold many clues

and are a valuable aid for the structural, stratigraphic and lithologic interpretation of the

subsurface.

Figure 2 details the inversion process in a schematic flowchart (Berkhout and Wape-

3



Decomposition in P and S waves

Multi−component seismic shot records

Elastic inversion for P and S velocity and density

Lithologic inversion for rock and pore parameters

Migration/inversion of PP response

Surface multiple suppression

Estimation of P macro velocity field Estimation of S macro velocity field

Migration/inversion of PS response

Figure 2: Flowchart illustrating linearized seismic inversion in steps (modified after Berkhout
and Wapenaar (1990)). The highlighted sub-process, PP least-squares migration/inversion for
reflectivity inversion, is the main topic of this thesis. Each box in this flowchart is a topic of
ongoing research in its own right.

naar, 1990). The flowchart is specific for seismic data acquired on land. In the marine

cases, where sources and receivers are separated from the elastic earth by a water layer,

obvious modifications apply.

The main topic of the thesis is the highlighted box in Figure 2, the migration/inversion

of compressional waves for angle dependent subsurface reflectivity (P to P reflections).

More specifically, a novel least-squares wave-equation migration/inversion is introduced

that yields regularized common image gathers (CIGs). The approach is novel in that it

combines the concept of numerical least-squares optimization, wave-equation migration

in complex media and angle dependent imaging. The least-squares migrated CIGs, the

solution of the inversion, contain amplitude information closely related to the bandlim-

ited reflectivity. They are of potentially higher quality and fidelity than conventionally

obtained CIGs. Since only compressional waves are considered, the theory for migra-

tion/inversion is developed within the less involved acoustic approximation of contin-

uum mechanics.
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In migration/inversion one attempts to invert the seismic data by constructing an ap-

proximate inverse to the forward integral operator that relates the subsurface model per-

turbations (the reflectivity) to the observed seismograms (e.g., Clayton and Stolt (1981),

Bleistein et al. (2001)). Under the single scattering approximation, the integral opera-

tor can be approximately inverted via a linear integral operator. This integral operator

is composed of Green’s functions that account for the wave propagation in the back-

ground medium (i.e., the macro-velocity field). Migration/inversion algorithms using

ray-theoretical Green’s functions are based on the solutions of the eikonal and trans-

port equation, the high frequency approximation of the wave-equation. Alternatively,

one-way wavefield propagators can be employed to calculate the Green’s function of

the problem (e.g., Gazdag and Sguazzero (1984), Stoffa et al. (1990) , Ristow and Rühl

(1994)). These operators, frequently called wave-equation operators, have the advantage

of inherently accounting for multi-pathing (Gray and May, 1994). Evidence is mount-

ing that wavefield propagators perform significantly better than techniques based on the

high frequency approximation.

One way to invert seismic data entails the approximate inversion of the forward mod-

elling operator by analytical means. A second technique involves a numerical approach

where the solution is retrieved by solving a linear discrete inverse problem. In that case,

one seeks a model that fits the seismic (primary) data and, moreover, exhibits certain

features and characteristics imposed by a model regularization. This approach to migra-

tion/inversion is called least-squares migration. Early developments of least-squares mi-

gration can be found in LeBras and Clayton (1988) and Lambaré et al. (1992). More recent

papers by Nemeth et al. (1999) and Duquet et al. (2000) focus on the advantages of least-

squares Kirchhoff migration/inversion (i.e., imaging based on ray theory) when uneven

subsurface illumination and imaging artifacts due to irregularly and coarsely sampled

seismic wavefields are the issue. Duquet et al. (2000) also demonstrate how to further

improve the mitigation of sampling artifacts in common offset Kirchhoff migration by

applying an smoothing constraint on the offset CIGs. As opposed to the course taken in

this work, all of the cited least-squares migration algorithms are based on ray-theoretical

Green’s functions.

Kuehl and Sacchi (2001b) show that, in principle, the concept of least-squares migra-
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tion can also be applied to split-step DSR (double-square-root) wavefield propagators

(Claerbout, 1985; Popovici, 1996). With the introduction of a data covariance matrix

(Tarantola, 1987) least-squares migration can account for missing data and unbalanced

subsurface illumination due to variations in the common-midpoint (CMP) fold. Unfor-

tunately, the standard recursive DSR implementation does not offer an efficient com-

putation of offset CIGs as common offset Kirchhoff migration does. A non-recursive

implementation of DSR migration, on the other hand, allows for the computation of sep-

arable offset DSR operators (Popovici, 1995; Kuehl and Sacchi, 2001a), but precludes the

use of modifications, such as the split-step correction, that generalize the DSR operator

for laterally varying media. That is to say, an alternative to common/separable offset

wave-equation migration needs to be found for regularized least-squares wave-equation

migration to be of practical use.

Recently, increasing attention has been given to wave-equation imaging principles

that yield angle domain CIGs in complex media. These CIGs carry valuable angle de-

pendent amplitude information (e.g., Stolt and Weglein (1985), de Bruin et al. (1990), Xu

et al. (1998), Prucha et al. (1999), Wapenaar et al. (1999), Mosher and Foster (2000), Sava et

al. (2001)). The employed ray parameter CIGs consist of a set of depth images as a func-

tion of offset ray parameter extracted from the back-propagated seismic wavefield. These

CIGs are similar to migrated �	��
 (i.e., slant stacked) midpoint-offset gathers (Ottolini

and Claerbout, 1984; Mosher et al., 1996; Mosher et al., 1997). However, in generalized

DSR migration combined with ray parameter domain imaging the order of slant stacking

and wavefield propagation is reversed thereby relaxing the restriction to laterally invari-

ant media. The midpoint-offset wavefield gathers are recursively back-propagated and

the wavefield is decomposed at each depth level. Lastly, the wave-equation imaging con-

dition (evaluation of the propagated wavefield at time zero) is applied to the slant stacked

local wavefield. The amplitude variations with ray parameter (AVP) are closely related

to the amplitude variations with angle (AVA) of the bandlimited reflectivity. Knowing

the dip directions and the dip angles of the (locally) plane reflectors the CIGs can be

converted to AVA plots.

In order to cast generalized DSR migration for AVP/AVA inversion into the least-

squares framework, one needs to define a modelling/migration adjoint operator pair.
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The migration and modelling operators are then iteratively applied to minimize the

weighted least-squares data misfit using a conjugate gradient (CG) optimization algo-

rithm. The proposed least-squares DSR migration is constrained with a ray parameter

dependent smoothing regularization that increases the robustness of the inversion (Kuehl

and Sacchi, 2002). The constraint penalizes discontinuities and rapid amplitude changes

that most likely stem from numerical imaging artifacts and acquisition footprint, not AVA

effects.

The thesis is organized as follows: Chapter 1 discusses the forward seismic modelling

problem in great detail. In the second chapter, inversion concepts based on the previ-

ously outlined primary data representation are devised. As already mentioned, there

exist essentially two avenues that can be followed to achieve this: by approximations

to the inverse problem solution, or by numerical optimization schemes, both of which

are conveniently derived within the framework of least-squares optimization. The third

chapter exemplifies and tests the theory derived in the previous chapters with numer-

ous synthetic data examples ranging from simple to complex. In Chapter 4 least-squares

migration for AVP/AVA is applied to a real-world marine dataset from the Gulf of Mex-

ico. Real data issues like macro-velocity model building and multiple suppression are

addressed. The last chapter digresses briefly into computational issues of (least-squares)

migration. Efficiency considerations are an integral part of any discussion on seismic in-

version, since a fast computational turnaround is imperative. Chapter 5 introduces the

real-valued Hartley transform as an alternative to the complex-valued Fourier transform

to optimize the modelling and migration operators (Kuehl and Sacchi, 1999; Kuehl et al.,

2001). That chapter also touches on the topic of distributed computing. Finally, a con-

cluding discussion summarizes the main points of the thesis and attempts to shed some

light on the road ahead.
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Chapter 1

Seismic data modelling

The first step to the formulation of any inverse problem is the forward or modelling

problem. It is emphasized what may be obvious: If a forward/modelling operator fails

to describe the relevant physics of a process one is seeking to invert, the inverse oper-

ator will give erroneous results. Any mathematical operator, of necessity, becomes an

idealization of the true nature of physics, capturing some features and excluding others.

However, if care is taken that the physics of a sub-process is sufficiently honoured, a

successful inversion for the parameters influencing this process is oftentimes possible.

This thesis is concerned with the imaging/inversion of the earth’s subsurface prop-

erties using reflected seismic waves. Seismic imaging/inversion has two goals. First, the

seismic surface data are back-propagated (inversely extrapolated) into the earth to image

and position geological structures (‘depth migration’). Second, if care is taken that ampli-

tude effects are accounted for during back-propagation (‘true-amplitude migration’) the

data can be locally inverted for the amplitude variation with angle of the reflection coef-

ficients. The second goal is more demanding but, if successful, allows for the inversion of

physical parameters defining the geological units separated by the reflecting interfaces.

The inverse problem becomes tractable by simplifying the forward modelling rela-

tionship. More precisely, the employed imaging/inversion techniques are based on a lin-

earized, acoustic primary representation of the seismic surface data. Such techniques do

not account for multiply reflected waves (multiple scattering). This imposes a smallness

constraint on the coefficients defining the reflecting boundaries. Where significant multi-

ple seismic energy is present in the data, multiple suppression techniques prior to imag-

8



ing/inversion have to be applied. In any case, the ‘robustness’ of the imaging/inversion

algorithms with respect to all simplifications needs to be assessed carefully. It therefore

is important to discuss the seismic data modelling operators in some detail.

Besides the limitations mentioned above, the simplified seismic data representation

has other shortcomings (Gray, 1997). First, the modelling operators are derived for a

fluid-like medium. In reality, seismic waves propagate in an elastic earth. That is, longi-

tudinal (compressional) and transversal (shear) waves exist and mode conversion occur

at interfaces. In spite of the restriction to compressional waves, seismic imaging based

on the acoustic wave-equation has in many cases been successful. This is explained by

the fact that seismic sources generate mostly compressional waves. Furthermore, most

seismic surveys record only the pressure or the vertical particle velocity component and

thus register predominantly compressional waves. The latter statement implies that the

seismic waves travel in a near vertical direction at the receiver location. The normally low

near surface velocities help for this assumption to be fulfilled. When elastic wave prop-

agation effects are significant the formalism needs to be extended to elastic media (e.g.,

Wapenaar et al. (1987)). This extension is based on the premise that the recorded seismic

data can be decomposed into compressional and shear wave responses before applying

the imaging/inversion operators (Wapenaar et al., 1990). Second, the described method

ignores anisotropy, which is known to affect seismic waves dynamically and kinemati-

cally (Vestrum et al., 1999). While it is possible to generalize the described operators to

accommodate the kinematic effects of anisotropy (Kitchenside, 1991; Le Rousseau, 1997)

such an extension is beyond the scope of this thesis. Third, the operators fail to correct

for wavefield attenuation. Attenuation through lossy material can be modelled by an

exponential loss of amplitude along the propagation path (viscoelastic media). However,

it is difficult to estimate the amount of loss to be corrected. Fourth, the effects of fine

structure in the medium properties on wavefield propagation are neglected owing to an

implicit smoothness assumption underlying the derivation of the propagators.

Based on all of the above, Gray (1997) asserts that one can raise valid objections

against the entire subject of ‘true-amplitude’ seismic imaging/inversion. Claerbout (1992)

summarizes the same scepticism, stating “The phrase ‘true-amplitude migration’ has

questionable meaning”. However, seismic imaging has proven many times to be a ro-
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1.1. BASIC EQUATIONS

bust tool for structural imaging of subsurface properties. To an extent this is also true for

the inversion for amplitude information, since, according to Gray (1997), ‘true-amplitude

migration’ for AVA inversion can be seen as a more rigorous, wave-equation based ex-

tension of amplitude variation with offset (AVO) analysis. It is widely accepted that AVO

analysis has contributed to exploration success in the past (Gray, 1997). Despite this eco-

nomical success, the ability of the employed operators to produce AVA information must

be considered a bonus to the more robust structural imaging capabilities. The correct

treatment of angle dependent amplitudes is bound to fail if one or more of the assump-

tions implicit in the above simplifications is severely violated.

1.1 Basic equations

The basic equations for wave propagation in continuous media are briefly reviewed for

the sake of completeness (e.g., Wapenaar and Berkhout (1989)).

1.1.1 Equation of motion and constitutive relation

For lossless, inhomogeneous solids the linearized equation of motion (Newton’s law) in

cartesian coordinates reads: � 
������
�� ��� ������� 
 � � �
�� � � (1.1.1)

where
� �!����" � " � stand for

�
, # and $ , respectively, and % �'& ��()��* . The vector + is the particle

displacement as a function of the vector , �.- � � # � $0/ and time
�
. Furthermore, � � � repre-

sents the nine components of the symmetric stress tensor, also as a function of space and

time. The scalar � � � - ,1/ is the space dependent mass density in the equilibrium state.

For an isotropic material the linearized stress-displacement equation (Hooke’s law) is:� � � � � � � �32�4 � �65'7 +	8:9<; 
����
�� � 8 
�� �
=� �?> �32�4 � �@5'7 +A8 ( 9CB � � � (1.1.2)

where 4 � � is the Kronecker delta and 2D�E2�- ,�/ and 9 � 9 - ,�/ are the space dependent

Lamé parameters. The B � � are the nine components of the symmetric strain tensor. Lamé’s

parameters are related to the bulk compression modulus F � F - ,�/ and the shear modu-

lus G � G - ,�/ by F �32 8 �� 9 and G � 9 , respectively. The bulk modulus of incompress-

ibility describes the material resistance to a change in volume when subject to a load. It is
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Material K (GPa) G (GPa) H � -JI)K?LNM � /
Water 2.1 0 0.5 1.0

Sandstone 17 6 0.34 1.9
Olivine 129 82 0.24 3.2

Table 1.1: Elastic parameters for some common earth materials (after Lay and Wallace (1995)).

defined by the ratio of an applied hydrostatic pressure to the induced fractional change

in volume. The shear modulus, or rigidity is a measure of a material’s resistance to shear

stress. Yet another frequently used modulus is Poisson’s ratio H . It describes the ratio

of radial to axial strain when a uniaxial stress is applied (e.g., � ���PO�RQ � � ��� � � ��� �SQ ).
Poisson’s ratio’s relation to Lamé’s parameters is:H � �TB ���B ��� � 2( -U2 8V9�/XW (1.1.3)

The maximum value is H �YQ W[Z . This is true for a fluid, when 9 �YQ . Most earth materials

have a Poisson ratio between 0.22 and 0.35 (Lay and Wallace, 1995). Table 1.1 lists typical

values of the bulk modulus, the shear modulus, Poisson’s ratio and density for a few

common earth materials.

1.1.2 Acoustic approximation

The equations (1.1.1) and (1.1.2) are simplified for fluid-like media. The off-diagonal

stress tensor components � � � , where % O�]\ (shear stresses), are zero; hence, F �^2 andG � 9 �_Q . Pressure is defined by 
 �`� � �a� �`� and can be written as 
 � 
 ��� � 
 ��� � 
 ���
according to Pascal’s law. The equation of motion (1.1.1) simplifies to:� 
 � +
�� � � � 5 
 � (1.1.4)

and the stress-displacement equation (1.1.2) becomes:
 � �aF 5b7 + W (1.1.5)

Next, source terms are added to the equations (1.1.4) and (1.1.5):� 
�� +
�� � 8 5 
 �Yc � (1.1.6)
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1.2. FORWARD WAVEFIELD EXTRAPOLATION

and &F 
d8 5'7 + � %fe � (1.1.7)

where c is the body force density and %ge represents a volume density of volume injection

(for example an airgun). Notice that equation (1.1.7) is the equation of continuity. The

equations (1.1.6) and (1.1.7) are combined to the second order variable-density wave-

equation for the pressure 
 :� 5'7 &� 5 
h� �F 
 � 

=� �P� � 5'7 &� c � � 
 � %Ue
=� � W (1.1.8)

The phase velocity is defined by: i � � i � - ,j/ � F - ,�/� - ,�/ W (1.1.9)

As it stands, equation (1.1.8) describes the wave motion for compressional waves in an

arbitrary fluid-like medium.

1.2 Forward wavefield extrapolation

The well developed theory of wavefield propagation (e.g., Aki and Richards (1980), Wape-

naar et al. (1987)) that aims to solve the coupled system (1.1.6) and (1.1.7) constitutes an

ideal framework for the derivation and understanding of seismic primary data imag-

ing/inversion techniques.

1.2.1 Two-way wavefield representation

In surface seismic applications, the depth dimension is the wave propagation direction

of preference. The axes perpendicular to the direction of preference are referred to as

lateral coordinates. Consider a subsurface model that is subdivided into many thin slabs

of thickness kl$nmEop$ � $ � �D$ �rq � (Figure 1.1), where either symbol, kl$ or op$ , will be

used depending on whether a discrete or continuous notation is more convenient. It is

stressed that the computational slab boundaries do not necessarily coincide with phys-

ical/geological layer boundaries. The layered model is understood as a computational

grid, and the medium parameters F and � are allowed to vary smoothly in the lateral

direction within each finite slab. The goal is to recursively extrapolate/propagate the
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z < 0

x

y

z > 0
(x,y,z  )ρK(x,y,z  )

z i−1

z i

z0

i i

Figure 1.1: The coordinate system for seismic wave propagation. The s axis is the direction
of preference in seismic applications where sources and receivers are placed at the surface. The
plane at s�tvuxw serves as a reference datum and does not necessarily coincide with the actual
surface. The medium parameters are allowed to vary vertically and laterally. For computational
purposes the depth axis is discretized into thin slabs of thickness yzs{u:s}|=~	s�|��=� . The parameter
variations have compact support confined to the half-space s���w .
wavefield from one depth level to the other. To this end the coupled equations (1.1.4)

and (1.1.5) are expressed in the temporal frequency domain:��%�� �0� 8 5p� �Y� � (1.2.1)

and �a%��F � 8 5'7 � � ��%�� ��e � (1.2.2)

where � ��-U��� � �=� � ��� /f� and �_�^-���� � �C� � ��� /f� are the monochromatic particle velocity

and body force density vectors, respectively, and � are �?e are the monochromatic pres-

sure and volume injection density, respectively. The time dependence is given by � ���l�
where � is the angular frequency. The normal particle velocity and the pressure are con-

tinuous across interfaces separating regions of different medium properties (Wapenaar,

1998). Hence, it is useful to write the equations (1.2.1) and (1.2.2) in terms of the vertical

velocity ��� and pressure � . The $ derivatives are isolated from the lateral derivatives and�=� and �=� are eliminated from the equations (1.2.1) and (1.2.2):
 �
 $ � ��%�� � �=� 8 �j� � (1.2.3)

13



1.2. FORWARD WAVEFIELD EXTRAPOLATION

and 
 ���
 $ � ��%��F � 8 

=� ; &%U� � 
 �
���> 8 

 # ; &%�� � 
 �
 # >8z%U� ��e�� 

=� ; �C�%U� � > � 

 # ; ���%�� � > W (1.2.4)

The notation is simplified with the assignment of the operator � � :� � ��� � i1� � 8 � 

�� ; &� 

=��> 8 � 

 # ; &� 

 # > � (1.2.5)

the wave vector: � ��- � � ��� / � � (1.2.6)

and the source vector:� � ; �j� � %�� ��e�� 

=� ; �C�%�� � > � 

 # ; �C�%�� � >a> � W (1.2.7)

The equations (1.2.3) and (1.2.4) read in matrix notation:
 �
 $ � �
˜

� 8 � � (1.2.8)

with �
˜
� ; Q ��%�� ���¡�0¢ � � Q > W (1.2.9)

The equation (1.2.8) is the two-way representation of wavefield propagation. The term

two-way representation is due to the property of equation (1.2.8) to inherently account

for downgoing and upgoing waves. Alternatively, in the next section the one-way rep-

resentation is treated that explicitly distinguishes between the downgoing and upgoing

wavefield states. The solution to the source free part of (1.2.8), in recursive propagator

notation, is: � - $ � / �D£
˜
- $ � � $ �Jq � / � - $ �Jq � / � (1.2.10)

with £
˜
- $ � � $ �Jq � / �D¤�¥X¦¨§@�

˜
� - $ � �©$ �Jq � /�ª � (1.2.11)

or: � - $0/ � ¤�¥)¦«§@�
˜
� - $¬�V$ �Jq � /�ª �Jq �­�!��� ¤�¥X¦¨§@� ˜ � - $ � �V$ � q � /�ª � - $@®6/� £

˜
- $ � $ ® / � - $ ® / � (1.2.12)
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where ¤�¥X¦¨§ 7 ª is understood as a series expansion (Ursin, 1983). Moreover, the propagator

satisfies the initial condition: £
˜
- $ ® � $ ® / �Y¯

˜ W (1.2.13)

The product representation in equation (1.2.12) is ordered in depth. The solution includ-

ing the source term reads (Aki and Richards, 1980):� - $0/ �Y£
˜
- $ � $ ® / � - $ ® /¨8±° ��g² £ ˜ - $ � $´³µ/ � - $´³µ/gk0$´³ W (1.2.14)

It is understood that the symbolic propagators depend implicitly on the lateral coordi-

nates and derivatives. Wapenaar et al. (1987) discuss the numerical implementation of

the above equations for the case of laterally varying media. Their numerical examples un-

derline the validity of the solution in horizontally layered media with smoothly varying

velocities and densities in the lateral direction. Theoretically, one could use the two-way

representation for both modelling and imaging. For imaging, this representation is less

useful, since imaging algorithms are usually based on the primary data representation.

That is, multiply reflected wavefield energy is not considered. In order to correctly back-

propagate (inverse extrapolate) multiple reflection data, a detailed prior knowledge of

the subsurface velocity field is necessary. This prior knowledge is generally not available.

In fact, having this information would make imaging/inversion essentially unnecessary.

Hence, more robust - but also less accurate - one-way propagators that do not gener-

ate reflected waves are utilized in most imaging/inversion applications. This reasoning

reflects the ubiquitous dilemma of seismic imaging/inversion. For completeness, it is

mentioned that Kosloff and Baysal (1983) and Baysal et al. (1984) point out properties of

the two-way representation that are interesting for imaging/inversion. By suppressing

reflected energy in the two-way representation these properties may be exploited result-

ing in algorithms that are valid in smoothly varying media (in all directions) and which

are accurate up to high tilt angles of propagation.

1.2.2 One-way wavefield representation

The purpose of the one-way wavefield representation is to decompose the total acoustic

wavefield described by the equations (1.1.4) and (1.1.5) into two separate components,

one for downgoing waves and one for upgoing waves (Claerbout, 1971). Where there are
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medium parameter changes, one wave type scatters into the other. This decomposition

allows for the interpretation of the evolving wavefield in terms of propagation (phase-

shift) and scattering (interaction between the downgoing and upgoing states). To this

end the square-root operator � � is formally defined by:� � � � � i � � 8 
 �
�� � 8 
 �
 # �h�_¶ � � i � � 8 5 �· � (1.2.15)

such that � � � � � � � W (1.2.16)

That is, lateral derivatives of the density field and the commutator ¸ - � K i / � � 5 �·!¹ are as-

sumed to be negligible. Neglecting the lateral density variations gives � � the form of the

Helmholtz operator. 1 The two-way operator �
˜

is decomposed according to �
˜
�Yº

˜ » ˜ º ˜ q �
(Wapenaar, 1998), withº

˜
� &¼ (V½ - � � /l¾¿ � q ¾¿� - � � /l¾¿ � q ¾¿�- � � / q ¾¿ � ¾¿� � - � � / q ¾¿ � ¾¿��À � &¼ ( ;�Á � Á �Á � � Á � > � (1.2.17)

» ˜ � ; ��%U� � QQ %U� � > � (1.2.18)

and º
˜

q � � &¼ (:½ � ¾¿� - � � / q ¾¿ � q ¾¿� - � � / ¾¿� ¾¿� - � � / q ¾¿ ��� q ¾¿� - � � / ¾¿ À � &¼ ( ; Á q �� Á q ��Á q �� � Á q �� > W (1.2.19)

The diagonal elements in » ˜ are the eigenvalues of �
˜

and the columns of º
˜

are the cor-

responding eigenvectors. The columns of the composition matrix º
˜

are normalized with

respect to the vertical energy flux (Wapenaar, 1998). The operator º
˜

q �
decomposes the

wave vector

�
into downgoing and upgoing wavefield components or states �ÃÂ and� q , respectively. In the same way the source vector

�
is transformed into the one way

representation of the source distributions Ä Â and Ä q . In matrix notation, composition

and decomposition are: � � º
˜ Å � � �Yº

˜ Æ � (1.2.20)

1Wapenaar and Grimbergen (1996) define a modified velocity Ç�È , such that É}ÊË�ÌfÍ ¿«Î ÉÏÊ ËÐÍ ¿}Ñ{ÒUÓ=Ô`ÕÏÖ Ó�Ô¡Õ× ÕfØ Ù Ó Ø Ô Õ¿ Õ .
This definition retains the form of Ú ¿ as a Helmholtz operator and thus allows for the incorporation of lateral
density variations in one-way propagation. This possibility has not been considered here because reliable
density information is generally not available in exploration seismic. More importantly, the transmitted
wavefield, the modelled wavefield component in one-way modelling/imaging, is relatively insensitive to
the density variations (Wu, 1996).
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and Å �Yº
˜

q � � � Æ �Yº
˜

q � � � (1.2.21)

where Å �]- �ÛÂ � � q / � and Æ �]- Ä Â � Ä q / � . Upon inserting (1.2.20) into (1.2.8) the differ-

ential equation for Å follows: 
 Å
 $ � Ü
˜ Å 8 Æ � (1.2.22)

where Ü
˜
� » ˜ � º ˜ q � 
 º ˜
 $ � » ˜ 8ÞÝ

˜ W (1.2.23)

Componentwise, this reads:

 $ ; ��Â� q > �àß ; ��%U� � QQ 8z%U� � > 8 ;âá Â ã qã Â á q >�ä ; ��Â� q > 8 ; Ä ÂÄ q > � (1.2.24)

where á Â � á q � � &(Aå Á q �� 
 � Á � 8 Á q �� 
 � Á �Næ � (1.2.25)

and ã Â � ã q � � &( å Á q �� 
 � Á � � Á q �� 
 � Á � æ W (1.2.26)

The first matrix on the right hand side of the equation (1.2.24) is the propagation ma-

trix. The second matrix is responsible for the interactions between the downgoing and

upgoing wavefield states (scattering). According to the structure of equation (1.2.24) the

scattering matrix is comprised of forward (transmission) scattering operators along the

diagonal and backward (reflection) scattering operators along the anti-diagonal.

For completeness, the relation between the one-way and the two-way representation

in terms of two-way propagation is briefly discussed. Using the eigenvalue decompo-

sition the propagator for the two-way representation in equation (1.2.10) is replaced by

three sub-processes (Wapenaar et al., 1987):£
˜
- $ � � $ �Jq � / � º

˜
- $ � /èç

˜
- $ � � $ �Jq � / º ˜ q � - $ �rq � / � (1.2.27)

with ç
˜
- $ � � $ �Jq � / �D¤�¥X¦¨§ » ˜ � - $ � �©$ �Jq � /�ª W (1.2.28)

A flowchart in Figure 1.2 illustrates the relation between the two representations. While

both approaches are mathematically equivalent, the two-way representation in equation
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Figure 1.2: Flowchart demonstrating the relation between the two-way and the one-way repre-
sentation of wavefield propagation (after Wapenaar et al. (1987)).

(1.2.10) is numerically advantageous if wavefield extrapolation based on two-way prop-

agation is to be carried out (Wapenaar et al., 1987).

In the next section the (flux-normalized) one-way wavefield representation serves to

formulate propagators that exclusively operate on either downgoing or upgoing waves.

This restriction allows for the formulation of one-way propagators for imaging/inversion

that do not produce reflected energy.

1.2.3 Recursive one-way wavefield propagator

One-way extrapolation operators provide an economical method for modelling certain

types of wave motion. The basic restriction is that only the transmitted wavefield com-

ponent is modelled. The ultimate goal of imaging/inversion is to image the scattering

operator that gives rise to the recorded (primary) reflected wavefield.

Laterally invariant media

For the moment, it may be assumed that there are no lateral medium parameter varia-

tions. Hence, all wavefield quantities can be expressed in the lateral Fourier domain. It

follows for the operator é� � : é� � � ê �� ��� � i � � � -�ê �� 8 ê �� / � (1.2.29)

where the ‘hat’ symbolizes quantities in the lateral wavenumber domain. The variablesê´� and êÐ� are the horizontal wavenumbers and ê)� is the vertical wavenumber. The space

dependence is given by � �ìë0í î , where ï �ð-�êÐ� � êÐ� � êl� / . For notational convenience, the
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1.2. FORWARD WAVEFIELD EXTRAPOLATION

lateral wavenumber vector is defined: ï · �R-�ê´� � ê´� / . Equation (1.2.29) is the dispersion

relation of the wave equation. The operator é� � is trivial:é� � � êÐ�T� � i ¶ & � i �lñ ï · ñ �� � � for &{ò i � ñ ï · ñ �� � � (1.2.30)

and é� � � ê � � % � i ¶ i � ñ ï · ñ �� � � & � for &{ó i � ñ ï · ñ �� � W (1.2.31)

The latter equation causes exponentially decaying waves (evanescent waves) in the causal

one-way solutions (see below). The case &±� ô ¿�õ ë6ö õ ¿� ¿ corresponds to the critical angle

of incidence for waves impinging on an interface with a positive velocity discontinuity,

which causes a head wave to be produced. In terms of ray theory in smoothly vary-

ing velocity fields (Appendix A), this situation corresponds to the turning point where

downgoing/upgoing rays reverse their direction. In the following, the head wave and

turning ray phenomena are excluded from modelling and thus imaging/inversion. In

the laterally homogeneous case the source free part of the equations (1.2.24) simplifies to:
 é��÷
 $ �3ø % êÐ� é� ÷ 8 &(úùê q �� k ùêÐ�kl$ é�Ûû � (1.2.32)

where ùêl�ü�þý�ÿ¢ . The term
�� ùê q ���� �ý!ÿ� � is the differential reflection coefficient per unit depth

in a horizontally layered medium (compare to section 1.3.3). The key to formulating

one-way propagators is that interactions between the downgoing and upgoing states

are neglected. Consequently, the equations (1.2.32) decouple into two separate one-way

wave equations: 
 é� ÷
 $ �3ø % êl� é� ÷ W (1.2.33)

The causal solutions (downward extrapolation for downgoing and upward extrapolation

for upgoing states) are written in terms of discrete, recursive one-way propagators:é� Â - $ � / � � q=� ý!ÿ � ��� q ����� ¾ � é� Â - $ �Jq � / � 	 
 Â - $ � � $ �Jq � / é� Â - $ �rq � / � (1.2.34)

and é� q - $ �Jq � / � � Â � ý ÿ � ����� ¾ q ��� � é� q - $ � / � 	 
 q - $ �Jq � � $ � / é� q - $ � / W (1.2.35)

The propagators satisfy: 	 
 Â - $ �Jq � � $ �rq � / � 	
 q - $ � � $ � / � é� � (1.2.36)

where é� is the identity operator in the wavenumber domain.
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1.2. FORWARD WAVEFIELD EXTRAPOLATION

Laterally varying media

If the scattering operator in equation (1.2.24) is neglected the source free, decoupled one-

way wave equations for laterally varying media follow:
 � ÷
 $ � ø %U� ��� ÷ W (1.2.37)

The (continuous) one-way propagators

 ÷ for laterally variant media are defined by:; 

 $ ø %U� � > 
 ÷ - , · � $ � , ³ · � $ ³ / � Q � (1.2.38)

complemented with the initial condition:
 ÷ - , · � $ � $ ³ � , ³ · � $ ³ / �340- , · �©, ³· / � (1.2.39)

where , · � - � � #=/ . Consider the functions � ÷ - , ³ · � $ ³ / that are solutions of the one-way

wave equations (1.2.37). With the properties (1.2.38) and (1.2.39) one has:� ÷ - , · � $)/ � ° 
 ÷ - , · � $ � ,�³· � $´³µ/ � ÷ - ,¨³· � $´³µ/gkÐ,C³· � (1.2.40)

hence the term propagator for

 ÷ . Causality requires $
� $ ³ for downward propagation
 Â and $ ó $ ³ for upward propagation


 q
. From equation (1.2.39), the propagator can

be solved by a Taylor series expansion with respect to - $¬�<$ ³ / (Grimbergen et al., 1998):
 ÷ - , · � $ � , ³ · � $ ³ / � ��ý � ® - $¬�<$ ³ / ýê�� 
 ý 
 ÷ - , · � $ � , ³ · � $ ³ /
 $ ý ���� � � � È W (1.2.41)

Using the properties (1.2.38) and (1.2.39) one has:
 ÷ - , · � $ � , ³ · � $ ³ / � ��ý � ® - $¬�<$ ³ / ýê�� -Uø %g/ ý � ý � 40- , · � , ³ · / � (1.2.42)

or formally: 
 ÷ - , · � $ � , ³ · � $ ³ / �D¤�¥X¦¨§?ø %U� � - ${�<$ ³ /�ª 4)- , · �©, ³· / W (1.2.43)

Hence, the propagator

 ÷ acts as the kernel for the operator ¤�¥X¦¨§?ø %f� � - $Û�:$ ³ /�ª (Grim-

bergen et al., 1998). The Taylor expansion is valid for small extrapolation steps $h�Þ$ ³ ,
that is, for the extrapolation across one thin slab op$ � $ � �:$ �Jq � . The extension to larger
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1.2. FORWARD WAVEFIELD EXTRAPOLATION

extrapolation steps is again achieved by recursive application of the exponential operator

(depth ordered product representation). The causal downward propagator is:
 Â - , · � $ � , ³ · � $ ³ / �D¤�¥X¦¨§ ��%U� � - $¬�<$ �rq � /�ª �Jq �­����� ¤�¥X¦¨§ %U� � - $ � �<$ � q � /�ª 4)- , · �©, ³· / � (1.2.44)

where $ ³ mY$ ® and � � depends on depth $ . The causal upward propagator

 q

is defined

analogously. To warrant a compact notation in later equations one may write causal

down- and upward propagation in product representation symbolically as:
 ÷ - , · � $ � ,C³· � $´³µ/ � ­ �� È ¤�¥)¦«§ ��%U� � o $Xª 40- , · �©,¨³· / � (1.2.45)

where $
�±$ ³ and $ ó $ ³ for downgoing- and upgoing waves, respectively, and op$�� Q in

both cases.

Split-step propagator

For computational purposes the operator � � is expanded in terms of lateral slowness

perturbations o
� � �����?® to the first order:� ��� � - ��� ® / � 8 5 �· 8 kk�� � - ��� / � 8 5 �· ������ ² o
�� � ® � 8 �� & 8 �� ¿ � ¿² 5 �· o
� � (1.2.46)

where � �^&6K i . The quantity � ® equals the average lateral slowness within the slab op$ .

The split-step approximation involves the negligence of the square-root in the denomi-

nator of equation (1.2.46) (Stoffa et al., 1990). This approximation yields for � � simply:� ��� � ® � 8V� o
� � (1.2.47)

and for the exponential operator in equation (1.2.45):¤�¥)¦¨§ �a%U� � op$Xª � � q=� -�� ² ¾ Â ��� � / � � � (1.2.48)

where op$ � Q . The leading term � ® � in the exponential is implemented as a phase-shift

operator in the lateral Fourier domain (Gazdag, 1978). The second term is a vertical ‘time-

shift’ that depends on the slowness perturbation o
� and is applied in the space domain.
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1.2. FORWARD WAVEFIELD EXTRAPOLATION

The relatively crude split-step approximation yields a simple and economical marching-

type algorithm that shuttles between the lateral Fourier and space domain (‘dual-domain

implementation’). This approximation has proven to be sufficiently accurate in many

situations. The hybrid split-step propagator, operating in both the space and the spatial

wavenumber domain, becomes:¤�¥X¦¨§ ��%f� � op$Xª � � q=����� � � �"! q �ë?ö � q=� ý ²ÿ � �#! î ö �%$ � ² ! q �ë?ö � q=� ý ²ÿ � �&! î ö � (1.2.49)

where ! î ö and ! q �ë ö are the forward and inverse lateral Fourier transforms, respectively.

The split-step operator symbol $ � ² has been introduced for later convenience. The verti-

cal wavenumber is: ê ®� � � ® � & � ñ ï · ñ �� �® � � W (1.2.50)

To investigate the accuracy of the split-step approximation consider the index ' � � ® i �ôô ² that is the ratio of the actual velocity

i
and the reference velocity

i ® � �� ² within a slabop$ . The exact dispersion relation is expressed as:i ê �� � ¶ & � i � ñ ï · ñ �� � � (1.2.51)

and the split-step approximated dispersion relation becomes:i ê �� � ' ¶ & � i �® ñ ï · ñ �� � �('Ã8 & W (1.2.52)

The accuracy of this approximation depends on the magnitude of ' ��& 8 4 ' . Figure 1.3

shows the split-step approximation for three different values of 4 ' . For small contrasts

the approximation is acceptable up to high tilt angles of propagation. In large contrast

media the accuracy deteriorates quickly as the propagation angle increases. As opposed

to finite-difference techniques that are obtained from a direct square-root expansion of

the operator � � (Claerbout, 1985), the split-step dispersion relation is exact when no

lateral velocity variations are present.

PSPI propagator

Where strong lateral velocity variations are present, a more accurate extrapolation tech-

nique is necessary. There exist a number of techniques to achieve this (e.g., Ristow and
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Figure 1.3: The exact dispersion relation and its split-step approximation corresponding to the
equations (1.2.51) and (1.2.52), respectively. The split-step approximated dispersion relations are
shown for three magnitudes of relative lateral velocity perturbation: )+*Þu]w-, w/.-0�)+*±u w-,21 and)+* u©w3,41+. .
Rühl (1994); Grimbergen et al. (1998)). One way to improve accuracy is to apply the

split-step propagator in a wavefield windowing fashion. Gazdag and Sguazzero (1984)

proposed the phase-shift-plus-interpolation (PSPI) technique to better account for sig-

nificant lateral velocity variations. Kessinger (1992) combined the split-step approach

with PSPI, hereafter referred to as the split-step PSPI technique. The extrapolation pro-

cedure consists essentially of two steps. First, the wavefield is phase-shift extrapolated

across the thin slab o $ for a number of reference slownesses �-5687�9 , instead of just one

average slowness �?® . This is followed by the split-step correction with respect to the ref-

erence slownesses � 56:7:9 . Second, the actual wavefield is computed by interpolating the

resulting reference wavefields. Clearly, the split-step PSPI is sensitive to the reference

slownesses �/56:7:9 and a higher number of them results in a more accurate extrapolation.

Bagaini et al. (1995) proposed an adaptive criterion for selecting the reference slownesses�;56:7:9 � �ô=<>@?BA which has been adopted in this thesis. The wavefield copying and linear in-

terpolation operator CED and FGD , respectively, are defined. The first operator creates H
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identical wavefield copies, where H is the number of selected reference slownesses � 56:7:9
for a particular thin slab. Then, the H wavefields are phase-shift extrapolated and split-

step corrected with respect to the H reference slownesses. The interpolation operator F D
combines the H resulting reference wavefields � ÷ " 5687�9 - , · � $0/ by a weighted summation in

the space domain according to the actual velocity

i
:� ÷ - , · � $)/ � D�5 ���3I 5 � ÷ " 5687:9 - , · � $0/ � (1.2.53)

where

I 5 �
i 5 Â �6:7:9 � ii 5 Â �687:9 � i 5687�9I 5 Â � �
i � i 5687:9i 5 Â �687:9 � i 5687�9

JLKKKMKKKN if

i 5687�9�O i O i 5 Â �6:7:9QP I 5 �YQI 5 Â � �YQSR else, (1.2.54)

with & O ' O H � & . The split-step PSPI propagator is symbolically summarized as:¤�¥X¦¨§ ��%U� � op$Xª � F D $ D� <>@?BA ! q ��" Dë ö � q=� ý <ÿ � � C D ! î ö � (1.2.55)

where ê 5� � �i 5687�9 & � - i 5687�9 / �lñ ï · ñ �� � � (1.2.56)

and $ D� <>@?BA � � q=�¡�T� � < � � � with o
� 5 � ����� 5687�9 W (1.2.57)

The superscript N for the inverse Fourier transform ! q � and the split-step operator $
indicates that both are to be applied N times. Depending on the lateral velocity profile

within each slab either the phase-shift, the split-step, or the split-step PSPI propagator are

used for wavefield extrapolation. This results in a flexible and adaptive marching-type al-

gorithm. The wavefield propagators are calculated and applied for separate frequencies� , which makes the algorithm structure well suited for the implementation in a parallel

computer architecture.

1.3 Linearized data modelling

In the previous section one-way wavefield propagators that extrapolate the wavefield

from one depth level to the other have been introduced. In this part the forward mod-
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1.3. LINEARIZED DATA MODELLING

elling formula is derived that relates the reflection operator ã Â to the seismic surface

data.

1.3.1 Primary data representation

The one-way Green’s functions G ÷ are defined (Wapenaar, 1996) as:; 

 $VU %U� � > G ÷ - , � ,«³�/ � 4)- , �©,¨³�/ � (1.3.1)

where G Â - , � , ³ / �%Wn- $¬�<$ ³ / 
 Â - , · � $ � , ³ · � $ ³ / � (1.3.2)

and G q - , � , ³ / �%Wn- $ ³ �©$0/ 
 q - , · � $ � , ³ · � $ ³ / W (1.3.3)

The Heaviside function W generates the 4 -function in depth and forces the Green’s func-

tions to be causal. It is useful to introduce the reference one-way wave-equation:; 

 $ � Ü ˜ 687�9 >(X ˜ � ¯
˜
4)- , �<,¨³ì/ � (1.3.4)

with the diagonal Green’s matrix X
˜

:X
˜
- , � , ³ / � ; G Â - , � , ³ / QQ G q - , � , ³ / > W (1.3.5)

and the (
Y ( identity matrix ¯
˜
. The operator Ü

˜
687:9 is the propagation operator » ˜ :Ü

˜
687:9 � » ˜ � ; %U� � QQ �a%U� � > W (1.3.6)

That is, the reference solution does not include explicit scattering. The equation to be

solved is: ; 

 $ � Ü ˜ > Å � Æ Ä - � / 40- , �©, � / � (1.3.7)

where Ä - � / is the source’s frequency signature and , � the source location. It is useful to

define the contrast operator �
˜
�YÜ

˜
� Ü

˜
687:9 , so that the problem can be stated as:; 

 $ � Ü ˜ 687:9 > Å � Æ Ä - � / 40- , �©, � /«8 � ˜ Å � (1.3.8)

or as an integral equation:Å - ,�/ � ° X
˜
- , � , ³ / - Æ - , ³ /�Ä - � / 4)- , ³ �©, � /¨8 � ˜ - , ³ / Å - , ³ /�/gkÐ, ³ � (1.3.9)
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or Å - ,j/ � X ˜ - , � , � / Æ - ,[Z�/�Ä - � /C8±° X ˜ - , � , ³ / � ˜ - , ³ / Å - , ³ /gkl, ³ W (1.3.10)

The iterative solution for this integral equation entails the Born series:Å 5 - ,j/ � X ˜ - , � , � / Æ - ,[Z�/�Ä - � /«8±° X ˜ - , � , ³ / � ˜ - , ³ / Å 5 q � - , ³ /gkÐ, ³ � (1.3.11)

for '\� Q and Å ® � X ˜ - , � , � / Æ - ,[Z�/�Ä - � / . Choosing ' �^& yields the first order or linear

Born approximation:Å � - ,j/ � X ˜ - , � , � / Æ - ,[Z�/�Ä - � /«8±Ä - � / ° X ˜ - , � ,«³�/ � ˜ - ,¨³µ/ X ˜ - ,«³ � , � / Æ - ,[Z�/gkÐ,¨³ W (1.3.12)

The choice of the reference operator (1.3.6) leaves the contrast operator �
˜
� Ý

˜
. Consider

the primary upgoing response � q related to the source function for downgoing wavesÄ Â and disregard the direct wave. Moreover, if transmission effects are neglected above

the target reflector represented by ã Â - , ³ / (homogeneous or small contrast overburden)

one obtains (Wapenaar, 1996):� q - ,�/ � Ä - � / ° 
 q - , � , ³ / ã Â - , ³ / 
 Â - , ³ � , � /�Ä Â - , � /gkÐ, ³ W (1.3.13)

Finally, the operator ã Â - , ³ · � $ ³ / is replaced by its convolution kernel ] Â - , 6 · �<, � · � $ ³ / for

specular reflections (see section 1.3.2), and equation (1.3.13) breaks down into three sub-

processes (Wapenaar and Herrmann, 1996):� Â - , ³ � · � $ ³ / � ° 
 Â - , ³ � · � $ ³ � , � · � $@®6/�Ä Â - , � · � $6®6/gkÐ, � · � (1.3.14)� q - , ³6 · � $ ³ / � °^] Â - , ³6 · �©, ³ � · � $ ³ / � Â - , ³ � · � $ ³ /gkÐ, ³ � · � (1.3.15)

and � q - , 6 · � $ ® / � ° 
 q - , 6 · � $ ® � , ³6 · � $ ³ / � q - , ³6 · � $ ³ /gkl, ³6 · � (1.3.16)

where the source signature Ä - � / has been dropped for simplicity. It is clear, however,

that all subsequent equations are inherently bandlimited by Ä - � / . Ideally, the source sig-

nature should be deconvolved from the data. This requires the knowledge of the waveletÄ - � / which can be difficult to estimate. Deconvolution, if successful, increases the fre-

quency bandwidth and enhances the resolution power of the seismic data. For horizon-

tal interfaces separating regions of different medium parameters ] Â is a 4 -function in
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depth. If more than one target reflector is considered, the omitted $ ³ integration in the

equations (1.3.14) to (1.3.16) becomes relevant again. The reflection kernel ] Â links the

local downgoing wavefield �dÂ - , ³ � · � $ ³ / with the upgoing wavefield � q - , ³6 · � $ ³ / at the tar-

get reflector. In general, the convolution kernel in equation (1.3.15) is non-stationary to

accommodate smooth lateral velocity variations directly above the reflecting interface.

The non-stationarity is addressed in Section 1.3.4. In a strict sense, only horizontal in-

terfaces are considered. A mathematically rigorous treatment of irregular interfaces is

not straightforward. Therefore, the interfaces are assumed to be horizontal for now. Sec-

tion 1.3.4 introduces an ad hoc reflector dip correction for specular reflections off moder-

ately irregular interfaces based on ray theoretical considerations. The primary one-way

representation with its three sub-processes is illustrated in Figure 1.4. The Section 1.3.3

discusses the effect of neglecting overburden transmission effects in more detail. More-

over, for the approximate validity of the primary representation in practical situations

the following two pre-processing steps are required:_ decomposition of the physical measurements into one-way wavefields (i.e., ‘deghost-

ing’),_ elimination of multiple reflections related to the free surface.

In numerical data simulations these requirements are satisfied by absorbing boundary

conditions in the computational subsurface model.

1.3.2 Specular reflection

To verify equation (1.3.13) for laterally invariant media, the reflection mechanism (1.3.15)

is evaluated in the lateral Fourier domain. For horizontal interfaces the reflection kernel] Â - , 6 · �±, � · � $ ³ / becomes the differential operator
�� ùê q �� �Q� �ý&`Jÿ� � È 40- $Ã� $ ³ / , where ê � �v� ùê � � �

is the vertical wavenumber of the impinging downgoing wavefield. Since the kernel is

a multiplication operator in the Fourier domain, there is no conversion between differ-

ent horizontal wavenumbers (specular reflection). The reflected upgoing wavefield as a

function of the illuminating downgoing wavefield is thus:é� q - ï 6 · � $ ³ / � &( ùê q �� � k ùê � �kl$ ³ é� Â - ï � · � $ ³ / � (1.3.17)
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Figure 1.4: The primary one-way representation for seismic reflection data. Transmission losses
due to energy partitioning at interfaces between the reference plane s t and the target reflector
element are neglected. Note that the ray concept is invoked for illustration only.

where ï 6 · � ï � · and ï 6 �a� �Tï � � according to Snell’s law. Moreover, in laterally invariant

media phase-shift propagators link the source and receiver wavefields at $ ® with the local

wavefields at $ ³ (Gazdag, 1978).

1.3.3 Acoustic reflection and transmission coefficients

In this section angle dependent (flux normalized) reflection and transmission coefficients

for a plane boundary of two fluids are derived and discussed. This allows for a some-

what simplistic assessment of the errors involved in neglecting overburden transmission

losses within the acoustic approximation. In reality, this assessment has limited validity.

In an elastic medium, compressional waves that impinge on a medium discontinuity gen-

erate in part converted shear waves. That means compressional waves leak energy to the

shear wavefield component, and compressional and shear waves can no longer be treated

as being independent. When dealing with real-world data, the more realistic Zoeppritz

equations for plane waves impinging on a plane boundary replace the fluid-fluid reflec-

tion and transmission coefficients (Aki and Richards, 1980). Fortunately, this does not

change any of the migration/inversion concepts discussed in Chapter 2. It is clear, how-

ever, that any medium parameter inversion subsequent to acoustic migration/inversion

is based on Zoeppritz’s equations, not the acoustic approximation. Keeping this restric-

tion is mind, it is justified to derive migration/inversion for compressional waves within

the mathematically less involved acoustic approximation.
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Figure 1.5: Flux normalized reflection and transmission at a medium discontinuity. Situation 1:
In the left diagram incoming downgoing and reflected upgoing waves exist in the upper medium
and only transmitted downgoing waves exist in the lower medium. Neglecting the reflected
upgoing wave leaves only the flux normalized transmission process for downward extrapolation
(right diagram). Situation 2: In the left diagram incoming upgoing and reflected downgoing
waves exit in the lower medium and only transmitted upgoing waves exist in the upper medium.
Again, neglecting the reflected downgoing wave leaves the flux-normalized transmission process
for upward extrapolation (right diagram). The indices 1 and a stand for the wavefields in the
upper and lower half of the medium, respectively. The transmission coefficients are identical in
both cases: b�c	udb � .

Consider the two situations illustrated in Figure 1.5. A plane boundary separates

two homogeneous layers with velocities

i � and

i � and densities � � and � � for the first

and second layer, respectively. Without loss of generality, the boundary is assumed to be

perpendicular to the $ axis. In the first situation the incident downgoing wavefield � Â�
and the reflected upgoing wavefield � q� exist in the upper layer. Only the transmitted

wave � Â� may exit in the lower medium. In the second situation the configuration is re-

versed. There are an incident upgoing wavefield and a downgoing reflection in the lower

medium and a transmitted upgoing wavefield in the upper medium. The boundary con-

ditions demand that the pressure � and the normal particle velocity �C� be continuous

across the interface. With the equations (1.2.20) and (1.2.21) in the lateral wavenumber

domain (assuming no lateral variations) the reflection coefficients ù] Â and ù] q and the

transmission coefficients ùe Â and ùe q are (Wapenaar, 1998):ù] Â � ù� q�ù� Â� � ùêÐ� � � ùêÐ� �ùê � � 8 ùê � � � (1.3.18)

ù] q � ù� Â�ù� q� � � ù] Â � (1.3.19)

ùe Â � ù� Â�ù� Â� � ùêÐ� " �ùêÐ� " � ( ùêÐ� " �ùêl� " � 8 ùêÐ� " � � � & � - ù] Â / � � (1.3.20)
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Figure 1.6: Four examples illustrating the angle dependence of the acoustic reflection coefficientf c . Example 1: ��� ugaih@w6wEj � , �lk uga6w6w@wEj � , �Ð�úum1/, n\op jrq and �sk u(at,La;.uop jrq . Example 2: ��� ugaih@w6wEj � ,�lk�uva6w6w@wEj � , �Ð��uvat,La;.uop j q and �wk�u\1;, nxop j q . Example 3: �!��uya}w6w@wEj � , �#k�uyaih@w6wEj � , �´��uma-, a/.yop j qand �wk uz1/, n op jrq . Example 4: ���úu(a}w@w6w j � , �#k uga;h6w6w j � , �Ð�úuv1;, n op j{q and �wk u�at,La;. op j{q .
ùe q � ù� q�ù� q� � ùê � " �ùêÐ� " � ( ùê � " �ùêl� " � 8 ùêÐ� " � � � & � - ù] Â / � � (1.3.21)

and ùe Â � ùe q � (1.3.22)

where êl� " ��" � � � � ¿ô ¿ ¾B| ¿ � ñ ï · ñ � and ùêÐ� " ��" � � ý ÿ | ¾B| ¿¢ ¾B| ¿ . These relationships can be written in

terms of angle of incidence } using the plane wave parameterization with the horizontal

ray parameter 
 ��~��L� �2�l�ô ¾ � õ ë ö õ� and Snell’s law. The dispersion relation becomes ê � " ��" � ��ô ¾B| ¿ � & � i � ��" � 
 � . The reflection and transmission coefficients for situation 1 in the ray

parameter/angle domain are:

] Â � � � i �-� & � i � � 
 � � � � i � � & � i �� 
 �� � i � � & � i � � 
 � 8 � � i � � & � i �� 
 � � (1.3.23)
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e Â � ( � � � i � � � i � � & � i �� 
 � � & � i � � 
 �� � i �-� & � i � � 
 � 8 � � i � � & � i �� 
 � W (1.3.24)

The following observations for the angle dependent reflection coefficient ] Â are made:_ If

i � � i � and � � i � � � � i � , then the reflection coefficient will be a positive value for

normal incidence. As } increases, the reflection coefficient will decrease, reaching

zero at the intramission angle }´® :� �� � � � - i � K i � / � ���l��� � }@®� & �g�l��� � } ® W (1.3.25)

Beyond the intramission angle, the reflection coefficient decreases to a value of � &
at grazing incidence (example 1 in Figures 1.6 and 1.8)._ If

i � � i � and � � i � ó � � i � , the reflection coefficient is always negative and equals� & for grazing incidence (example 2 in Figures 1.6 and 1.8)._ If

i � � i � the vertical wavenumber ùêÐ� � becomes complex for angles greater than

the critical angle } ô : �l��� - } ô / � i � K i � .The wave amplitude is exponentially decaying

in the lower medium (evanescent wave). By defining ùêÐ� � � %}éêÐ� � � % �ô ¿ ¢ ¿ � i �� 
 � � &
one can write for postcritical reflections:é] Â � ùêl� � �©% éêl� �ùêl� � 8:%}éêl� � W (1.3.26)

For postcritical reflections the magnitude is 1 (total reflection), and the induced

phase shift is � � (r�l� � q � ���ý ÿ ¿�ý ÿ ¾ � (examples 3 and 4 in Figures 1.6 and 1.8)._ For interfaces with a change in density only the reflection coefficient is angle inde-

pendent: é] Â � ] Â � ¢ ¿ q=¢ ¾¢ ¿ Â ¢ ¾ .
The flux-normalized transmission coefficients allows for a simplistic assessment of the

errors involved in the negligence of transmission loss in the primary data representation

(1.3.13). Consider the situation depicted in Figure 1.7. Assuming there is one extra inter-

face between the target reflector element and the source/receiver datum one has the total

transmission coefficient: e Â e q �'& � - ] Â / � � (1.3.27)
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Figure 1.7: The primary one-way representation with one extra interface between the
source/receiver datum and the target reflector element. The total transmission effect due to the
additional interface is b c b � uv1ú~�� f c[� k .
where ] Â is the reflection coefficient of the additional interface. Neglecting transmission

loss thus causes an error - ] Â / � . Figure 1.8 shows the transmission coefficients and the

associated error terms for the medium parameters in Figure 1.5. For small contrasts, the

angle dependent transmission error is negligible. For complex media with many layers

and significant scattering, the cumulative second- and higher order errors may become

significant. In such a case the primary data formula (1.3.13) will produce erroneous am-

plitudes. Moreover, if the layering is fine, phase distortions can occur that result in dis-

persion effects not accounted for by equation (1.3.13) (Wapenaar and Herrmann, 1996).

1.3.4 DSR modelling

In this section the generalized DSR (double-square-root) modelling propagator is derived

(Claerbout, 1985). The DSR propagator treats the source and receiver wavefields simul-

taneously and allows for a compact wavefield operator notation. The following devel-

opment assumes that both sources and receivers have the same monopole characteristic.

That is, their directional signatures are isotropic. Consider a multi-source and multi-

receiver experiment. A number of single-source/multi-receiver experiments are carried

out and combined to a single multi-source/multi-receiver dataset � . Ideally, the entire

reference plane $?® is covered with source and receiver positions. In practice, of course,

one has to deal with a finite survey area and finite recording aperture effects. The goal is

to implement the primary modelling formula (1.3.13) for the multi-source/multi-receiver
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Figure 1.8: The flux normalized transmission coefficients b c ugb � for the parameters in Figure
1.6 (solid line). The transmission error term � f c[� k is shown for comparison (dotted line). For
small contrasts, the angle dependent transmission error is negligible. For complex media with
significant scattering, the cumulative second- and higher order errors may become significant.

situation. The left hand side of equation (1.3.13) is understood as a function of the con-

tinuous receiver coordinate , 6 � , as well as of the continuous source coordinate , � .
With the wavefield quantity � - , 6 � , � � $6® � � / representing the multi-source/multi-receiver

dataset at the reference datum $ ® the modelling equation becomes:� - , 6 � , � � � / � ° 
 q - , 6 � , � � / ã - ,j/ 
 Â - , � , � � � /gkl, � (1.3.28)

where the 8 sign for the reflection kernel has been dropped for notational convenience.

The source term Ä Â is assumed to be constant for all sources and, therefore, has been

dropped as well. This might not be the case in practice and would have to be ad-

dressed during pre-processing. For clarity, the previously omitted frequency depen-

dence is included as an argument. By exploiting the reciprocity relation

 Â - , � , � � � / �
 q - , � � , � � / (Wapenaar and Grimbergen, 1996) multi-source and multi-receiver mod-
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Space domain Wavenumber domain Ray domain, � ��- � � � # � � $ � / ï � ��-�ê � � � ê � � � ê � � / � � � ï `�, 6 ��- � 6 � # 6 � $ 6 / ï 6 ��-�ê 6 � � ê 6 � � ê 6 � / � 6 � ï >�, � · ��- � � � # � / ï � · ��-�ê � � � ê � � / � � · � ï ` ö�, 6 · ��- � 6 � # 6 / ï 6 · ��-�ê 6 � � ê 6 � / � 6 · � ï > ö�� � �� - , 6 · 8:, � · / ï�� � ï 6 · 8nï � · � � � ï���� � �� - , 6 · �©, � · / ï�� � ï 6 · �<ï � · � � � ï[��
Table 1.2: Nomenclature and relationships for the source-receiver and the midpoint-offset
coordinate systems (Stolt and Benson, 1986).

elling is carried out in two stages. First, the source/receiver wavefield � ·�� ô - , 6 · � , � · � $ � � /
directly above the reflecting interface is created. It exhibits the AVA related to the medium

properties above and below the target reflector. The coupling mechanism between the

local interface reflection coefficient and the local wavefield is explained further below.

Second, the upward propagators for the sources and receivers link the local wavefield� ·4� ô - , 6 · � , � · � $ � � / to the wavefield � - , 6 · � , � · � $@® � � / at the reference plane $?® :� - , 6 · � , � · � $6® � � / � °�° 
 q - , 6 · � $@® � , ³6 · � $ � � / 
 q - , � · � $6® � , ³ � · � $0/Y � ·�� ô - , ³6 · � , ³ � · � $ � � /gkÐ, ³ � · kl, ³6 · W (1.3.29)

Inserting the upward propagator from equation (1.2.45) for the source- and receiver prop-

agators in equation (1.3.29) gives:� - , 6 · � , � · � $ ® � � / � ­ � ²� ¤�¥)¦¨§ �a% - � ���3�� Z 8V� ������=  / op$Xªs� ·�� ô - , 6 · � , � · � $ � � / � (1.3.30)

where � ���3�� Z and � ������=  are the square-root operators for the sources and receivers, respec-

tively, in source-receiver coordinates. At this point, it is convenient to introduce the

midpoint-offset coordinate system. The lateral coordinates are transformed according

to (Stolt and Benson, 1986):� � &( - , 6 · 8n, � · / � � � &( - , 6 · �©, � · / � or , � · � � � � � , 6 · � � 8 � � (1.3.31)

where � is the midpoint vector and
�

is the half offset vector. The half offset vector
�

is

not to be confused with the full offset vector , 6 · �A, � · . The descriptors ‘half’ and ‘full’ are

mostly omitted in the following for the sake of brevity. Table 1.2 gives an overview over
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the nomenclature and the relationships of some relevant quantities in the source-receiver

and midpoint-offset coordinate systems. In midpoint-offset coordinates equation (1.3.30)

reads: � - � � � � $ ® � � / � ­ � ²� ¤�¥X¦¨§ ��% - � �¡�����¢�" £ 8n� �������¢¬" £ / o $Xªs� ·�� ô - � � � � $ � � / � (1.3.32)

where � �¡�����¢�" £ and � �¡�����¢{" £ are the source and receiver square-root operators, respectively,

expressed in midpoint-offset coordinates. This is the generalized form of Claerbout’s

(1985) DSR (double-square-root) propagator formulated within the context of wavefield

modelling. Since the medium parameters are allowed to vary smoothly in the lateral di-

rection, � ·�� ô - � � � � $ � � / is a function of the midpoint position � . As mentioned earlier,

the presented formalism is valid only for horizontal interfaces. However, for moderately

irregular interfaces a local specular reflection mechanism is expected to hold (Aki and

Richards, 1980). Therefore, irregular interfaces are approximated by piecewise planar

and (dipping) reflector elements with angle dependent specular reflection coefficients as

a function of midpoint location � . Where the interface curvature is significant relative

to the dominant wavelength of the local seismic wavefield, this subsurface parameteri-

zation breaks down in a dynamic sense. The scattering mechanism is then non-specular

and the ‘reflection coefficient’ is merely a measure of diffraction scattering strength (We-

glein and Stolt, 1999).

Angle dependent modelling for moderately irregular interfaces

The mechanism that couples the angle dependent reflection coefficient ] with the local

source/receiver wavefield � ·�� ô - � � � � $ � � / is easiest analyzed in terms of the local slow-

ness vectors (Appendix A). Consider the slowness vectors � � and � 6 for the local source

and receiver wavefields, respectively (Figure 1.9 and Table 1.2). For moderately irregular

interfaces the reflection mechanism is specular and source and receiver slowness vectors

describe a rhombus with diagonals ¤{� � � 6 8¥� � and ¤r� � � 6 �
� � in the reflection plane.

The vector ¤ � consists of the horizontal midpoint slowness vector � � and the vertical

component 
�� � . Similarly, the diagonal ¤¦� consists of the horizontal offset slowness vec-

tor � � and the vertical component 
�� � . The modulus of � � is the offset ray parameter:
�� � ñ � � ñ . The vector ¤r� is normal to the reflecting surface while the vector ¤�� is parallel

35



1.3. LINEARIZED DATA MODELLING

ps

hd

pr

md

y
z

x

α
φ

θ

Reflector dip

Reflection−plane/reflector intersection

Strike direction

Dip direction

Azimuth

Figure 1.9: A source/receiver ray pair coincident at an interface. The locally planar interface
generates a specular reflection. The source and receiver slowness vectors § � and §�¨ , respectively,
are tangential to the rays. At the point of coincidence they describe a rhombus with diagonals© j ud§�¨Tª«§ � and

©�¬ u(§�¨=~­§ � in the reflection plane. The vector
©[¬

is parallel to the intersection
of the reflection plane with the reflector. The vector

© j is normal vector to the reflector.
�

is
the angle of incidence measured against

© j and ® is dip angle of the reflector. The angle ¯ is
the azimuth defined as the angle between the reflection-plane/reflector intersection and the dip
direction.

to the intersection of the reflection plane with the reflector surface. From Figure 1.9 one

finds: �#���S} � ñ ¤r� ñ( ñ � 6 ñ �
i - � / ñ ¤{� ñ( � i - � / ñ � � ñ( � L+° � � I L+° � �[± 8m�l��� � I � (1.3.33)

where } is the angle of incidence of the reflection coefficient in equation (1.3.23),
±

is the

reflector dip and I is the azimuth defined as the angle between the reflection-plane and

reflector intersection with respect to the dip direction. The velocity

i - � / is the veloc-

ity directly above the reflection point at - � � $)/ . Relationship (1.3.33) couples the joint

source/receiver wavefield quantity � � to the angle of incidence } of the reflection coeffi-

cient in equation (1.3.23). The reflector dip
±

and the azimuth I enter as local parameters

that have to be provided. The azimuth I is determined from the dip direction and the

horizontal offset slowness vector � � . The quantity � L+° � � I L+° � � ± 8z�l��� � I simplifies toL+° � ± when the strike direction is normal to the reflection-plane. Because the reflection

coefficient is frequency independent, the following procedure to set up the local (off-

set Fourier transformed) wavefield � ·4� ô - � � ï[� � $ � � / directly above the target reflector
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Figure 1.10: The radial trace transform (RTT) maps the �¸· ¬ 0=¹ � space into the ��§ ¬ 0@¹ � space (Ap-
pendix B). Only the planes º ¬"» u]w and ¼ ¬&» u]w are shown. The RTT extracts the wavefield
amplitudes along radial lines in the �½º ¬&¾ 0@¹ � space and maps the result into the ��¼ ¬&¾ 0@¹ � domain.
In practice, the limited offset wavenumber range due to a finite recording aperture and the finite
frequency band (shaded area) cause truncation effects in the ��¼ ¬&¾ 0@¹ � space. The maximum unbi-
ased offset ray parameter is denoted by ¼ j¦¿ ¾¬"¾ . The adjoint of RTT operator maps lines parallel to
the ¹ axis into radial lines in the ��¼ ¬"¾ 0=¹ � domain (after Sava et al. (2001)). In three dimensions the
transformation maps cones in the ��· ¬ 0=¹ � space to cylinders in the ��§ ¬ 0=¹ � domain and vice versa.

results:_ calculate the angle dependent reflection coefficient using the medium properties

above and below the interface at depth location - � � $0/ ,_ determine the local dip direction and dip angle
±

,_ convert the incidence angle } to offset slowness using the parameter set - � � P ± � I /
according to equation (1.3.33) ,_ place the corresponding values for reflection coefficient in the - � � � � / domain par-

allel to the � axis,_ and, finally, transform the local reflection coefficient from the - � � � � / domain into

the local wavefield � ·�� ô - � � ï[� � $ � � / .
The last step is necessary to have the local wavefield in a format suitable for a recur-

sive wavefield propagator that does not depend on the offset ray parameter. The con-

version is achieved through the adjoint operator of the radial trace transform (RTT) in
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the - ï�� � � / domain (de Bruin et al., 1990; Prucha et al., 1999; Mosher and Foster, 2000;

Sava et al., 2001). The RTT is recognized as an implementation of the better known �ú��

transform (Appendix B). In modelling, the adjoint of the RTT operator is employed; for

imaging/inversion, the RTT operator itself becomes important. The action of the RTT

operator and its adjoint are illustrated in Figure 1.10. In the - � � � � / domain the reflec-

tion coefficients are arranged parallel to the � axis along concentric cylinders with radius
�� � ñ � � ñ . To obtain the corresponding local wavefield in the - ï¦� � � / domain the cylinders

are mapped into cones determined by the ratio:� � � ï[�� W (1.3.34)

This mapping, including the distribution of ] - � � $ � })/ along the � axis in the - � � � � /
domain, is formally expressed as:� ·�� ô - � � ï[� � $ � � / �%ÀÂÁ � ] - � � $ � � � P ± � I / �ÃÁ � ] - � � $ � � � P ± � I / ñ Ä � � ë �iÅ � � (1.3.35)

where Á � is the identity operator with respect to frequency. The operator ÀÆÁ � models

the wavefield’s amplitude variation as a function of ray parameter (AVP) rather than

angle. Ray parameter and reflection angle are closely related through equation (1.3.33)

and
±

and I enter as external parameters. The mapping procedure is carried out at each

midpoint location � . A modelling algorithm based on this recipe appears rather cum-

bersome. Fortunately, in (least-squares) imaging/inversion this model parameterization

is not carried out explicitly as to be explained in the next chapter. Finally, to have a

more compact notation the generalized DSR upward propagator symbol for the joint

source/receiver wavefield is introduced:Ç �¡����� - $ ® � $0/ � ­ � ²� ¤�¥X¦¨§ ��% - � ���3���¢�" £ 8:� �������¢¬" £ / op$Xª � (1.3.36)

and, with the modelling operator ÀÂÁ � , equation (1.3.32) becomes:� - � � � � $ ® � � / � ° ��g² Ç ���3��� - $ ® � $0/ ! q �ë � ÀÆÁ � ] - � � $ � � � P ± � I /gk0$ � (1.3.37)

where ! q �ë � is the inverse offset Fourier transform. The previously omitted $ integration

has been included (multiple target reflectors), which automatically implies negligible
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x

y

Reflector elementz

Figure 1.11: The ‘survey-raising’ thought experiment. Consider a source (diamond) and a re-
ceiver (triangle) located directly above the target reflector element. The amplitude variation with
angle (AVA) of the wavefield directly above the reflector is proportional to angle dependent re-
flection coefficient

f �¸È�0ès�0 � �ÊÉ f �¸ÈË0gs30�§ ¬-Ì ®E0�¯ � . According to equation (1.3.32) the application
of the ‘double-square-root’ propagator is equivalent to datuming the sources and receivers along
their ray paths to the reference plane s�t .
transmission effects (low contrast media). The action of the (generalized) DSR propa-

gator
Ç ���3��� - $ ® � $0/ can be regarded as datuming the local wavefield at the reflector datum$ to the source/receiver datum $ ® . Figure 1.11 illustrates this with the ‘survey-raising’

thought experiment.

Angle independent modelling

Often in imaging no attention is paid to the angle behavior of the (local) wavefield. Only

(angle dependent) amplitude changes due to propagation effects are considered, and

the reflection coefficients are approximated by an angle independent average ] - � � $0/ of] - � � $ � }0/ . If the reflection process is non-specular, ] - � � $0/ is an angle independent mea-

sure of (diffraction) scattering strength. The operator ÀÂÁ � in equation (1.3.35) simplifies

greatly. Rather than mapping the corrected reflection coefficient into cones, the average

coefficient is evenly distributed over the entire - ï¦� � � / space. Hence, the local wavefield

is a constant function of ï�� , as opposed to slowly varying. In this case, the modelling

operator ÀÆÁ � is replaced by Á ë � " � . Effectively, the scattering mechanism does not exhibit

angle dependence and simplifies to that of a reflector/diffractor with an angle indepen-

dent radiation pattern. The local wavefield’s offset dependence is then 4)-BÍ«� / 4)-BÍ � / at the

reflector/diffractor location (Weglein and Stolt, 1999). In other words, the local wavefield
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� ·4� ô - � � � �YQ � $ � � / and the coefficient ] - � � $0/ can be directly identified:� ·4� ô - � � � �YQ � $ � � / � ! q �ë � Á ë � " � ] - � � $)/ m\] - � � $)/ W (1.3.38)

An algorithm based on this parameterization ignores AVA effects and thus aims at struc-

tural rather than amplitude information.

Implementation in laterally invariant media

Consider a laterally invariant medium. All involved quantities are expressed in the

midpoint-offset Fourier domain:� - ï�� � ï�� � $ ® � � / � ° �� ² éÇ ���3��� - $ ® � $0/ ÀÆÁ � ] - ï[� � $ � � � P ± � I /gk0$ � (1.3.39)

where éÇ �¡����� - $ ® � $)/ � ­ � ²� � q=� ý�ÿ � � � (1.3.40)

with êl�T� ê � � 8 ê 6 �T� � i ½ ¶ & �
i �lñ ï � 8nï�� ñ �Î � � 8 ¶ & � i �lñ ï � �<ï�� ñ �Î � � À � (1.3.41)

hence the term ‘double-square-root’ propagator (Claerbout, 1985). For a computer imple-

mentation it is convenient to prescribe the modelling procedure in an algorithmic form.

The depth integration in formula (1.3.39) is discretized according to:� - ï�� � ïÏ� � $ ® � � / � � ·�� ô - ï�� � ï[� � $ ® � � /«8 éÇ �¡����� - $ ® � $ � /8� ·�� ô - ï�� � ï�� � $ � � � /8 éÇ ���3��� - $ ® � $ � /8� ·4� ô - ï[� � ï[� � $ � � � /C8 WNWNW � (1.3.42)

where the quantity � ·�� ô - ï�� � ï[� � $ �rq � � � / �ÐÀÂÁ � ] - ï�� � $ � � � � P ± � I / , % � & ��()� WNWNW � is under-

stood as the local wavefield integrated over one thin slab op$ümYkl$ . In recursive form, the

reflection coefficient ] - ï � � $ � � }0/úmx] - ï � � $ � � � � P ± � I / at depth level $ � is fed into the total

wavefield previously upward propagated from the depth level below:� - ï�� � ï[� � $ �Jq � � � / � éÇ ���3��� - $ �rq � � $ � /8� - ï�� � ï[� � $ � � � /¨8 ÀÆÁ � ] - ï�� � $ � � � � P ± � I / � (1.3.43)

where éÇ �¡����� - $ �Jq � � $ � / � � q=� ý ÿ � � and % �'& ��()� WNWNW?W (1.3.44)

The recursion is carried out for all depth levels of interest and initialized with a zero

wavefield. Notice that in this notation the total wavefield � - ï{� � ï[� � $ � � � / contains the

reflection scattering contributions from all previous depth levels.
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Figure 1.12: Flowchart for recursive generalized DSR modelling. Both the split-step DSR mod-
elling and the split-step PSPI DSR modelling propagator are illustrated. The recursion is initial-
ized with a zero wavefield and Ñ«uu1;0:at0&,#,#, . For simplicity, the initial midpoint Fourier transform
for the reflectivity

f
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Non-recursive DSR modelling

An alternative, non-recursive, form of the DSR operator in laterally invariant media

proves useful in the next section:� - ï�� � ï�� � $ ® � � / � ° �� ² � q=�&Ò ÿÿ ² ý ÿ � � È ÀÆÁ � ] - ï�� � $ � � � P ± � I /gk0$ � (1.3.45)

where the discrete slab thickness o $ has been replaced by the differential kl$ . Instead

of applying the phase-shift recursively, the cumulative phase-term is calculated and ap-

plied to the wavefield all at once, and the reflection contributions from all depth levels are

integrated into the surface wavefield. As shown below, this form allows for the deriva-

tion of a DSR modelling formula for separate offsets
�

. However, the non-recursive form

(1.3.45) precludes the use of correction techniques such as the split-step approximation

that make the DSR propagator suitable for laterally varying media.
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Separate offset DSR modelling

If the scattering mechanism is reflection angle independent the offset-domain version of

formula (1.3.45) follows:� - ï�� � � � $ ® � � / � ° �� ² ! q �ë �ÔÓ � q=�&Ò ÿÿ ² ý ÿ � � È:Õ � ·4� ô - ï�� � � �xÖ � $ � � /gkl$� ° ��è² I - ï[� � � � $ ® � $ � � /8� ·4� ô - ï�� � � �xÖ � $ � � /gkl$ � (1.3.46)

where � ·4� ô - ï � � � �×Ö � $ � � / � ! q �ë � Á ë � " � ] - ï � � $0/zmØ] - ï � � $)/ . The inverse offset Fourier

transform of the exponential in equation (1.3.46) entails the cumulative phase-shift termI - ï�� � � � $ ® � $ � � / as a function of offset (Popovici, 1995). Clearly, this formula allows for

the direct computation of separate offset data. The computational cost, however, is com-

parable to that of formula (1.3.45), since the phase-shift term still needs to be calculated

for all involved wavenumbers. For the special case of zero-offset data � - ï � � � �xÖ � $@® � � /
there exists a analytical stationary phase approximation (see also Appendix C) that al-

lows for an easy computation of the phase-shift term I . Within a constant factor this

approximation amounts to setting ï�� in equation (1.3.41) to zero (Stolt and Benson, 1986;

Popovici, 1995; Alkhalifah, 2000):� - ï�� � $ ® � � / � ° �� ² � q=� Ò ÿÿ ² ý ÿ � � È � ·�� ô - ï�� � $ � � /gk0$ � (1.3.47)

where êl�a� ( �i ¶ & � i �Ðñ ï � ñ �Î � � � (1.3.48)

and � ·�� ô - ï�� � $ � � / m\] - ï�� � $0/ W (1.3.49)

This is the ‘exploding reflector’ modelling formula (Claerbout, 1985) which forms the ba-

sis for post-stack migration. The local wavefield � ·4� ô - ï�� � $ � � / is set up by distributing

the scattering coefficient ] - ï � � $0/ over the frequency band to be modelled. A recursive

implementation of equation (1.3.47) makes correction techniques that accommodate lat-

eral velocity variations applicable.
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Implementation in laterally varying media

Generalized DSR modelling in laterally heterogenous media is implemented using ei-

ther the split-step or the split-step PSPI algorithm. First, consider the generalized DSR

operator extended by the split-step correction (Popovici, 1996). The recursive algorithm

follows:� - � � � � $ �rq � � � / � Ç �¡����� - $ �Jq � � $ � /8� - � � � � $ � � � /«8 ! q �ë � ÀÆÁ � ] - � � $ �Jq � � � � P ± � I / � (1.3.50)

where Ç ���3��� - $ �Jq � � $ � / �u$ ���3���� ² ! q �ë � ! q �ë � � q=� � ý ²`�ÿ Â ý ²> ÿ � � � ! ¢ ! £ � (1.3.51)

with $ ���3���� ² �%$ �¡���� ² $ ������ ² � � q=��� � � �8Ù�ÚiÛ Â � �8Ù�Ü-Û � � � W (1.3.52)

The slowness perturbations for the sources and receivers, respectively, are:o
� �¡��� � � - � � � /����@® and oÝ� �¡��� � � - � 8 � /j���@® W (1.3.53)

The wavefield at the initial depth level is zero. Figure 1.12 details the efficient computer

implementation of split-step DSR modelling by means of a flowchart representation. Bet-

ter accuracy is achieved with the split-step PSPI DSR propagator. LetÇ �¡��� " �¡��� - $ �Jq � � $ � / � F �¡�3� " �¡���D $ �¡��� " �¡����Þ D� <>@?BA ! q ��" Dë � ! q ��" Dë � � q=� ý <`�ÿ | > ÿ � � C D ! ¢ ! £ � (1.3.54)

and $ �¡��� " �����BÞ D� <>@?BA � � q=����� � Ù�ÚiÛ | Ù�Ü-Û¸ß < � � � (1.3.55)

with oÝ� ���3� " �����BÞ 5 � � - � ø � /��Ã� 5687:9 W (1.3.56)

With these definitions the split-step PSPI DSR propagator becomes:Ç �¡����� - $ �Jq � � $ � / � Ç ���3� - $ �Jq � � $ � / Ç �¡��� - $ �Jq � � $ � / � (1.3.57)

which means that the receiver and the source component of the separable DSR propa-

gator are applied consecutively. See Figure 1.12 for the flowchart representation of split-

step PSPI modelling. The number of midpoint and offset Fourier transforms involved
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in equation (1.3.57) ( (àY - Î Y HR8 Î / per depth step) prohibits a practical implementa-

tion of the split-step PSPI propagator in three spatial dimensions. The computational

burden is significantly reduced in two dimensions allowing for a feasible computer im-

plementation for moderately sized datasets. For a more detailed discussion surrounding

computational issues refer to Chapter 5.

2.5-D DSR modelling

The attention is now turned to the problem of seismic data collected along a 2-D line

( # 6 � # � �.Q ) for a medium that does not vary in the # direction. That is, the data col-

lection is understood to be perpendicular to the reflector strike direction. The term 2.5-D

refers to a modelling formula that is based on the # invariance of the medium properties

but yet approximately accounts for 3-D wavefield propagation effects (Stolt and Benson,

1986). Consider the DSR modelling equation in the form (1.3.45). Since the medium is

invariant and the wavefield’s offset dependence is singular along the # coordinate, the

local wavefield becomes: � ·�� ô -�ê � � � ê � � � $ � � / 4)-�ê � � / �%ÀÂÁ � ] -�ê � � � $ � 
�� � P ± / 40-�ê � � / , whereÀÂÁ � is understood to be applied in 2-D. Equation (1.3.45) is now evaluated for the profile

line # 6 � # � � Q (Stolt and Benson, 1986):� �"á â -�ê � � � ê � � � $ ® � � / � °.k ê � � ° �� ² � q=� Ò ÿÿ ² � ý `Jÿ Â ý > ÿ � � � È � ·�� ô -�ê � � � ê � � � $ � � / 4)-�ê � � /gkl$� ° ��g² � ·4� ô -�ê � � � ê � � � $ � � /Y °.k ê � � °.k ê 6 � � q=�&Ò ÿÿ ² � ý `�ÿ Â ý > ÿ � � � È 40-�ê � � 8 ê 6 � /gkl$ W (1.3.58)

One of the êÐ� integrals is trivial. The other one is solved by a stationary phase approxi-

mation (Appendix C), leading to:� �"á â -�ê � � � ê � � � $ ® � � / � ° �� ²äã q ��"á â � q=�&Ò ÿÿ ² � ý `�ÿ Â ý > ÿ � � � È � ·4� ô -�ê � � � ê � � � $ � � /gkl$ � (1.3.59)

where ã �"á â � % ° ��g² -�ê q �� � 8 ê q �6 � /gk0$ ³ � (1.3.60)

and ê � � and ê 6 � are evaluated at the stationary point ê � �Û�'ê 6 �ü�bQ . Dropping the factorå �"á â in the denominator is equivalent to the 2-D version of equation (1.3.45). The effect
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of ã q ��"á â is to convert line sources into point sources (Stolt and Benson, 1986). Assuming

a constant velocity earth and small propagation angles the expression for ã �"á â simplifies

to: ã �"á â � ¶ %�� ( - $��V$6®}/i � � %U� � ��æp� � (1.3.61)

where
� ��æd� is the two-way travel-time. In practice, the phase-shift induced by

¼ %�� is fre-

quently ignored, but the amplitude scaling factor ã q ��"á â � - � ��æd� / q ¾¿ should be considered

when 2-D formulas are to be applied to real-world data (Chapter 4).
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Chapter 2

Seismic migration/inversion

Chapter 1 gives an extensive description of forward seismic data modelling based on

wavefield propagators. The goal now is to invert the forward operator for the model

parameters, the location and the relative magnitude of the (angle dependent) reflectiv-

ity. To this end imaging/inversion is cast into the framework of least-squares inversion.

This approach yields both approximate analytical imaging/inversion formulas and it-

erative inversion schemes that lean upon well developed optimization techniques. An

integral part of (least-squares) imaging/inversion is inverse wavefield extrapolation or

back-propagation. Inverse one-way extrapolation requires the input of an a priori macro-

or background velocity model. This model does not have to be the exact subsurface

velocity. The macro-velocity model is a smooth representation of the true subsurface ve-

locities that determines the travel-time or low frequency attributes of the seismic wave-

field. The closer the model is to the truth the better. On the other hand, the one-way

propagators do not account for fine detail. That means, even an exact velocity model

is not expected to give fundamentally different results than a somewhat smoother rep-

resentation. Hence, the logic of imaging/inversion is described as follows: A smooth

macro-velocity model is provided to back-propagate the seismic wavefield into the sub-

surface and an AVP/AVA inversion/analysis yields the medium’s short wavelength de-

tails (i.e., the angle dependent reflection coefficients). The procedure for building the

macro-velocity model draws information from many different sources. These include

geologic models or borehole information. One very important technique to infer velocity

information is based on the imaging operator itself. The redundant illumination of each
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subsurface point with waves impinging from different angles allows for a focusing anal-

ysis called ’migration velocity analysis’ (e.g., Yilmaz and Chambers (1984), Biondi and

Sava (1999)). If the ‘correct’ macro-velocity model is provided back-propagated waves

originating from the same subsurface location should reproduce the same spatial image.

Discrepancies, on the other hand, lead to an out-of-focus subsurface image. Focusing

is achieved by recursively updating the macro-velocity model. As simple as it appears,

migration velocity analysis requires significant effort and ingenuity and is the topic of on-

going geophysical research. The following chapter relies on the fact the macro-velocity

model is sufficiently well known to ensure reasonably accurate wavefield propagation.

2.1 Least-squares inversion

The development of least-squares inversion adopts a description in terms of vectors and

matrices. In the continuous case, vectors are elements of an infinite dimensional vector-

space and matrices are linear operators. The vector-matrix description applies to dis-

cretized spaces and can easily be translated into computer code. The usually irregularly

sampled wavefield data are sorted into midpoint-offset bins. This binning procedure

results in a finite and discrete data vector ¤ (in ‘lexicographical arrangement’) with an

irregular pattern of live and dead traces (i.e., bins filled with zeros). The reflection co-

efficient ] - � � $ � }0/vmç] - � � $ � � � P ± � I / is discretized and arranged in a model vector c
as a function of midpoint, depth and horizontal slowness by means of the relationship

(1.3.33). That is, the model vector contains the ray parameter dependent common image

gathers (CIGs) for all midpoint positions and the reflector dip angle
±

and the azimuth I
are implicit parameters in the model space vector c . The discrete model and the binned

data are related via the following linear system:¤ �Yº
˜
c 8mè � (2.1.1)

where º
˜

represents a numerical realization of the generalized recursive DSR modelling

operator. The error term è stands for modelling errors, missing data and noise (Duijn-

dam, 1988). The 2-D computer implementation utilizes phase-shift, split-step, or split-

step PSPI propagators, depending on the complexity of macro-velocity field. A 3-D im-

plementation has not been attempted.
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The linear system is inverted using the Bayesian approach (e.g., Menke (1984), Taran-

tola (1987)) by seeking the maximum of the a posteriori probability density function (pdf):
 -�c ñ ¤1/êéV
 - ¤ ñ c /µ
 -�c / � (2.1.2)

where 
 - ¤ ñ c / is the likelihood function and 
 -�c / the a priori distribution of the model

vector. This solution to the inverse problem is called the MAP (maximum a posteriori

probability) estimator. Assuming a Gaussian distribution for the seismic wavefield data

the likelihood function is given by the normal distribution with data covariance matrixë
˜ � : 
 - ¤ ñ c /¦é � q ¾¿ - ¤ q º ˜ c /�ì ë ˜ � ¾í - ¤ q º ˜ c / W (2.1.3)

Unfortunately, seldom in seismic data processing is there a good estimate of the data

covariance. However, empty bins are accommodated by choosing
ë
˜ � to be diagonal

with entries î ��Ôï & for the dead traces and î �� �à& for live data. For the moment, let

the prior model distribution be normal with a diagonal covariance matrix with constant

variance. To simplify the problem the diagonal weighting matrix ç
˜

is introduced such

that
ë
˜

q �� � ç
˜
� ç

˜
. That is, weights much smaller than one are assigned to empty bins

and weights of magnitude one to live traces (unless the live traces exhibit an assessable

variance). The maximum a posteriori solution to the inverse problem is the solution that

minimizes the following cost or objective function:M ��� �h-�c / �ñð ç
˜
- ¤ � º

˜
c / ð � 8 &î �9 ð�cGð � W (2.1.4)

This is the standard, weighted least-squares inverse problem with damping regulariza-

tion (Menke, 1984). The solution is the well-known normal equation:c;ò � ��-�º
˜
³ ç

˜
� ç

˜
º
˜
8 &î �9 ¯˜ / q � º ˜ ³ ç ˜ � ç ˜ ¤ � (2.1.5)

where the operator º
˜
³ is the adjoint of the modelling operator º

˜
. In terms of matrix

algebra, the adjoint is obtained by transposition and complex conjugation. From the

structure of the normal equations it is clear that applying the adjoint operator º
˜
³ yields

a first approximation of the model vector. Indeed, conventional migration imaging is

defined as the adjoint of modelling (Claerbout, 1992):c/óQô#õ �Yº
˜
³ ¤ W (2.1.6)
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The data weighting operator ç
˜
� ç

˜
is omitted here, since it does not have any influence

on the migration result when incomplete data sampling is the issue.

Instead, the more general least-squares solution can be obtained by minimizing the

cost function (2.1.4) with a gradient optimization technique. To this end, the modelling

and the migration operators º
˜

and º
˜
³ , respectively, need to be applied recursively. This

also opens up the opportunity to incorporate more sophisticated model regularization

techniques (i.e., a non-diagonal model covariance matrix). However, first the focus is on

the migration operator º
˜
³ and its improvements derived from the least-squares inversion

approach.

2.2 Seismic migration

Consider the generalized DSR modelling operator as given by equation (1.3.37):� - � � � � $ ® � � / � ° ��è² Ç �¡�3��� - $ ® � $0/ ! q �ë � ÀÂÁ � ] - � � $ � � P ± � I /gkl$ W (2.2.1)

In the discrete inverse problem the following identifications are made:¤ m � - � � � � $ ® � � / � (2.2.2)º
˜

m ° ��è² kl$ Ç ���3��� - $ ® � $0/ ! q �ë � ÀÆÁ � � (2.2.3)c m ] - � � $ � � P ± � I / W (2.2.4)

The application of the migration operator º
˜
³ in csóQô#õV� º

˜
³ ¤ involves taking the individ-

ual adjoint operators and reversing their order: 1

] óQô#õ�- � � $ � � � P ± � I / � °.kÐ� À ³ ! £ Ç �¡���3� È - $ � $ ® /8� - � � � � $ ® � � / � (2.2.5)

where
Ç ������� È - $ � $ ® / �÷ö Ç �¡����� - $ ® � $0/�ø ³ . Migration involves two distinct steps. First, the

data � - � � � � $ ® � � / are back-propagated by the adjoint operator
Ç ������� È - $ � $ ® / . Consider,

for the moment, the DSR phase-shift propagator éÇ �¡����� - $6® � $0/ in equation (1.3.40). If

the evanescent modes in the upward propagator éÇ �¡����� - $ ® � $0/ are neglected, the adjoint

phase-shift propagator (the anti-causal downward propagator) is in fact the inverse. The

1The adjoint of the linear integration operator ùêúiû is the identity ü ÿ . A similar relationship holds with
respect to the frequency variable: ý4ùêú"þ�ÿ È Î ü Ê .
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evanescent solutions decay exponentially and do not contribute significantly to the seis-

mic wavefield. Therefore, this is a very good approximation. Second, the cascaded op-

erators �dkÐ� À ³ estimate the model ] óQô#õ�- � � $ � � � P ± � I / . Effectively, �dkÐ� À ³ is the RTT

(Appendix B) in the - ï�� � � / space followed by a summation over frequency (Figure 1.10).

The summation over frequency is equivalent to the classical migration imaging condition

(e.g., Claerbout (1985)). Stolt and Weglein (1985) interpret the frequency summation in

terms of the causality principle.

Implementation in laterally varying media

Modelling and migration in heterogenous media are implemented by recursive extrapo-

lation. The recursive form of the DSR modelling formula (1.3.50) is reiterated for easier

comparison:� - � � � � $ �Jq � � � / � Ç ���3��� - $ �Jq � � $ � /8� - � � � � $ � � � /C8 ! q �ë � ÀÂÁ � ] - � � $ � � � � P ± � I / � (2.2.6)

with the
Ç �¡����� - $ �Jq � � $ � / operator as defined in equation (1.3.51) for split-step propaga-

tion, and in equations (1.3.54) and (1.3.57) for split-step PSPI propagation. The adjoint

procedure, the migration algorithm, follows:� - � � � � $ � � � / � Ç ������� È - $ � � $ �Jq � /8� - � � � � $ �Jq � � � / � (2.2.7)

and ] óQô#õ - � � $ � � � � P ± � I / � ° k´� À ³ ! £ � - � � � � $ � � � / W (2.2.8)

The adjoint DSR propagator in terms of the split-step propagation is (Figure 2.1):Ç �¡���3� È - $ � � $ �rq � / � ! q �ë � ! q �ë � � � � ý ²> ÿ Â ý ²`�ÿ � � � ! ¢ ! £ Ä ������� È� ² � (2.2.9)

with $ ������� È� ² �\$ �¡��� È� ² $ ���3� È� ² � � �¡� � � � Ù�Ü-Û Â � � Ù�Ú;Û � � � W (2.2.10)

Apart from the sign change in the argument of the complex exponentials, the split-step

modelling and migration operators differ only by the order in which they apply the split-

step correction. Similarly, the adjoint split-step PSPI propagator follows (Figure 2.1):Ç �¡���3� È - $ � � $ �Jq � / � Ç ����� È - $ � � $ �Jq � / Ç �¡�3� È - $ � � $ �Jq � / � (2.2.11)

50



2.2. SEISMIC MIGRATION

z0Ψ ω

zi+1

zi+1m φ
h

α(k   ,      ,p ;  ,   )
m h

Local wavefield

S
p

lit−step
 N

S
P

S
 p

ro
p

ag
ato

r

0
z    =  zi

over midpoint and offset
Fourier transform

sources and receivers
Phase−shift extrapolate

Split−step correct

TRUEA
d

jo
in

t 
sp

lit
−s

te
p

 p
ro

p
ag

at
o

r

ωΨ

Sum N wavefields

N times (adjoint)

Fourier transform
over midpoint and offset

N times

Phase−shift extrapolate

imaging

Inverse Fourier transform
over midpoint and offset

Split−step correct sources

Repeat the first 5 steps for

Interpolate the N wavefields

(k  ,k  ,      ,   )

(m,h,     ,   )
FALSE

(adjoint)

(adjoint)

the receiver wavefield

Inverse Fourier transform
over midpoint and offset

source wavefield N times

(sources,adjoint)

(adjoint)

RMIG

Figure 2.1: Flowchart for recursive generalized DSR migration �
˜

�
. Both the split-step DSR mi-

gration and the split-step PSPI DSR migration propagator are illustrated ( Ñ¨u w-0&1;0:a{,#,&, ). Compare
to the modelling flowchart in Figure 1.12. For simplicity, the final midpoint Fourier transform for
the estimate

f������
has been omitted in the flowchart.

with Ç ����� È " ���3� È - $ � � $ �Jq � / � ! q �ë � ! q �ë � C ³D � � ý <> ÿ | `Jÿ � � ! D¢ ! D£ $ ����� È " ���3� È Þ D� <>=?�A F �¡�3� È " ����� ÈD � (2.2.12)

where $ �¡��� È " ���3� È Þ D� <>@?BA � � ����� �8Ù�Ü-Û | Ù�ÚiÛ¸ß < � � W (2.2.13)

The adjoint split-step PSPI propagator corresponds to the windowed non-stationary-

phase-shift (NSPS) propagator described by Margrave and Ferguson (1999). First the

sources and then the receivers are back-propagated. At the entry stages of each recursion

step, the adjoint linear interpolation operator F �¡�3� È " ����� ÈD distributes the weighted initial

wavefield into N reference wavefields with weights according to equation (1.2.54). The

adjoint wavefield copying operator C ³ simply amounts to a summation of the N reference

wavefields.
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x

y

Reflector elementz

Figure 2.2: The ‘survey-sinking’ thought experiment. Consider a source (diamond) and a re-
ceiver (triangle) located at the reference plan s t . The ’adjoint’ operation to equation (1.3.32) can
be thought of as datuming the sources and receivers along their ray paths back to the reflector
location.

It is important to note that if the split-step NSPS propagator were used for mod-

elling in Chapter 1, the split-step PSPI migration operator would result as a consequence.

Whether one propagator technique should be given preference over the other for either

modelling or migration is not obvious. This ambiguity stems from the fact that nei-

ther the split-step nor the split-step PSPI/NSPS propagator are symmetric. Symmetry

is relatively easily restored in split-step propagation by applying half of the split-step

’time-shift’ before and the other half after the phase-shift operator (Lee et al., 1991). The

split-step PSPI/NSPS propagators can also be made symmetric (Ferguson and Margrave,

2002). Unfortunately, the symmetric version of split-step PSPI/NSPS propagation re-

quires significantly more computational effort. Whether the symmetric propagators hold

any numerical advantages for least-squares migration has not been investigated. How-

ever, a comparative test in Chapter 3 demonstrates that split-step NSPS and split-step

PSPI perform equally well for zero-offset migration.

The recursive computer implementation of generalized DSR migration is illustrated

in Figure 2.1. Compare the schematic flowchart also to Figure 1.12. Figure 2.2 interprets

the duality between modelling and migration by invoking the ‘survey-sinking’ thought

experiment as the ‘adjoint of survey-raising’ in Figure 1.11.
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2.2. SEISMIC MIGRATION

Angle independent migration

The above modelling and migration formulas all contain the ray parameter dependent

operators ÀÆÁ � and �ük´� À ³ , respectively. It is clear, however, that nothing changes in

terms of wavefield propagation when these operators are replaced with their ray parame-

ter independent counterparts, Á ë � " � from equation (1.3.38) and its adjoint � klï[� � kÐ� . For

migration, the result is the more conventional DSR imaging formula (Claerbout, 1985)

that is suitable for structural imaging. The adjoint operation �pklï[�	�ükÐ� evaluates the

local wavefield at
� �àQ and

� �àQ . This is in agreement with the concept of a local

wavefield collapsing to an offset 4 -function at the image point. This is also equivalent

to summing (stacking) the ray parameter CIGs along the ray parameter axis which effec-

tively averages the angle dependent reflection coefficients. Chapter 3 has examples for

both angle-independent and angle-dependent migration.

Zero-offset migration

So far, all described imaging operators fall into the category of pre-stack migration. In

practice, pre-stack imaging is sometimes replaced by a simplified post-stack imaging

strategy that separates the imaging process into two stages. First, the data are normal-

move-out (NMO) corrected and stacked to approximately simulate zero-offset data. Sec-

ond, zero-offset migration yields the structural image based on the adjoint of the mod-

elling formula (1.3.47): ] óQô#õ�- ï�� � $0/ � ° � � Ò ÿÿ ² ý ÿ � � È � - ï�� � $ ® � � /gk´� W (2.2.14)

Again, a recursive implementation with an appropriate operator expansion takes care of

lateral velocity variations. This is exemplified in Chapter 3 for zero-offset modelling and

migration using split-step and split-step PSPI/NSPS propagators.

2.2.1 Ray parameter imaging Jacobian

If ray parameter/angle information is to be extracted from the local wavefield an im-

proved migration formula should be considered. One way to improve the migration is

by recognizing that migration involves changing from the data space ( � dependence)

to the model space ( $ dependence) and therefore constitutes a change of variables that
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2.2. SEISMIC MIGRATION

should ideally consider the corresponding (imaging) Jacobian (Stolt and Benson, 1986;

Sava et al., 2001). In an approximate sense, this imaging Jacobian is equivalent to the

cascaded operators º
˜
³ º
˜

in equation (2.1.5) without the data weighting operator ç
˜
� ç

˜
.

To see this, it is assumed that the velocity field is laterally invariant for the entire area

between the reference datum $ ® and the target reflector location $ : 2

] óQô#õ - ï�� � $ � � � P ± � I / � ° k´� À ³`� �&Ò ÿÿ ² ý!ÿ � � È � - ï�� � ï[� � $ ® � � / W (2.2.15)

It is useful to formulate equation (2.2.15) as a function of constant offset slowness � � . This

is achieved by reversing the order of the RTT operator À ³ with the propagation operator

for a constant � � , which is equivalent to migration in the � �V
 domain (Ottolini and

Claerbout, 1984). 3 Hence, one can dispense with the radial trace transform and write the

migration formula, including the data � , as a function of � � :] óQô#õ�- ï�� � $ � � � P ± � I / � ° k´� � � Ò ÿÿ ² ý�ÿ õ 
 � � � � - ï�� � � � � $ ® � � / � (2.2.16)

The same logic is applied to the modelling formula. Concatenating constant ray param-

eter modelling and migration according to º
˜
³ º
˜
ñ Ä � leads to:] óQô#õ�- ï�� � $ � � � P ± � I / � °.k´�v°.k0$ ³ � � Ò ÿ Èÿ ý ÿ õ 
 � � � È È ] - ï�� � $ ³ � � � P ± � I / W (2.2.17)

The phase term is rapidly oscillating for all � except when $ � $ ³ (Stolt and Benson, 1986).

Hence, the velocity around the target is taken as constant leading to:] óQô#õ�- ï�� � $ � � � P ± � I / � ° k´� � q=� ý!ÿ õ 
 � � °.k0$´³�� � ý�ÿ õ 
 � � È ] - ï[� � $´³ � � � P ± � I / W (2.2.18)

A change of variables from � to $ yields:] óQô#õ�- ï�� � $ � � � P ± � I / � ° k êl� � q=� ý ÿ õ 
 � � k´�k êl� ���� Ä � ° kl$ ³ � � ý ÿ õ 
 � � È ] - ï�� � $ ³ � � � P ± � I / W (2.2.19)

Consequently, ] óQô#õ�- ï�� � êl� � � � P ± � I / � kÐ�k ê � ���� Ä � ] - ï�� � êÐ� � � � P ± � I / W (2.2.20)

2This assumption is less restrictive than it first appears, since, within the limits of one-way wave prop-
agation, one can always datum the seismic wavefield through the complex overburden to a new reference
plane û ² close to the target reflector.

3The RTT and the DSR propagator do not commute for arbitrary velocities.
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In the vertical wavenumber domain the action of applying º
˜
³ º
˜
ñ Ä � is equivalent to ap-

plying the imaging Jacobian � � � �� ý ÿ ñ Ä � . This suggests that (locally) pre-multiplying the

downward continued wavefield with the inverse of the (diagonal) Jacobian � q �
annihi-

lates the amplitude distortion induced by the change from data to model space (Sava et

al., 2001). Given in its recursive form, the amplitude scaled migration algorithm follows:� - � � � � $ � � � / � Ç ���3��� È - $ � � $ �Jq � /8� - � � � � $ �Jq � � � / � (2.2.21)

and ] - � � $ � � � � P ± � I / � ! q �ë � °.k´��� q � À ³ ! ¢ ! £ � - � � � � $ � � � / W (2.2.22)

The explicit expression for the Jacobian can be found in Appendix D. The imaging Ja-

cobian is indeed helpful to retrieve the correct angle dependence as demonstrated in

Chapter 3.

2.2.2 Illumination operator

Duquet et al. (2000) follow a different strategy to improve the migration operator º
˜
³ .

Their technique involves an approximation of the cascaded operator º
˜
³ ç

˜
� ç

˜
º
˜

, includ-

ing the data weighting operator. They aim at compensating for illumination issues gen-

erated by the acquisition geometry (acquisition footprint) and the velocity field structure

(wavefield focusing/defocusing effects). To this end, the simplified, reflection angle in-

dependent subsurface parameterization is adopted. Duquet et al. (2000) compute the

diagonal of the chained operator º
˜
³ ç

˜
� ç

˜
º
˜

by means of ray tracing (Appendix A). Ide-

ally, application of the inverse of the diagonal operator should balance the subsurface

illumination. A similar, propagator-based, approach can be followed using the separate

offset formula in equation (1.3.46) (Kuehl and Sacchi, 2001a). However, as opposed to the

ray tracing technique of Duquet et al. (2000) the restriction to laterally invariant media

applies. Consider the (angle independent) model space 4 -function:c ¢ È " � È m\] - � ³ � $ ³ / � 40- � � � ³ / 4)- $��V$ ³ / W (2.2.23)

Applying the cascaded operators º
˜
³�ç

˜
� ç

˜
º
˜

to the unit impulse model function (2.2.23)

yields the corresponding ‘diagonal element’. The modelling operator impulse response
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is: ��
 - � � � � $ ® � � / � ç
˜
! q �ë � Ó I - ï�� � � � $ ® � $´³ � � / � q=�`ë � í ¢ È Õ � (2.2.24)

where ç
˜

is the weighting operator containing the binning information. The application

of the adjoint migration operator to the impulse response ��
 yields at the image point

location - � ³ � $ ³ / :ùc ¢ È " � È � ! q �ë � ° k´��� ! ¢ �Ðç
˜
� ��
 - � � � � $ ® � � /�� I ³ - ï�� � � � $´³ � $ ® � � /�� � (2.2.25)

where the inverse midpoint Fourier transform is understood to be evaluated for � ³ . The

quantity ùc ¢ È " � È measures the scattered wavefield energy that is successfully recorded and

subsequently imaged at its origin as a function of offset
�

. In other words, ùc ¢ È " � È is a

subsurface illumination function/map that is sensitive to both acquisition footprint and

wavefield focusing/defocusing effects. The adjoint phase term I ³ is conveniently ob-

tained from I by a simple sign change. The formula (2.2.25) is computationally expen-

sive. However, it becomes manageable if only a few frequencies are considered. Whenç
˜

is the identity the innermost midpoint Fourier transform pair disappears. The cost

of computing the formula (2.2.25) is then similar to two pre-stack migrations. Finally,

applying the inverse of ùc ¢ È " � È to all subsurface points of the migrated image compensates

for the aforementioned effects, since ùc ¢ È " � È ��� � � I � º
˜
³�ç

˜
� ç

˜
º
˜
� � º

˜
³�ç

˜
� ç

˜
º
˜

. However,

the usefulness of equation (2.2.25) is very limited because of its restriction to laterally

invariant media. In practice, illumination issues arise in media with a complex velocity

structure. Hence, as it stands, ray tracing is the method of choice for the computation of

illumination maps. A 2-D example for equation (2.2.25) can be found in Chapter 3.
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2.3 Constrained least-squares migration/inversion

Instead of trying to find approximations to the least-squares solution, numerical opti-

mization techniques offer the possibility to minimize the objective function (2.1.4) itera-

tively. Better yet, numerical minimization allows to incorporate regularization strategies

that help to improve the robustness of the inversion. It turns out that a costly minimiza-

tion of the standard least-squares objective function (2.1.4) holds relatively little advan-

tage over (amplitude scaled) migration in equation (2.2.22) unless significant illumination

issues due to a varying midpoint fold plague the inversion (Kuehl and Sacchi, 2001b). On

the other hand, the performance and robustness of least-squares migration for AVP/AVA

inversion can be significantly enhanced by model space regularization (Kuehl and Sac-

chi, 2002). A model smoothness constraint penalizes roughness (i.e., discontinuities and

rapid amplitude changes) in the ray parameter dependent CIGs:M �¸� �h-�c / � ð ç
˜
- ¤ � º

˜
c / ð � 8 2 � ð �

˜
c ð � � (2.3.1)

where

�
˜
m 
 5� � is the n-th order radial derivative in the - 
[� � � 
�� � / plane. 4 The idea is

that roughness is caused by imaging artifacts and acquisition footprint noise, not AVA

effects. The derivative operator acts as a low-pass filter that suppresses undesired ray

parameter fluctuations. In this thesis only first order derivatives have been used. Ef-

fectively, the regularization imposes a similarity constraint on neighboring constant ray

parameter sections. It is noted that Duquet et al. (2000) followed a similar strategy to

suppress kinematic artifacts in constant offset Kichhoff migration. The tradeoff param-

eter 2 � determines the weight of the roughness penalty term in equation (2.3.1). With

the ray parameter sampling interval oz
[� � � oz
 �� � 8 oz
 �� � the product � �^2 � Y oz
��
controls the amount of smoothing.

Iterative gradient minimization by conjugate gradients (CG) (Hestenes and Stiefel,

1952; Scales, 1987) is an excellent tool for seismic inversion. CG minimization does not

require any explicit matrix operator inversion and thus is suitable for an operator appli-

cation ‘on the fly’. It avoids forming the product º
˜
³ ç

˜
� ç

˜
º
˜

. This is a crucial feature,

since migration and modelling operators are coded as functions rather than matrices.

4In a 3-D implementation azimuthal smoothness could be imposed as well.
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Moreover, CG minimization converges faster than the more conventional steepest de-

scent technique (Strang, 1986). A CG recipe for least-squares inversion (CGLS) reads as

follows (Scales, 1987):

Choose the starting model c ® to be zero. Put the data auxiliary vector � equal to the

binned seismic data: �?® � ¤ . The auxiliary model vectors � and � are initialized with

the migration: � ® � � ® �'º
˜
³ � ® , and the second auxiliary data vector � is set up with the

modelled (de-migrated) data: � ® �Yº
˜
� ® . Then for % � Q � & ��()� WNWNW :I � Â � � � � 7 � �� � 7 � �c � Â � � c � 8 I � Â � � �� � Â � � � � � I � Â � � �� � Â � � º

˜
³ � � Â �� � Â � � � � Â � 7 � � Â �� � 7 � �� � Â � � � � Â � 8 � � Â � � �� � Â � � º

˜
� � Â � � (2.3.2)

where º
˜

and º
˜
³ are the modelling and migration operator, respectively, in the temporal

frequency domain.

The iterative process can be stopped and resumed at any stage. Additional model

and data space operators are incorporated by augmenting the operators º
˜

and º
˜
³ ap-

propriately. For instance, to minimize the regularized cost function (2.3.1) the following

augmentation retains the algorithmic structure of CGLS (Scales, 1987):º
˜
m ; ç ˜ º ˜2 �

˜
> and ¤ m ; ç ˜ ¤Ö > W (2.3.3)

Most commonly, model space regularization means either damping, in which case

�
˜

is diagonal or finite-difference smoothing, in which case

�
˜

is banded. It is important

that the (augmented) operators º
˜
³ and º

˜
are indeed an adjoint operator pair. To test

this property Claerbout (1992) proposed the so-called ‘dot-product test’. The numerical

operator implementations have to satisfy:¤ 7 ù¤ �Yc 7 ùc � (2.3.4)
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for any vectors c and ¤ , where �¤ �3º
˜
c and � cz� º

˜
³ ¤ . The input vectors c and ¤ define the

model and data space, respectively. They are loaded with random numbers. For properly

coded operator pairs º
˜

and º
˜
³ the ‘dot-product test’ should be satisfied down to the least

significant digit.

Constrained least-squares migration for AVP/AVA inversion based on equation (2.3.1)

is exemplified and extensively tested with numerous examples in Chapter 3. Chapter

four presents a real-world data example.
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Chapter 3

Synthetic data examples

This chapter covers both conventional migration and least-squares migration examples

that illustrate and test the theory outlined in the previous parts of the thesis. Synthetic

data tests are valuable to gain insight into the performance of imaging/inversion algo-

rithms. However, the tests have to be interpreted with care. It is important that the

synthetic data are generated by a more general operator than the one the inversion oper-

ator is originally based on. The full acoustic wave-equation, the starting point in Chapter

1, is certainly a good choice for forward modelling. Full wave-equation finite difference

modelling is well developed and yields data that, when carefully implemented, contain

the relevant physics and few numerical artifacts (Clayton and Engquist, 1990; Press et

al., 1997). Effects that are absent from the synthetic acoustic 2-D finite difference data in-

clude: surface multiples, absorption, anisotropy, out-of-plane reflections, mode conver-

sions etc., all of which can potentially obscure the test results. For low contrast, layered

media faster ray-tracing modelling can replace the computing intensive finite-difference

approach. If a migration/inversion method fails to perform well under these ‘clinical’

conditions, there is no hope it can succeed when applied to real-world data.

3.1 Migration

As amply discussed, the goal of migration is less ambitious than that of inversion. How-

ever, migration is the nucleus of inversion, since accurate propagation is a prerequisite

for successful inversion. It is therefore instructive to examine the structural imaging ca-

pabilities of migration operators. In structural imaging the ‘stacked’ migrated section is
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Figure 3.1: The Marmousi compressional velocity field. The velocities range from 1+.}w6w to .;.}w@w
m/s. The Marmousi model is structurally complex, with many thin layers broken by several
major faults and an unconformity surface. The folded carbonate sedimentation series at about at,L.
km forms the structural hydrocarbon trap.

of interest. Stacking is the summation of the CIGs along offset ray parameter. This is

equivalent to applying the simplified imaging operator �pklï��	�dkÐ� to the local wavefield.

Stacking enhances the signal-to-noise ratio, suppresses imaging artifacts and multiples

and thus improves the image quality in general. Obviously, one is deprived of this pow-

erful tool in (least-squares) migration for AVP/AVA inversion.

The first two sections introduce generic synthetic datasets that have become quasi

standards for the testing of imaging algorithms. The first dataset is based on the so-

called 2-D Marmousi model. The Marmousi dataset is well suited for the testing of both

structural imaging and AVP/AVA inversion (Section 3.2.2). The second 2-D dataset is

derived from the 3-D SEG/EAGE salt model. The salt model is a challenge to imaging al-

gorithms due to its strong velocity contrasts. It is a very good example to demonstrate the

superior performance of the split-step PSPI over the split-step propagator but its model

parameterization makes it less useful for assessing AVP/AVA inversion methods.
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Figure 3.2: The Marmousi density field. The Marmousi dataset is based on a variable-velocity
and density model making it well suited for acoustic AVP/AVA studies (see Section 3.2.2).

3.1.1 The Marmousi model

The Marmousi model is based on a geological cross section through the North Quenguela

Trough in the Cuanza Basin in Angola (Versteeg, 1994). The dataset consists of 240

‘single-cable marine shot records’ acquired using acoustic finite-difference modelling,

with variations in both acoustic velocity and density (Figure 3.1 and Figure 3.2). Details

regarding the data generation can be found in Versteeg (1994). The model was gener-

ated by the French Petroleum Institute, and was released to the public for the purpose of

testing migration and velocity estimation techniques.

Versteeg (1994) describes the geologic background of the Marmousi model. In sum-

mary, the geologic history underlying the model consists of two distinct phases. The first

phase is marked by a continuous sedimentation of marls and carbonates. These deposits

were folded and then eroded with the erosion surface being flat. The resulting anticlinal

structure forms the hydrocarbon trap. The second phase began with the deposition of

an isopachous saliferous evaporitic series. On this series a clayey-marly series and later

shaly-sandy detrital sediments were deposited. These sediments are strongly affected

by normal growth faults caused by lateral salt creep due to the overburden pressure.
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Figure 3.3: Two shots of a total of 240 shot records. The distance between two consecutive
receivers is a;. m with a total of 96 traces per shot. Initial offset is a}w6w m and maximum offset
is a/.��i. m . The data were filtered with a trapezoid frequency filter with �rw-0#1�w-0 �/.t0:.;. � Hz. The
line was ‘shot’ in an end-on configuration from west to east (left to right in Figure 3.1). Distance
between shots is a;. m. The direct arrival and refracted waves have been muted.

The high velocity wedges seen in Figure 3.1 are remnants of this process. The Marmousi

model is structurally complex, with many very thin layers, which makes for very realistic

synthetic data. Two example shots in Figure 3.3 illustrate the data complexity. Even when

the correct velocity model is used, many imaging methods cannot completely image the

hydrocarbon trap (Gray and May, 1994).

The split-step DSR propagator proves sufficiently accurate to produce a very good

image of the Marmousi model. The migration code has been implemented on an SGI

Origin 2400 shared-memory parallel computer (400-MHz processors). The algorithm’s

parallelization is done with respect to the temporal frequencies. More details on the com-

putational aspects of the pre-stack migration are discussed in Chapter 5. The migration

used every second midpoint of the original midpoint-offset sorted dataset. This results

in a data cube of size ( Z"! Y ! Î Y &NQ ( Î including zero padding for the Fourier/Hartley

transforms (see also Chapter 5). The migration was performed for a frequency band of Z
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Figure 3.4: The split-step DSR migrated Marmousi data. The split-step approximation yields
a very good Marmousi image despite the structural complexity of the model. The hydrocarbon
trap is clearly delineated.

to ! Q Hz and took about one minute on 32 processors. A fast computational turnaround

is critical when least-squares migration/inversion is to be carried out. Figure 3.4 shows

the very good imaging result.

3.1.2 The SEG/EAGE salt model

For the purpose of a comparative propagator test, the SEG/EAGE salt model is intro-

duced (Aminzadeh et al., 1994). As mentioned earlier, the SEG/EAGE model serves

solely as a test for structural imaging. The salt model assumes a constant density lim-

iting its usefulness for AVP/AVA studies. More importantly, most reflectors are repre-

sented in a ‘spiky’ rather than a ‘blocky’ fashion making these reflectors unsuitable for

AVP/AVA inversion. Figure 3.5 gives an overview over the 3-D velocity field and its em-

bedded geologic structures. The model was designed to address 3-D imaging issues in a

typical Gulf of Mexico setting. At this stage, 3-D implementations of the (least-squares)

migration algorithm or approximations thereof have not been considered (Biondo and

Palacharla, 1996). The shown examples are based on a 2-D profile running through the
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Figure 3.5: 3-D perspective of the EAGE/SEG salt model (Aminzadeh et al., 1994) with the salt
sill, different faults, sand bodies and lenses. The overall model dimensions are 1#�-,L.%$ 1#�-,L.%$ên3,La km
in the &�0(' 0ès directions, respectively. The salt crest is at about �/a/. m. The model has been designed
in part to test various imaging algorithms in different geologic settings: salt flank, salt overhang
and sub-salt. The velocities surrounding the salt body are typical of Gulf of Mexico sediments.
Two velocity profiles are shown. Hot colors correspond to low velocities with red being the water
velocity of 1".6w6w m/s. The velocity profile for the cross section A-A’ is shown in Figure 3.6.

salt model (profile A-A’ in Figure 3.5). The simulated data are purely 2-D in that they do

not include 3-D propagation effects and out-of-plane reflections which is in theoretical

agreement with the 2-D versions of the migration formulas derived in Chapter 2.

The first migration example involves zero-offset migration in equation (2.2.14). The

conducted tests investigate the accuracy of split-step, split-step PSPI, and split-step NSPS

extension of equation (2.2.14). The synthetic data in Figure 3.7 have been generated by

‘exploding-reflector’ modelling to assess the best-case capabilities of zero-offset/post-

stack migration (O’Brien and Gray, 1996). Rather than the exact adjoint of the migration

operator a full wave-equation version analogous to equation (1.3.47) calculated the up-

going wavefield. Since the full wave-equation does not have any numerical propaga-

tion angle limitations, the occurring discrepancies between the migration and the model

are attributed to inaccuracies of the employed migration propagator. O’Brien and Gray
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Figure 3.6: Velocity profile A-A’ from the SEG/EAGE salt model. The velocities range from 1+.}w6w
m/s (water) to n/n�)31 m/s (salt). Darker shades denote higher velocities. Notice the relatively
lower velocities below the overpressure surface.
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Figure 3.7: The ‘exploding-reflector’ dataset for the profile A-A’ of the SEG/EAGE salt model.
The data approximately simulate a zero-offset seismic section. The dataset serves to assess
the structural imaging capabilities of different zero-offset/post-stack migration algorithms. To
achieve more realism one has to run full shot-record simulations (see also Figure 3.11).
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Figure 3.8: Split-step zero-offset migration of the ‘exploding-reflector’ data in Figure 3.7. There
is a significant amount of artifacts in the sub-salt area.

(1996) conducted a similar study comparing wave-equation (i.e., propagator based imag-

ing) versus Kirchhoff migration (i.e., ray theoretical imaging).

The split-step migrated ’exploding-reflector‘ data are shown in Figure 3.8. Obviously,

the high velocity salt body presents a problem for the split-step technique. Given the

ideal input data, the migration result is only fair. The artifacts in the sub-salt region are

due to the insufficient wide-angle accuracy of the split-step approximation in the pres-

ence of high velocity contrasts (see also Figure 1.3). The zero-offset migration obtained

with the split-step PSPI propagator is seen in Figure 3.9. Overall, the split-step PSPI mi-

gration produces a much better imaging result than the faster split-step migration. How-

ever, the split-step PSPI method shows slight deficiencies for the steep salt flank, and not

all of the steep faults in the sub-salt zone are properly imaged. To select the velocities

at each depth step, the adaptive algorithm described by Bagaini et al. (1995) has been

employed, averaging 5.7 reference velocities per depth step in this example. For com-

parison, Figure 3.10 shows the result obtained with the split-step NSPS propagator. The

images in Figure 3.9 and Figure 3.10 are nearly identical. The same reference velocities

were used. Upon close inspection the split-step NSPS technique appears to have imaged
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Figure 3.9: Split-step PSPI zero-offset migration of the ‘exploding-reflector’ data in Figure 3.7.
The sub-salt area is cleaner and better imaged than in Figure 3.8.

the salt flank slightly better than the split-step PSPI algorithm, but the differences are

subtle.

An additional level of realism is added to the tests by generating finite-difference shot

records across the model. Because surface sources are used in the shot modelling, there is

no guarantee that all reflection points will be illuminated as effectively as they were when

modelled by exploding reflectors (O’Brien and Gray, 1996). In addition, internal multi-

ple reflections are now included in the data. Surface related multiples are not present

because of an absorbing surface boundary condition. Figure 3.11 is the zero-offset data

extracted from the full shot records. A comparison between Figure 3.7 and Figure 3.11 in-

dicates that the more ‘true-to-life’ zero-offset section could pose challenging data quality

problems. Not all events seen in the ‘exploding-reflector’ data are equally well repre-

sented in the zero-offset data. The sub-salt image produced by split-step DSR migration

is illustrated in Figure 3.12. The superimposed lines indicate reflectors to be imaged.

The split-step PSPI DSR migration in Figure 3.13 benefits from the multi-reference veloc-

ity approach. The reflectors are better imaged and phase inconsistencies present in the

split-step migration have been largely resolved.
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Figure 3.10: Split-step NSPS zero-offset migration of the ‘exploding-reflector’ data in Figure
3.7. The image is nearly identical to the split-step PSPI result in Figure 3.9. The split-step NSPS
technique has produced a slightly better image of the steep salt flank than split-step PSPI.
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Figure 3.11: The zero-offset traces for the profile A-A’ of the SEG/EAGE salt model. The data
were acquired using finite-difference simulations. Only the zero-offset traces are shown. The
migration examples in Figures 3.12 and 3.13 use the corresponding offset data.
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Figure 3.12: Sub-salt image of the split-step DSR migrated dataset for the profile A-A’ of the
SEG/EAGE salt model. The superimposed lines indicate some of the reflectors of the sub-salt
area. The migration used a total of 323 midpoints with offsets ranging from 0 to 2097 m.

2000

2400

2800

3200

3600

D
ep

th
 [m

]

0.7 0.8 0.9 1.0 1.1 1.2 1.3

x104Horizontal distance [m]

Figure 3.13: Sub-salt image of the split-step PSPI DSR migrated dataset for the profile A-A’ of the
SEG/EAGE salt model. Compare this figure to Figure 3.12. The split-step PSPI algorithm handles
the large velocity contrast better. The imaged reflectors match the true model more closely. Notice
the improved phase consistency.
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3.2 Least-squares migration

The following least-squares migration examples fall roughly into two categories:_ (post- and pre-stack) least-squares migration using reflection angle independent

operators, and_ reflection angle dependent least-squares migration for AVP/AVA inversion.

The lack of compelling advantages of the first category over conventional migration pro-

vides the incentive for studying the latter, modelling/migration that considers angle/ray

parameter dependent CIGs. As it turns out, regularized least-squares migration for re-

flectivity inversion has the potential to perform considerably better than conventional

migration.

3.2.1 Angle independent least-squares migration

This section deals exclusively with examples investigating reflection angle independent

least-squares migration. That is to say, the generation of CIGs is not an option. The ben-

efits of this rather simplistic approach are limited. Despite this somewhat pessimistic

assertion, the experience gained from applying the various forms of least-squares migra-

tion makes it a worthwhile exercise. The perhaps more important findings are discussed

in next section that is devoted to least-squares migration for AVP/AVA inversion.

The potentials and limitations of least-squares migration are assessed stepwise. When

developing least-squares algorithms the first tests usually involve the application of the

inversion algorithm to data modelled by the original forward operator itself. This is

useful to confirm the correct implementation of the minimization algorithm. In addition,

the ‘adjointness’ of the operator should always be confirmed with the ‘dot-product test’

(equation 2.3.4). Clearly, tests of this kind do not make any statement about the quality

of the operators themselves.

The first example uses a simple bandlimited reflectivity model (Figure 3.14). The ex-

amined method is zero-offset least-squares migration using the split-step extended ver-

sion of the operator pair in equation (1.3.47) and equation (2.2.14) (Kuehl and Sacchi,

1999). Reflection angle independent least-squares migration amounts to minimizing the
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Figure 3.14: Left: A simple reflectivity model convolved with a Ricker wavelet. The interval
velocities are in meters per second. Right: The zero-offset data generated by the forward split-
step modelling operator.

objective function (2.1.4). The ‘exploding-reflector’ data in Figure 3.14, the presumed

surface data, have been generated with the forward (angle independent) modelling op-

erator. Noticeably, there are edge effects in the data. Any artifacts caused by the forward

operator, and all intrinsic simplifications diminish the robustness of the inversion when

applied to real-world data. Nonetheless, it is instructive to perform the inversion on

the forward operator modelled data to assess the algorithm’s performance under ideal

conditions. The migration and the least-squares migration are depicted in Figure 3.15.

Least-squares migration removes almost all of the spurious energy after 5 iterations of

the CG algorithm (2.3.2). Only a few iterations are necessary to achieve convergence.

The least-squares test is repeated for the reflection angle independent version of the

split-step DSR operator (equations (1.3.51) and (2.2.9)). Figure 3.16 shows four modelled

common-midpoint (CMP) gathers based on the reflectivity model in Figure 3.14 (left).

Five iterations of the pre-stack least-squares algorithm suffice to obtain a fairly good re-

sult in terms of artifact reduction (Figure 3.17). Unfortunately, neither angle independent

pre-stack nor post-stack least-squares migration prove to be a robust tool when applied

to seismic data that were generated by a more general modelling technique (e.g., finite

difference modelling). In other words, there is no guarantee that this somewhat ‘naive’
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Figure 3.15: Left: The split-step migration using the data in Figure 3.14. The application of the
adjoint operator causes residual artifacts. The image amplitudes have been clipped to emphasize
the differences between the migration and the model in Figure 3.14 (left). Right: In the least-
squares migrated image the artifacts are almost completely removed. The retrieved reflectivity is
close to the true model after 5 iterations of the CG algorithm.

least-squares migration approach provides superior imaging when applied to well sam-

pled real-world wavefield data (Nemeth et al., 1999). On the contrary, in the worst case,

artifacts can result that otherwise would be absent from the conventionally migrated im-

age. On the other hand, if the wavefield sampling is sub-optimal the data weighting

operator in the objective function (2.1.4) takes effect and least-squares migration reveals

some of its potential.

Subsurface illumination

The following examples are intended to demonstrate that least-squares migration can

correctly balance the seismic amplitudes when the seismic wavefield is unevenly sam-

pled. In particular, the illumination issue caused by a strongly varying midpoint fold

is addressed. Figure 3.18 (top) shows the first five of a total of one hundred midpoint

gathers obtained by Kirchhoff modelling (Bleistein et al., 2001). Figure 3.19 (top) is the

split-step DSR migration of the complete data. The model consists of two types of reflec-

tors, labelled as reflector 1 and 2. Reflector 1 has about * Q,+ of the reflection amplitude

of reflector 2. Despite finite survey line effects, this ratio is well preserved for the most
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Figure 3.16: Four common midpoint (CMP) gathers modelled with the reflection angle indepen-
dent split-step DSR operator.

part of the migrated section. Figure 3.18 (bottom) depicts the five midpoint gathers af-

ter having randomly removed - Q,+ of the data in the first half of the midpoint gathers.

This creates a severe illumination issue due to a strongly non-uniform midpoint fold dis-

tribution. The migration of the incomplete data (Figure 3.19) shows incorrect reflection

strengths all across the section, plus some spurious artifacts. Large parts of the image are

dimmed while the least-squares migration in Figure 3.19 (bottom) retrieves the reflectors

after seven iterations with the correct amplitude ratio preserved. Figure 3.20 demon-

strates that least-squares migration gives robust results also when random noise is added

to the data. These examples are encouraging. However, it is also true that conventional

migration in combination with an appropriate input data normalization is likely to pro-

duce comparable results. Zheng et al. (2001) investigate weighting strategies to remedy

the effects of the acquisition footprint on Kirchhoff migrated gathers for AVA analysis.

They tested different techniques with mixed results, area weighting (Canning and Gard-

ner, 1998) being the most promising approach. In any case, if more forgiving structural

imaging is the goal (i.e., the stacked seismic image) even a simple CMP fold normal-

ization balances the subsurface illumination sufficiently well. This reflects the ambiva-

lence of the stacking process. Stacking is tremendously healing for structural imaging

but, at the same time, destroys valuable amplitude information. The angle independent
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Figure 3.17: Left: The migrated pre-stack data from Figure 3.16. Right: The pre-stack least-
squares migrated data after 5 iterations of the CG algorithm.

modelling/imaging operators do not offer the option to generate CIGs. Consequentially,

least-squares migration is expected to have more relevance for reflection angle dependent

migration/inversion than for structural imaging.

A different, data sampling independent, illumination issue arises in media where the

velocity structure causes focusing and defocusing effects (e.g., shadow-zones). As an

alternative to least-squares migration, the computation of the illumination operator can,

then, help to scale the migrated section to compensate for these effects (Duquet et al.,

2000; Rickett, 2001). Illumination compensation can be critical when seismic data are to

be interpreted in terms of amplitude anomalies (e.g., bright/dim spots). A step towards

this approach is discussed in Section 2.2.2. As it stands, the proposed technique in Section

2.2.2 is restricted to laterally invariant velocity fields and therefore is of very limited use.

In spite of this important caveat, a constant offset illumination map (h = 100 m) is

shown in Figure 3.21 (top) for illustration. The underlying velocity field increases lin-

early with depth. As in the previous examples, the midpoint fold is varying with a

reduction of about - Q,+ for the first 50 CMPs. The dark shades in Figure 3.21 denote

better illumination. The lateral variation in the illumination is obvious. Apart from that,

the lack of depth penetration due to the small offset is apparent. The constant offsets

illuminate a relatively narrow band centering around 0.2 km that soon peters out with
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depth. As expected, for larger offsets (600 m) the deeper parts of the model become better

illuminated (Figure 3.21 (middle)). When all offsets (0 to 600 m) are included illumina-

tion is dominated by the lateral variance due to the irregular midpoint fold (Figure 3.21

(bottom)).

Alternatively, Duquet et al. (2000) employed ray-tracing to calculate the illumination

operator in arbitrary media. More recently, Rickett (2001) favored wavefield propagators

for the same task. He took advantage of a conjecture by Claerbout and Nichols (1994) to

normalize the migrated data. They observed that after consecutive modelling and migra-

tion of a reference image, the ratio between the reference image and the modelled/de-

migrated image will be a weighting function with the correct physical units. Rickett

(2001) tested different reference images with partially promising results. Whether the

propagator approach offers any real advantages over the ray-tracing based technique

remains to be seen.
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Figure 3.18: Top: The first five of one hundred midpoint gathers generated by a Kirchhoff mod-
elling code. Bottom: The same midpoint gathers after randomly removing )6w/. of the data.
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Figure 3.19: Top: Pre-stack migration of the complete dataset. Middle: Migration of the incom-
plete data. Bottom: Least-squares migration of the incomplete data (7 CG iterations).
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Figure 3.20: Top: Incomplete CMP data with 1�w0. random noise added. Middle: Migration of
the incomplete noisy data. Bottom: Least-squares migration of the incomplete noisy data (7 CG
iterations).
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Figure 3.21: Top: Near offset illumination map (100 m). Darker shades mean better illumina-
tion. The underlying velocity field increases linearly with depth. Middle: Far offset illumination
map (600 m). Far offsets penetrate deeper than the near offsets. Bottom: The illumination map
computed for all offsets (0-600 m). The illumination is dominated by the acquisition footprint,
especially the near surface.
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3.2.2 Least-squares migration for AVP/AVA inversion

Reflection angle dependent modelling/migration adds an extra dimension to the seismic

image. The ray parameter dependent CIGs carry meaningful and valuable AVP informa-

tion that is closely related to the target reflector AVA. The CIGs allow to incorporate a

smoothing regularization that improves robustness of least-squares migration consider-

ably (Kuehl and Sacchi, 2002). The objective function to be minimized is now equation

(2.3.1). It is important to study the selection of the inversion parameters: the tradeoff

parameter 2 , and the smoothing length oz
[� that is determined by the ray parameter

sampling interval. Synthetic (finite-difference) data tests facilitate the determination of

parameter combinations that are likely to yield reasonable inversion result when, as with

real-world data, the true solution is unknown. Moreover, subsurface models with in-

creasing complexity provide insight into the potentials and pitfalls of least-squares mi-

gration for AVP/AVA inversion in general.

The first example is a simple, horizontally layered model. For 1-D earth models less

sophisticated techniques, such as trace-by-trace attenuation compensation (e.g., compen-

sation for geometrical spreading) followed by NMO correction, that convert the data

into a form suitable for amplitude analysis can work reasonably well (Stolt and Weglein,

1985; Castagna, 1993). However, the relatively low computational cost of least-squares

migration in layered media greatly facilitates the study of various aspects considering the

algorithm’s performance. The second model is structurally slightly more interesting and

makes the split-step approximation necessary. However, it poses no real challenge for the

split-step propagator. The test primarily confirms that the AVP/AVA inversion formulas

also apply to dipping and moderately curved reflectors. The last example in this section

is the Marmousi model. As previously described, the Marmousi dataset is based on a

variable velocity and density model. The intricate model structure makes the data very

realistic. Unfortunately, this complexity also complicates the comparison to the theoret-

ical AVA in equation (1.3.23). Rarely are the events seen in the CIGs due to simple, well

isolated interfaces. Most events are merely a superposition of reflections from a series

of layers and fine structure, and thus have complex AVA behavior. Despite the domi-

nating ‘composite reflectors’, two relatively well isolated reflectors have been picked to
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Table 3.1: Parameters for the horizontally layered model with 4 reflecting interfaces. The pa-
rameters have been chosen such that the absolute magnitude of the normal incidence reflection
coefficient does not exceed w3,41 . This model is considered a low contrast medium. See Figure 3.24
for the angle dependent reflection coefficients. Polarity reversals ( 1#)6w"3 phase changes) in the AVA
occur for the first three reflectors. The last reflector exhibits a constant AVA characteristic.

demonstrate the benefits (and pitfalls) of least-squares migration for AVP/AVA inversion

in complex media.

Horizontally layered model

The horizontally layered model consists of four reflecting interfaces. The acoustic model

parameters in terms of compressional velocities and densities range from 1900 m/s to

2500 m/s and from 1.6 I)K?LNM � to 2.25 I)K?LNM � , respectively. More details including the

layer thicknesses are specified in Table 3.1. All interfaces are well separated. Two meth-
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Figure 3.22: Left: CMP gather generated by a ray-tracing code. The code models (cylindrical)
geometrical spreading but no transmission effects. The offsets range from w to h;h@w m. The third
reflector is about one order of magnitude weaker than the first reflector. Right: The same CMP
after randomly removing .6w0. of the data.
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Figure 3.23: Left: Migrated CIG of the complete data. The offset ray parameter axis ranges fromw to )6w6w5476�8�9 in steps of a}w5476�8�9 . Right: Least-squares migrated CIG (4 iterations) of the complete
data.

ods to generate the synthetic data have been chosen for this example: a ray-tracing and

a finite-difference modelling technique. Unlike the finite difference algorithm, the ray-

tracer does not account for energy partitioning at the interfaces. Hence, a comparison of

the inversion results based on the two synthetic datasets reveals the effect of neglecting

transmission losses in the inversion. For low contrast media the results are expected to be

virtually identical. The example based on the ray-tracing test data is described first. The

ray-tracer takes advantage of the fact that, in a stratified medium, the ray parameter is

constant for a particular ray. The geometrical spreading has been calculated assuming a

cylindrical wavefront resulting in a &6K ¼ � amplitude scaling, where � is the distance trav-

elled by the ray. The CMP data are shown in Figure 3.22. They exhibit a clear amplitude

variation versus offset (AVO). The offsets range from Q to !"! Q m incrementing by 11 m.

This corresponds to an offset-to-depth ratio of about Q W[Z for the deepest reflector. Figures

3.22 shows the same data after randomly removing Z Q,+ of the live traces. The reduced

dataset is used when the performance of the data-weighting operator ç
˜

and the model

regularization in equation (2.3.1) are to be tested under more difficult circumstances. Re-

moving data is a simple way of introducing errors in the data.

Figure 3.23 depicts the migrated ray parameter CIG and the least-squares migrated

ray parameter CIG after 4 iterations of the CG algorithm. The apparent AVP of the mi-
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Figure 3.24: Left (R1-R4): AVA picked on the migrated CIG in Figure 3.23 (left). The labels
R1 to R4 correspond to the four reflectors from top to bottom. The absolute amplitudes have
been picked. All values have been scaled with the inverse of the ray parameter imaging Jacobian
for horizontal interfaces. The moduli of the true AVA are shown as solid lines. Right (R1-R4):
The same picks based on the least-squares CIG in Figure 3.23 (right) after 4 iterations of the CG
algorithm. No angle dependent scaling has been applied.

grated CIG is slightly compromised by finite aperture effects. The wavelet broadening

(dispersion) towards high ray parameters seen for the first reflector is explained by the

frequency tapering effect inherent in the radial trace transform (see also Figure 1.10). The

migrated CIG is otherwise clean and of good quality. The smearing due to the finite aper-

ture is mitigated in the least-squares migrated result. The tradeoff parameter was set to2Y�SQ W Q & and the ray parameter increment was oz
 � ( Q 9[� K?M resulting in a moderate

smoothing effect to ensure AVP/AVA preservation. Apart from some finite aperture ef-

fects the migrated and the least-squares migrated result are of comparable quality. This is

confirmed by the AVP to AVA converted amplitude picks in Figure 3.24. The amplitude

picking procedure involves the definition of windows on the CIGs and the determina-

tion of the absolute values within these windows. Since the absolute values have been

picked sign changes appear as cusps in the AVA curves. Note that the cusps are not in

contradiction to the smoothness constraint, since smoothness is enforced on the CIGs,

not the AVA curves. Both the migrated picked AVA and the least-squares migrated AVA

match the theoretical AVA closely for a large range of incidence angles. Inevitable finite

recording aperture effects cause the AVA of all reflectors to eventually taper off to zero.
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Figure 3.25: Left: Migrated CIG of the complete finite-difference data. As opposed to the ray-
tracing data the wavelet has been shifted to be zero-phase. This explains the slightly earlier onset
of all signals. Right: The corresponding picked AVA. The dashed line indicates the theoretical
cumulative error due to neglected transmission losses.

Next, synthetic data generated by a finite-difference algorithm based on the full acous-

tic wave-equation have been inverted. Figure 3.25 shows the migrated CIG and the

picked AVA. The CIG based on the ray-tracing data in Figure 3.23 and the CIG in Figure

3.25 are very similar. Differences are attributed to transmission loss, first arrival muting

artifacts and a slightly narrower offset range for the finite difference input data. Further-

more, the highest frequencies may have been distorted slightly by finite-difference grid

dispersion (Press et al., 1997). The picked AVA in Figure 3.25 follows the theoretical AVA

closely. For comparison, the theoretical cumulative transmission losses are also plotted

in Figure 3.25 indicating that the transmission angle dependence is weak in this case, but

can have a negative impact where the AVA is small.

Based on the above findings one can conclude that migration gives reliable AVA es-

timates in layered media, provided the data are well sampled along offset and noise

free. Of course, the inverse ray parameter imaging Jacobian � q � needs to be applied.

Nonetheless, it is important to keep in mind that the primary data representation as-

sumes a low contrast medium and the absence of fine layering. While constrained least-

squares migration helps to suppress spurious energy, the computing intensive least-

squares migration is expected to be more compelling when the data sampling is poor.
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Figure 3.26: Left: Migrated CIG of the incomplete data. Right: Least-squares CIG (14 iterations)
of the incomplete data. The data misfit for the least-squares migration is shown in Figure 3.27.

To challenge the inversion algorithm input data with significant irregularity, the re-

duced CMP in Figure 3.22 was inverted. The migrated CIG in Figure 3.26 clearly bears

the stamp of acquisition footprint noise. The amplitudes are discontinuous along the ray

parameter axis, and there is spurious energy between the reflectors. The least-squares mi-

grated CIG (14 CG iterations) in Figure 3.26 is overall cleaner and exhibit a smooth AVP.
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Figure 3.27: Normalized data
misfit (incomplete data).

To ensure that the data weighting operator takes full ef-

fect the data residuals have been minimized to the point

where the data misfit levels off to its plateau. Figure

3.27 is the data misfit up to 19 iterations of the CG al-

gorithm. In this example, 14 iterations were sufficient to

achieve a good inversion result. The picked AVA of the

migrated and the least-squares migrated CIGs are por-

trayed in Figure 3.28. The migrated AVA curves are dis-

torted. Especially, the AVA estimation for the two deep-

est reflectors is poor. On the other hand, when picked

on the least-squares CIG the curves are smooth and follow largely the theoretical AVA.

For large ray parameters, where there is an abrupt change in the AVA due to the finite

recording aperture, the smoothing regularization averages some of the finite offset effects
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Figure 3.28: Left (R1-R4): AVA picked on the migrated CIG in Figure 3.26 (left). .}w/. of the data
were randomly set to zero prior to migration (see also Figure 3.22). Right (R1-R4): The same picks
based on the least-squares migrated CIG (14 iterations) in Figure 3.26 (right).

into the previously recoverable angle range. This is a reminder that smoothing has to be

applied with care to avoid solutions that are ‘too smooth’ or ‘too flat’. In this example,

the tradeoff parameter was 2v�YQ W Q & . Compare this result also to Figure 3.24.

Figure 3.29 shows the CIG based on the incomplete data after 10 CG iterations and the

least-squares CIG when the data weighting operator ç
˜

in equation (2.3.1) is the identity
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Figure 3.29: Left: Least-squares migrated CIG (10 iterations) of the incomplete data. Right:
Least-squares migrated CIG (14 iterations) of the incomplete data without data weighting.
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operator. The least-squares CIG after 10 iterations looks virtually identical to the one

after 14 iterations in Figure 3.26. In terms of amplitudes, however, the picked AVA in

Figure 3.30 reveals subtle differences. The least-squares CIG without data weighting

exhibits residual wavelet distortions that are absent in the least-squares migrated CIG in

Figure 3.26. Obviously, the AVA curves in Figure 3.30 are biased by the missing data. The

curves are merely a smoothed version of the migration result in Figure 3.28. This example

supports the important point that weighted least-squares migration produces smooth

and clean solutions and yet fits the seismic data in a sensible way. That is, regularized

least-squares migration can be interpreted as data consistent AVA smoothing.

The next example tests how random noise influences the inversion result. To make

sure that the AVA is not too severely deteriorated noise with a moderate signal-to-noise

ratio of 10 has been added, where the maximum absolute amplitude defines the signal

strength. Figure 3.31 is the migrated and the least-squares migrated CIGs using the in-

complete and noisy data. Clearly, the additional noise has further degraded the migrated

CIG. The least-squares CIG (14 iterations) is significantly cleaner and has a smooth AVP.

The corresponding picked AVA is shown in Figure 3.32. As expected, the migrated AVA
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Figure 3.30: Left (R1-R4): AVA picked from the least squares-migrated CIG (10 iterations) in
Figure 3.29 (left) shown as the dot-dashed line. The crossed line is the previously shown result
after 14 CG iterations. Right (R1-R4): The picks based on the least squares migrated CIG (14
iterations) in Figure 3.29 (right) where the data weighting operator :

˜
has been replaced by the

identity operator.
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Figure 3.31: Left: Migrated CIG of the incomplete and noisy data. Right: Least-squares migrated
CIG (14 iterations) of the incomplete and noisy data.

suffers significant distortions from acquisition footprint and random noise, whereas the

least-squares migrated AVA matches the theoretical values much better, but is certainly

not perfect. The high noise level relative to the third reflector has caused some deviation

from the true AVA. The last test in this series confirms that this deviation is indeed due
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Figure 3.32: Left (R1-R4): AVA picked on the migrated CIG in Figure 3.31 (left). The data were
incomplete and random noise with a signal to noise ratio of 10 (based on the absolute maximum
amplitude) has been added. Right (R1-R4): The same picks from the least-squares migrated CIG
(14 iterations) in Figure 3.31 (right).
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Figure 3.33: Left: Migrated CIG of the noisy data. Right: Least-squares migrated CIG (4 itera-
tions) of the noisy data.

to random noise. This time, the input data were noisy but complete. See Figure 3.33 for

the migrated and least-squares migrated CIGs. The associated AVA curves are in Fig-

ure 3.34. The least-squares migrated AVA curves are smoother than the migrated ones

with both showing essentially the same trend. Since the data weighting operator ç
˜

is

the identity matrix except for a few padded far offset samples, the data misfit has not
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Figure 3.34: Left (R1-R4): AVA picked on the migrated CIG in Figure 3.33 (left). White noise with
a signal-to-noise ratio of 10 has been added. Right (R1-R4): The same picks from the least-squares
migrated CIG (4 iterations) in Figure 3.33 (right).
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been minimized to its plateau. It seems reasonable to conjecture that smoothing and am-

plitude scaling equivalent to the application of the inverse imaging Jacobian takes effect

after a few iterations.
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Figure 3.35: Velocity (top) and density model (bottom) with a slightly dipping, a moderately
curved and dipping, and a flat reflector. The flat reference reflector is represented by a density
change only. The migrated and stacked sections are shown as overlays.

Model with a curved interface

The previous model was restricted to depth dependent velocities allowing for a fast com-

putational turnaround. The next model is also relatively simple but has lateral struc-

ture. Figure 3.35 portrays the velocity and density fields. The data have been generated

by finite-difference modelling with offsets that range from 0 to 1140 m incrementing byo Ív� ( Q´M . The stacked split-step migration images a small portion of the model, shown

as overlays in Figure 3.35. Figure 3.36 is the migrated and the least-squares migrated CIG

at CMP location 4600 m. The relatively coarse offset sampling caused aliasing artifacts
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Figure 3.36: Left: Migrated CIG at CMP location 4600 m (see Figure 3.35). Finite aperture effects
and offset aliasing cause spurious energy in the CIG. Right: Least-squares CIG (6 iterations) at
CMP location 4600 m. Most of the spurious energy has been cleaned up. The picked AVA for the
second and the third reflector are shown in Figure 3.37.

in the migrated CIG, whereas least-squares migration (6 iterations with 2±��Q W Q´Q ! andoz
�� �R& Z 9[� K?M / suppresses the aliasing noise effectively. Figure 3.36 shows the picked

AVA of the middle and the bottom reflector. The dot-dashed line is the AVA when the

local dip angle in equation (1.3.33) is not considered in the AVP to AVA conversion. The

result confirms nicely that a specular reflection process also holds for moderately curved

interfaces.
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Figure 3.37: Left: AVA for the second reflector picked on the least squares CIG in Figure 3.36.
The dot-dashed line indicates the AVA without dip correction. Right: AVA for the third reflector
picked on the least-squares CIG in Figure 3.36.
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The Marmousi model

The Marmousi model has been extensively described previously. As mentioned earlier,

imaging techniques based on the high-frequency approximation (i.e., ray-tracing based

imaging) often struggle to produce a good structural image of the Marmousi model. The

relatively simple split-step wavefield propagator, on the other hand, yields good results.

This is confirmed by the migrated image in Figure 3.4 shown earlier. Here the focus is

on AVP/AVA inversion issues. The complex structure of the Marmousi model makes a

careful selection of the depth point whose AVA is to be estimated crucial. Two criteria

guided the selection process. First, the depth points should be located in the upper half of

the model so as to ensure sufficiently large ray parameter/angle range coverage. Second,

to compare the inverted AVA with the theoretical AVA the picked reflection event, the

target, ought to be generated by a single, locally plane, interface. The Marmousi model is

complex with significant fine layering. Hypothetically, composite reflections from mul-
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Figure 3.38: Left: Portion of the migrated and stacked Marmousi image. Right: CIG at CMP
location 7500 m. The arrow indicates the reflector picked for AVA analysis.
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Figure 3.39: Left: Portion of the migrated and stacked Marmousi image. Right: Least-squares
migrated CIG (4 iterations) at CMP location 7500 m.

tiple interfaces (‘tuning effects’) could be modelled and compared to the inverted CIGs,

but this approach has not been pursued. Given the relatively low frequency content of

the source wavelet only few reflections satisfy the ‘single interface criterion’.

Figure 3.38 shows the first target reflector at CMP location 7500 m. The left image

is a portion of the migrated and stacked Marmousi data with the arrow indicating the

picked target phase in the CIG. All available offsets of the Marmousi data have been

used in the migration. As it is often the case in reality, the near offsets up to 100 m

are missing. The consistent absence of near offset information causes a dim region for

small ray parameters. Visual inspection of the gathers can help to identify regions of

missing data information. These areas should be excluded from a subsequent inversion

for elastic/lithologic parameters. Figure 3.39 shows the same midpoint CIG after 4 itera-

tions of the least-squares algorithm using a moderate smoothing regularization ( 2v� Q W Q & ,oz
 ��& Z 9[� K?M ). The energy in the previously dim zone has been partially boosted. Never-

theless, the small ray parameter amplitudes have to be interpreted with caution. Overall,
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Figure 3.40: Left: Blow-up of the migrated target reflector CIG and the picked AVA curve. Right:
Blow-up of the least-squares migrated target reflector CIG (6 iterations) and the corresponding
AVA. One has to take care not to produce solutions that are ‘too flat’.

the least-squares CIG exhibits improved wavelet continuity along ray parameter and ap-

pears more interpretable. However, it is once more emphasized that the interpretation of

the amplitudes in terms of specular reflections breaks down where the target reflector is

strongly irregular or has lateral support on the order of the dominant wavelength or less.

In any case, as far as structural imaging is concerned, the stacked ray parameter CIGs

yield the familiar DSR migration result.

Figure 3.40 zooms in on the target reflector for both the migrated and the least-squares

migrated CIG. The picked AVA curves are shown below the CIGs. The AVA is biased by

the missing near offset traces. Despite its roughness, the AVA curve picked on the mi-

grated CIG agrees with the theoretical AVA trend. The least-squares migrated AVA after

6 iterations is smooth and closer to the true AVA. However, a higher number of iterations

produces a solution that is ‘too flat’. Since least-squares migration is computationally

expensive, one desires to compute as few CG iterations as possible. A relatively high

tradeoff parameter yields smooth and cleaner CIGs fast but can also jeopardize the AVA
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Figure 3.41: Left: CMP data at location 7500 m of the Marmousi model. Notice that the first live
trace is at (half) offset 100 m. Right: The CMP after removing �Nw0. of the live traces.

fidelity. Ideally, one would like to have a universal parameter � ��2 � Y o�
�� that war-

rants AVA fidelity and yet produces smooth solutions efficiently. Future tests will show

whether it is possible to come up with reliable, data independent values for � .

In order to test the effect of sub-optimal wavefield sampling * Q,+ of the Marmousi

data have been randomly set to zero. The CMP data at location 7500 m in Figure 3.41

illustrate the sparseness of the reduced dataset. The corresponding migrated and least-

squares migrated CIGs and their AVA curves are shown in Figure 3.42. The irregular

acquisition geometry has left a strong imprint on the migrated CIG, and the reduced

wavelet continuity is also reflected in the AVA picks. Although the correct AVA trend ap-

pears to be preserved the footprint noise renders a reliable AVA fit questionable, whereas

the least-squares migration (12 iterations) restores continuity and reduces the footprint

noise considerably. A comparison with the least-squares CIG using the full data in Figure

3.40 confirms that almost all retrieved events are real. The least-squares AVA matches the

true AVA between 15 and 35 degrees. Missing data and perhaps smoothing have some-
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Figure 3.42: Left: Blow-up of the migrated target reflector and the picked AVA curve (incomplete
wavefield data). Right: Blow-up of the least-squares migrated target reflector CIG (12 iterations)
and the corresponding AVA (incomplete wavefield data).

what reduced the recovered angle range.

Figure 3.43 illustrates the second location chosen for an AVA study. The target re-

flector is dipping with
± � * Q<; and is located in the more complex, faulted area of the

Marmousi model. Figure 3.43 depicts the least-squares migrated CIG for location 6200 m

adjacent to the stacked migration. Figure 3.44 zooms in on the least-squares CIGs based

on the complete and the incomplete data. The CIGs are strikingly similar. The wavefield

phase with the strong positive anomaly for large ray parameters is identified as the target.

The picks with and without dip correction are plotted in Figure 3.44. The dip correction

helps to improve the match between the picked AVA and the theory. However, the match

between the picked and the theoretical AVA based on the ‘single interface assumption’ is

not quite as obvious as in the previous examples. This is attributed to fine structure AVA

effects and, possibly, cumulative transmission losses caused by the relatively complex

overburden.

Finally, the Figures 3.45, 3.46 and 3.47 compare constant ray parameter images (
r� �
98



3.2. LEAST-SQUARES MIGRATION

D
ep

t h
[ k

m
]

0

0.5

1.0

1.5

2.0

2.5

6000 6500

CMP position [m]

0

0.5

1.0

1.5

2.0

2.5

D
ep

th
[k

m
]

0 200 400 600 800

Ray parameter [mu s/m]

Figure 3.43: Left: Portion of the migrated and stacked Marmousi image CMP. Right: Least-
squares migrated CIG (4 iterations) at CMP location 6200 m.

Î Q´Q 9[� K?M ) of the migrated complete data, the migrated incomplete data and the least-

squares migrated incomplete data, respectively. The image quality in Figure 3.45 is

clearly inferior to the migrated image in Figure 3.4. This is not surprising, since Figure

3.4 is equivalent to the summation over all constant ray parameter images. Figure 3.46

depicts the migrated incomplete data in which kinematic artifacts due to missing data

have further deteriorated the image quality. Instead, the least-squares migrated constant

ray parameter image in Figure 3.47 is comparable, and in many areas even superior, to

the migrated complete data in Figure 3.45. In terms of kinematic artifact reduction, the

smoothing regularization has a very similar effect as ray parameter stacking.

Yet another way to glean the inversion success is by comparing the original input

data to the reconstructed data. The reconstructed data results from the application of

the modelling operator. Figure 3.48 depicts both the complete and the reduced constant

offset (500 m) Marmousi data. Figure 3.49 is the reconstructed data after the first CG iter-

ation based on the incomplete input. The data gaps have been partially filled but streaks
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remain clearly visible. After 12 iterations the wavefronts have been largely healed and the

energy is well balanced. The reconstruction agrees well with the original data in Figure

3.48 (top). Most of the differences are attributed to the single scattering approximation of

the modelling and migration operators.
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Figure 3.44: Left: Blow-up of the least-squares migrated target reflector CIG (4 iterations) and
the picked AVA curve (complete wavefield data). The dot-dashed line is the AVA without dip
correction. Right: Blow-up of the least-squares migrated target reflector CIG (12 iterations) and
the corresponding AVA (incomplete wavefield data).
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Figure 3.45: Constant ray parameter migration of the Marmousi model (¼ ¬ uÐn@w@w2476=8>9 ). All
available wavefield data were used in the migration.
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Figure 3.46: Constant ray parameter migration of the Marmousi model (¼ ¬ u\n@w@w2476=8>9 ). Only�6w/. of the available wavefield data were used in the migration.
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Figure 3.47: Constant ray parameter least-squares migration image of the Marmousi model (¼ ¬ un@w@w2476=8>9 ). Only �@w0. of the available wavefield data were used in the least-squares migration.
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Figure 3.48: Top: Complete constant offset (500 m) Marmousi dataset. Bottom: �}w0. reduced
constant offset dataset.
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Figure 3.49: Top: Reconstructed constant offset data after one CG iteration based on the incom-
plete input data in Figure 3.48. Bottom: Reconstructed constant offset data after 12 CG iterations.
Notice the wavefront healing effect.
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Chapter 4

Field data example

The concept of AVP/AVA imaging/inversion is applied to a real data example. Ana-

lyzing AVP/AVA trends aids the interpretation of seismic data in relation to subsurface

rock and pore-space properties. Rather than directly inverting for elastic parameters, the

adopted strategy interprets the AVP/AVA response leaning upon a classification scheme

that relates AVP/AVA trends and anomalies to certain reservoir types (Rutherford and

Williams, 1989). This strategy is well established in ‘industry-style’ seismic exploration

(Castagna, 1993). The seismic data have been acquired in the Gulf of Mexico and do-

nated by Western Geophysical for testing purposes. The Gulf of Mexico is known for

challenging sub-salt imaging issues. Moreover, free surface related multiples and a low

primary-to-multiple energy ratio often hamper the image quality (Verschuur and Prein,

1999). Careful multiple attenuation during pre-processing is a prerequisite for AVP/AVA

analysis. Furthermore, the velocity field needs to be inferred from the picked NMO stack-

ing velocities (Dix, 1955). The pre-processed data are then analyzed with the focus on the

angle behavior of a particular target reflector. The aim is to determine whether the target

fits the AVP/AVA signature that is indicative of a gas bearing geologic formation. A pre-

viously conducted AVP/AVA study by Gratwick et al. (2002) identifies the reflector as a

so-called class III bright spot (Rutherford and Williams, 1989). The anomaly is believed to

be caused by a relatively low impedance gas bearing sand that exhibits a high amplitude

anomaly on far offsets (i.e., large angles or ray parameters).
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4.1. THE GULF OF MEXICO DATA

4.1 The Gulf of Mexico data

The provided line is located in relatively deep water (about 1400 m). The following ac-

quisition parameters describe the initial field data set (Verschuur and Prein, 1999):_ shot numbers: 2000-3000,_ shot interval: 87.5 ft,_ number of traces per shot: 180,_ farthest offset: -15993 ft,_ nearest offset: -330 ft,_ group (receiver) spacing: 87.5 ft,_ number of samples per trace: 2404,_ time sampling 4 ms.

Figure 4.1 shows a portion of the NMO corrected and stacked data (‘brute-stack’). Direct

and refracted waves have been muted before NMO correction, and all distances are con-

verted to the metric system. The area of interest is the sub-salt reflector at about 3.6 s at

CMP location around 18 km. The first order ocean-bottom surface multiple is easily iden-

tified and partially masks the flat target reflector. The prominent salt body extends almost

all across the shown part of the section. Together, the free surface, the ocean bottom and

the top and bottom of the salt body act as a potent generator of first and higher order

multiples that are often difficult to identify. The prominent first order ocean-bottom mul-

tiple is particularly troublesome for the AVP/AVA analysis of the target reflector. Thus,

multiple suppression is crucial. In summary, the following processing steps were applied

prior to (least-squares) migration:_ Direct and refracted wave muting,_ ¼ � ��æp� scaling to approximately transform the amplitudes from point sources to

lines sources (see equation (1.3.61)),
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Figure 4.1: Brute-stack of the Gulf of Mexico data. The first-order ocean bottom multiple that
partially masks the circled target reflector is easily identified.

_ multiple suppression by high resolution parabolic Radon filtering (Sacchi and Por-

sani, 1999).

Figure 4.2 is the stacked section after multiple suppression. Compare the stack to the

brute-stack in Figure 4.1. The flat target reflector is largely freed from multiple energy.

The overlaid curves in Figure 4.2 are velocity profiles inferred from the picked stacking

velocities with the help of a ‘Dix inversion’ algorithm (see below). In a strict sense, this

type of velocity inversion is applicable only to media with no or small lateral variations.

Since the area of interest does extend over the salt edges, Dix’s velocity inversion is ex-

pected to work sufficiently well. The spatially interpolated velocities serve as the velocity

field for the (least-squares) depth migration.

4.2 Velocity model building

Depth migration requires the input of a velocity model (i.e., interval velocities). The in-

terval velocities (Figure 4.2) are obtained from the stacking velocities using a 1-D regular-

ized least-squares ‘Dix inversion’. The employed algorithm is similar to the one proposed
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Figure 4.2: Stack after multiple suppression. The first order ocean-bottom multiple has been
largely removed. The overlaid curves indicate the CMP positions where velocity profiles have
been inverted. The salt body shows as a strong high velocity anomaly in the profiles.

by Lizarralde and Swift (1999) for inverting vertical seismic profile (VSP) data for inter-

val velocities. However, in this case the forward operator is based on the linear relation

between the squared stacking velocities ? � - � / and the squared interval velocities

i �� (Dix,

1955): ? � - � / � &� D q �� � � ® o � � i �� � W (4.2.1)

where the time axis has been subdivided into H�� & equally spaced intervals o � � : � �@ D q �� � ® o �g� . Equation (4.2.1) is simply the forward relation of Dix’s well-known inversion

formula for velocities in a layered medium (Dix, 1955). The forward relationship (4.2.1)

is rewritten as a regularized least-squares fitting problem:M ��� �h-�c / �ñð@- ¤P� º
˜
c / ð � 8 2 � ð Æ˜ � ˜ c ð � � (4.2.2)

where c is the model vector with the unknown squared interval velocities, ¤ is the data

vector containing the stacking velocities and º is the summation operator in equation

(4.2.1). An unregularized least-squares inversion of equation (4.2.1) is notoriously un-

stable for high frequency variations in the stacking velocities. Therefore the objective

108



4.2. VELOCITY MODEL BUILDING

0
500

1000
1500
2000
2500
3000
3500
4000
4500

D
ep

th
 [m

]
1.4 1.6 1.8 2.0

x104CMP location [m]

2000

4000

6000

m
/s

Figure 4.3: The migration velocity field obtained by spatial interpolation of the 1-D least-squares
‘Dix inversion’ result and time to depth conversion.

function (4.2.2) is supplemented with a regularization term that penalizes roughness in

the solution. A selector operator Æ ˜ complements the first-order differential operator

�
˜

in order to disable the smoothing regularization at time locations of reliable reflectors.

Reflection times picked during the velocity analysis present a natural choice for the se-

lector operator. The purpose of the selector operator is twofold. First, strong reflections

imply high quality data, hence an accurate fit is desired for these locations. Second, dis-

abling the smoothing regularization allows for the development of discontinuities in the

solution and thus honors the lithologic discontinuities which lead to the reflection in the

first place. As a result, the smoothing operator together with the selector operator yield

a ’blocky’, edge preserving, rather than a smooth solution (Lizarralde and Swift, 1999).

The tradeoff parameter 2 in equation (4.2.2) determines the degree of ‘blockyness’. Since

the problem size is relatively small, the minimization (4.2.2) is solved by means of stan-

dard matrix inversion (Menke, 1984) rather than iterative gradient optimization. Finally,

the inverted interval velocities are converted from time to depth. The inverted interval

velocities for 4 selected CMP locations in Figure 4.2 show the characteristic high velocity
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anomaly for the salt body. The lateral velocity variation is moderate in the area of inter-

est, and thus justifies a linear interpolation between the inverted CMP locations (Figure

4.3).

4.3 AVP/AVA inversion

Both a migration and a regularized least-squares migration were carried out for the area

of interest down to a depth of 4500 m. The (least-squares) split-step DSR migration used

a total of 220 CMPs. The migration velocity field is mildly varying in the lateral direction,

hence the efficient split-step corrected DSR operators should perform adequately.

Migration

Figure 4.4 depicts the stacked migration, the ray parameter CIG and a ray parameter

depth slice through the flat target reflector. Apart from some apparent multiples, most

events in the CIG are flat suggesting that the interval velocity field is reasonably close

to the truth. Only a few sub-salt events show some residual move-out (’frowns’) which

indicates that the velocities have been overestimated in some parts of the model. Since

the stacked migration is nevertheless of fairly good quality, the extra effort involved in

oftentimes tedious velocity updating does not appear worthwhile.

The CIG and the depth slice confirm that the target reflector does indeed have the

characteristic of a class III gas sand. This agrees with the findings by Gratwick et al.

(2002). The amplitude increases with ray parameter, where angle and ray parameter are

directly related through 
�� � �l���S} K i . While the amplitude trend towards larger ray pa-

rameters is unambiguous, the small ray parameters are adversely affected by the initially

missing near offsets. This result exemplifies how AVP/AVA analysis can aid the assess-

ment of a potentially gas bearing geologic structure.

Least-squares migration

The benefit of least-squares migration is expected to be limited, since no real data vari-

ance issues are apparent for the well sampled marine data set at hand. As seen in the

synthetic data tests, migration yields good results in such cases. However, an improve-

ment in terms of the CIG’s interpretability due to ray parameter smoothing could be
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achieved as demonstrated in Figure 4.5. Only 4 iterations of the least-squares algorithm

have been computed, enough for the smoothing regularization to take effect. In partic-

ular, the depth slice in Figure 4.5 appears less random and emphasizes the amplitude

anomaly better. Upon careful comparison of Figure 4.4 with Figure 4.5 one notices an

interesting side effect of least-squares migration that has not been discussed as yet: Reg-

ularized least-squares migration attenuates internal multiples with significant residual

move-out, and thus better resolves the top of the salt body in this example. Figure 4.6

zooms in on a small area from 16 km to 17 km horizontally and 1 km and 2.5 km ver-

tically. The migration and the least-squares migration are shown side-by-side and their

amplitudes have been normalized with respect to the highly reflective salt top. The least-

squares migration has slightly higher resolution and images the faulted sediment struc-

ture better. The prominent first order internal salt multiple is attenuated.
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Figure 4.4: The migrated (and stacked) data, the ray parameter CIG (right) and the ray parameter depth slice through the target
reflector (bottom). The vertical and the horizontal lines indicate the location of the CIG and the depth slice, respectively. The depth
slice shows increasing amplitudes with angle in the area of the target reflector. The events seen in the CIG are mostly flat indicating
that interval velocity estimate is fairly good. The increasing amplitude with ray parameter for the target reflector is also apparent in the
ray parameter CIG.
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Figure 4.5: The least-squares migration after 4 iterations with moderate smoothing (

ACB D<E D DFHG IKJ B L MHN O PRQ ). The ray parameter CIG
(right) is smoother and more coherent along the ray parameter axis. The depth slice shown at the bottom reflects this as well. The
increased wavelet continuity makes the computation of depth slices for AVP studies more robust. The stacked migration is very similar
to Figure 4.4. Some multiple energy, especially within the salt body, is suppressed.
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Figure 4.6: Left panel: Parts of the migrated sediment structure and the salt body ranging from
16 km to 17 km in CMP location. Right panel: Least-squares migration of the same area. The
amplitudes of both sections are normalized with respect to the prominent top-salt reflector.
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Chapter 5

Computational aspects

The computation of (generalized) DSR modelling and imaging operators is demanding

in terms of number of floating point operations and memory allocation. An implemen-

tation in three spatial dimensions has not been attempted in this thesis, since even an

efficient 2-D implementation of least-squares migration/inversion is a challenge. Stor-

ing full pre-stack data in the computer’s memory can exceed the limits of today’s com-

puters technology. For instance, a small 2-D seismic survey with 512 midpoints, 128

offsets and 1024 time samples results in a dataset size of about 268 Mbytes. Depend-

ing on the utilized propagators (split-step propagation is more memory efficient than

split-step PSPI/NSPS propagation) multiple times this memory is required to perform

least-squares migration/inversion. The CG optimization can not be computed ‘in-place’

and temporary workspace has to be allocated to perform various computational tasks. In

other words, memory efficient coding is important if larger and more realistic datasets are

to be tackled. Moreover, phase-shift propagator techniques that attempt to account for

lateral velocity variations make substantial use of the fast Fourier transform (FFT). Gen-

erally, the Hermitian symmetry of the complex-valued Fourier transform causes compu-

tational redundancies in terms of floating point operations and memory requirements.

In practice, a combination of the FFT with the well-known real-to-complex Fourier trans-

form is usually employed to avoid such complications (Press et al., 1997). As an alterna-

tive means to the Fourier transform the inherently real-valued, non-symmetric Hartley

transform (Bracewell, 1986) is introduced into wavefield propagation (Kuehl and Sacchi,

1999; Kuehl et al., 2001). The Hartley transform automatically avoids the Hermitian sym-
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5.1. THE HARTLEY TRANSFORM

metry resulting in optimized code that is comparable in efficiency to algorithms based

on the real-to-complex FFT.

5.1 The Hartley transform

Since the seismic wavefield is real-valued, the complex Fourier transform has Hermi-

tian symmetry. Hence, a brute force implementation leads to redundant operations and

memory allocation. The Hartley transform (Bracewell, 1986) can be used to optimize

such codes. The fast Hartley transform (FHT) is closely related to the complex FFT but

is more suitable for real-valued data because of its inherently real-valued nature. The

Hartley transform codes the amplitude and phase of a real-valued function in a single

real-valued transform without symmetries. It satisfies similar theorems equivalent to

those of the Fourier transform and can therefore replace the FFT in virtually any appli-

cation that involves real-valued data (Bracewell, 1986). The Hartley transform has been

successfully used in other geophysical applications such as wavefield modelling and data

filtering (Saatcilar et al., 1990; Saatcilar and Ergintav, 1991). A complete set of fast Hartley

transform algorithms is available in the literature. Here, the radix-2 decimation in time

FHT is exclusively dealt with. Refer to Sorensen et al. (1985) for other implementations

of the FHT.

The 1-D Hartley transform and its inverse are given byWn- � / � &¼ (/S °UT - � / L � � - ��� /gk � �T - � / � &¼ (/S ° Wn- � / L � � - ��� /gk � � (5.1.1)

with the real-valued Hartley kernel L � � - ��� / � L+° � - ��� /ú8%�l��� - ��� / (Bracewell, 1986). The

variables
�

and
�

denote the conjugate Hartley variables. The orthogonal Hartley trans-

form is related to the unitary Fourier transform and satisfies similar theorems. For seis-

mic imaging an extension of definition (5.1.1) to higher dimensions becomes necessary.

This extension is not obvious sinceL � � - ��� 8WV0# / O�YL � � - ��� / L � � - Vl#=/ � (5.1.2)

as opposed to the Fourier kernel, which is obviously separable:¤�¥)¦�- % - ��� 8WVl#=/�/ �D¤�¥X¦�- % ��� / ¤�¥X¦j- %XV0# / W (5.1.3)
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5.1. THE HARTLEY TRANSFORM

Both sides of equation (5.1.2) are used as 2-D Hartley kernels in the literature. Here, the

multiplicative definition of the 2-D Hartley transform suggested by Sundarajan (1995) is

adopted and referred to as version I:W
ôÐ- � � VX/ � &(/S ° °UT - � � #=/ L � � - ��� / L � � - Vl#=/gk � kl# � (5.1.4)

with an obvious extension to the 3-D case:W
ô´- � � V �=Y / � &- (/S / Ò ¿ ° ° ° T - � � # � $0/ L � � - ��� / L � � - V0# / L � � - Y $0/gk � kl#)k0$ W (5.1.5)

Some authors refer to this definition as the ‘ L � � L � � -�L � �!/ ’ transform (e.g., Bracewell (1986)).

Here, for stylistic reasons, the equations (5.1.4) and (5.1.5) are called (multi-dimensional)

Hartley transforms (version I), in agreement with Sundarajan (1995). Sundarajan also

defines version II of the 2-D Hartley transform:W
ôlô´- � � V / � &(/S °p° T - � � #=/ L � � - ��� 8WV0# /gk � kÐ# � (5.1.6)

where the argument of the kernel is the sum of the arguments of the 1-D kernels. How-

ever, the definitions (5.1.4) and (5.1.5) are separable into 1-D Hartley transforms and

therefore computationally more convenient to obtain than version II. Both versions of

the N-dimensional Hartley transform are orthogonal (Bracewell, 1986).

Figure 5.1 to Figure 5.4 illustrate the relation between the 2-D Fourier transform and

the 2-D Hartley transform (version I) for a 2-D boxcar function. This simple example

demonstrates how the Hartley transform conveniently stores all amplitude and phase

information in a single real-valued function.
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Figure 5.1: For illustration, a 2-D boxcar function is used as input for two spectral transforms:
the 2-D Fourier transform and the real-valued 2-D Hartley transform (version I). The resulting
spectra are shown in Figures 5.2, 5.3 and 5.4.
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Figure 5.2: The symmetric real-part of the 2-D Fourier transform of the 2-D boxcar function in
Figure 5.1.
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Figure 5.3: The anti-symmetric imaginary-part of the 2-D Fourier transform of the 2-D boxcar
function in Figure 5.1.

-3
-2

-1
0

1
2

3
u -3

-2
-1

0
1

2
3

v

-1

-0.5

0

0.5

1

1.5

H(u,v)

Figure 5.4: The Hartley transform of the 2-D boxcar function in Figure 5.1. The Hartley trans-
form exhibits no symmetry and codes phase and amplitude information in a single real-valued
function.
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Figure 5.5: The ‘Hartley butterfly’ according to equation (5.1.8). The sine and cosine factors are
evaluated at k Z[]\ , where ^ is the length of the discrete sequence (after Sorensen et al. (1985)).

5.1.1 The fast Hartley transform (FHT)

In accordance with equation (5.1.1) the discrete 1-D Hartley transform (DHT) and its

inverse for a length-N sequence T - '�/ � Q O ' O H�� & , are defined by (Bracewell, 1986):

Wn- H�/ � D q ��5 � ® T - '�/ L � � ; (/SH H ' > � Q O H O H�� & �T - '�/ � &H D q ��_ � ® W:- H�/ L � � ; (/SH H ' > � Q O ' O H � & W (5.1.7)

A complete set of fast algorithms for computing the DHT can be found in Sorensen et al.

(1985), including a radix-2 decimation-in-time FHT. The FHT is based on the DHT de-

composition formula, which is similar to the Danielson-Lanczos formula for the discrete

Fourier transform (DFT) (Press et al., 1997). A length H � ( ó DHT is divided into two

length-N/2 DHT’s, one over the even-indexed samples W 7 and one over the odd-indexed

samples W � , and combined to form the DHT of the full-length sequence:Wn- H�/ �\W 7 - H�/¨8 W � - H�/ L+° ��; (/SH H > 8 W � - H^�VH�/T�l��� ; (/SH H > � (5.1.8)

where the indices of the half-length transforms for the even and odd indices are evalu-

ated modulo H K ( . The decomposition formula (5.1.8) is applied recursively until length-2
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Figure 5.6: Relative computation times for the complex FFT, real-to-complex FFT and FHT as a
function of the transform length ^�u�a j . The times have been obtained on a Pentium processor.

transforms are obtained. This structure resembles the fast Fourier transform (FFT) de-

rived by Cooley and Tukey (1965). Figure 5.5 shows a flowchart representation of equa-

tion (5.1.8), called the Hartley butterfly. Since it is desired to compute the FHT ‘in place’,

four elements are included in each Hartley butterfly to avoid overwriting an element

that will be needed later. Sorensen et al. (1985) provide a radix-2 decimation in time FHT

Fortran code based on the described Hartley butterfly. They also conduct a number-of-

operations count and show that, when coded efficiently, the FHT takes only a few more

additions than an equivalent real-to-complex FFT. In this sense the FHT can be regarded

as a means to compute a time- and memory-optimized, real-valued spectral transform.

Figure 5.6 compares the computation times of the complex FFT, real-to-complex FFT and

FHT obtained in a simple test using different transform lengths N. The result confirms the

number-of-operations count by Sorensen et al. and demonstrates that time saving bene-

fits over the complex FFT are increasingly significant with increasing transform lengths.

The extension to higher dimensions (version I) is most easily accomplished by multiple

application of the 1-D FHT along the respective dimensions without loss in efficiency.

However, this is not to suggest that algorithms based on the Hartley transform are gen-

erally more efficient than those making use of the real-to-complex FFT. The Hartley trans-

form is merely an alternative tool to the Fourier transform which might be attractive to
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practitioners developing efficient algorithms that exploit the symmetries of the Fourier

transform.

5.1.2 Wavefield propagation using Hartley transform

To make use of the Hartley transform in wavefield modelling and migration all oper-

ations need to be posed in the Hartley domain. To this end all Fourier transforms are

replaced with Hartley transforms (version I). Three operations involved in modelling

and migration are affected by the domain change: the complex phase-shift propagator,

the split-step correction and the radial trace transform, and, of course, their respective

adjoint operations. All other operations are analogous to their Fourier counterparts, the

only difference being that they are real-valued. The expression for the 2-D phase-shift

propagator (i.e., ê � � �^ê � � ��Q ) is derived in Appendix E. The Hartley domain oper-

ation that replaces the causal upward propagator éÇ ���3��� - $ �rq � � $ � / in equation (1.3.44) is

(Kuehl et al., 2001):�a`cb -�ê � � � ê � � � $ �Jq � � � / � �a`cb -�ê � � � ê � � � $ � � � / L+° � -�êÐ� op$)/8y� ` b -�ê � � � ê � � � $ � � ��� /T�l��� -�ê � op$0/ � (5.1.9)

where the wavefields are understood to be Hartley transformed over midpoint, offset

and time (version I). Two real multiplications substitute the complex phase-shift operator.

Adjoint downward wavefield propagation simply amounts to switching the sign in front

of the sine term. The ‘time-shift’ theorem of the Hartley transform (Bracewell, 1986)

readily transfers the 2-D version of the complex split-step correction operator $ ���3���� ² in

equation (1.3.52) to the Hartley domain (Kuehl et al., 2001):� ô ` b -edA� � Í � � $ �rq � � � / � �a`cb -edA� � Í=� � $ �Jq � � � / L+° � - � - o
� �¡��� 8 oÝ� ����� / op$0/8 �a`cb -edA� � Í=� � $ �Jq � � ��� /T�l�¸� - � - o
� ���3� 8 o
� �¡��� / op$0/ � (5.1.10)

where the superscript

i
signifies the split-step corrected wavefield with respect to the

sources and the receivers. Again, two real operations substitute one complex multiplica-

tion and a sign change in front of the sine term yields the adjoint. The extension to split-

step PSPI/NSPS propagation is straightforward. Kuehl et al. (2001) supply schematic

flowcharts for angle independent split-step and split-step PSPI migration in the Hartley
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5.2. PARALLEL COMPUTER IMPLEMENTATION

domain. If angle imaging/inversion is desired the operator pair ÀÂÁ � and � kÐ� ÀÛ³ needs

to be expressed in the Hartley domain as well.

5.1.3 Ray parameter modelling/imaging using Hartley transform

As it turns out, the Hartley version of ray parameter modelling and imaging ÀÆÁ � and�dkÐ� ÀÛ³ , respectively, have the same form as their Fourier counterparts. First, consider the

imaging operator � kÐ� ÀÛ³ in the Fourier domain. Since the Fourier transformed wavefield� -edA� � 
�� � � $ � � / exhibits Hermitian symmetry, the final step, the summation of frequency,

effectively becomes:] -edA� � $ � 
�� � P ± � I / � ( ° �® k´�gf § � -edA� � 
�� � � $ � � /�ª � (5.1.11)

where f § � -ed � � 
�� � � $ � � /�ª denotes the real part of the Fourier transform. Noting thatf § � -edA� � 
�� � � $ � � /�ª � F § �h`ib -edA� � 
�� � � $ � � /�ª� &( ¸�� ` b -ed � � 
�� � � $ � � /«8y� ` b -ed � � 
�� � � $ � ��� / ¹ � (5.1.12)

where F § �h`ib -edA� � 
�� � � $ � � /�ª is the even part of the Hartley transformed wavefield, one

arrives at the imaging operator � k´� Àü³ :] -edA� � $ � 
�� � P ± � I / � ° kÐ� À ³ �a`cb -edA� � ê � � � $ � � / � ° k´���a`cb -edA� � ê � � � $ � � / ñ ý �=j � � �=j � �
(5.1.13)

where all involved quantities reside again in the Hartley domain (version I). The adjoint

2-D modelling operator ÀÆÁ � in the Hartley domain is now straightforward:�a`cb -edA� � ê � � � $ � � / �%ÀÆÁ � ] -edA� � $ � 
�� � P ± � I / �zÁ � ] -edA� � $ � 
�� � P ± � I / ñ � �kj � ý �=j Å � W (5.1.14)

That is to say, switching from the Fourier to the Hartley domain leaves the form the

modelling and imaging operators untouched.

5.2 Parallel computer implementation

When computed sequentially even optimized 2-D generalized DSR propagators do not

yield an acceptable turnaround for least-squares migration/inversion in complex media.

Fortunately, the propagators exhibit a computational structure that makes them relatively
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Figure 5.7: Execution times for the parallel computation of the split-step DSR migration of the
Marmousi dataset (Figure 3.4). The code has been implemented in a shared-memory (SGI Origin
2400) and a distributed-memory computer architecture (Pentium cluster). Access restrictions to
the SGI computer required a minimum usage of 8 processors.

easy to implement in a parallel computer architecture. Except for the operators that cou-

ple the wavefield to the reflectivity, ÀÆÁ � and �dk´� À ³ , and the dot-products in the CG

minimization routine in equation (2.3.2) all operations are completely separable in the

frequency domain. That is, wavefield propagation does not require inter-processor com-

munication for different frequencies. Since most of the computational time during least-

squares migration is spent on wavefield propagation, this type of algorithm is suitable

for both shared memory and distributed memory computing architectures. The algo-

rithm is said to exhibit a coarse grained computational structure (low communication-to-

computation ratio). A parallel implementation in either computer environment greatly

improves the feasibility of least-squares migration/inversion for medium sized datasets.

The 2-D split-step DSR pre-stack migration of the Marmousi dataset (Chapter 3) serves

as a benchmark for a comparative test. The computation times for the pre-stack DSR mi-

gration on a Pentium cluster (distributed memory) and for an SGI Origin 2400 (shared

memory) are graphed in Figure 5.7. The overall turnaround on the Pentium cluster is

about two times slower than on the SGI. Clearly, both implementations scale nicely for

the tested number of processors.
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Discussion and Conclusion

The goal of seismic imaging is to invert the seismic surface data for the reflectivity of

the geologic subsurface structures. To make the non-linear inverse problem tractable

geophysicists usually decompose the inversion into several linear sub-process. This de-

composition entails inevitable simplifications of the underlying physics of wave motion.

Many different schemes, ranging from simple NMO correction followed by AVO analy-

sis to sophisticated tomographic inversion and 3-D pre-stack depth migration, have been

devised to tackle the inverse problem. The complexity of the geologic environment to

be investigated, the data quality, economical considerations and other factors influence

which scheme is the most appropriate for a particular imaging/inversion project. Sim-

plifications are often motivated by necessity because of limited computer power. More

importantly, perhaps, a break down into linear sub-processes adds flexibility, control and

robustness to the inversion. It is the task of the geophysicist to find a pertinent compro-

mise between feasibility and fidelity to the nature of wave propagation and scattering. If

the angle dependent reflectivity inversion fails, it should fail gracefully rather than catas-

trophically with respect to the invoked simplifications. For instance, the fact that depth

migration yields useful structural images also when the observed angle dependence does

not agree with a specular reflection process is invaluable to migration/inversion in com-

plex media.

In this thesis, linearized seismic wave-equation imaging/inversion has been cast into

the least-squares inversion framework. This is an instructive approach to inversion, since

it yields both formulas that approximate the least-squares solution and iterative least-

squares algorithms that make use of well developed optimization techniques. Clearly,

the latter is computationally more demanding but also opens the opportunity to regular-

ize the least-squares solution. Furthermore, if the seismic data have significant variance
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least-squares migration is able to account for that. Regularized least-squares inversion

has proven to be beneficial in many other geophysical applications. Successful examples

are the 1-D impedance inversion and the high resolution Radon transform. It is there-

fore conceivable that also least-squares migration/inversion will be practically relevant.

Ray parameter dependent common image gathers are an excellent domain for model

space regularization. Penalizing roughness in the reflection ray parameter CIGs helps to

retrieve solutions that are physically sensible. The logic behind the smoothing regular-

ization is based on the notion that discontinuities or rapid amplitude changes along ray

parameter/angle stem from numerical imaging artifacts and acquisition footprint noise.

The reflection angle dependence is preserved, since it is slowly varying.

The theory of least-squares migration for AVP/AVA migration/inversion has been

presented for 3-D acoustic media. This thesis favors one-way wavefield propagators over

ray theoretical Green’s functions, since propagators handle the seismic wavefield with

greater generality. They inherently account for multi-pathing and treat caustics properly,

features that are difficult to honor with the high frequency approximation of the wave-

equation.

In a strict sense, the proposed algorithm is applicable only to compressional seismic

waves. The synthetic data examples invert for a fluid-fluid AVP/AVA characteristic. The

real earth, on the other hand, is elastic and Zoeppritz’s equation for specular PP reflec-

tions governs the reflection angle dependence of compressional waves. However, this

does not affect the concept of regularized least-squares migration nor does it change the

algorithm itself when applied to compressional seismic data. One simply has to be aware

of it. Most seismic surveys record predominantly compressional wave energy and an ex-

tension to the full elastic case has not been considered here. In practical terms, such an

extension would amount to a wavefield separation into compressional and shear wave

constituents and subsequent independent AVP/AVA migration/inversion.

The regularized least-squares migration/inversion has been extensively tested with

the help of 2-D synthetic data examples. These tests are important, since the adopted

primary data representation is known to have limitations that can compromise the inver-

sion result. The primary representation does not account for transmission loss and fine

structure filtering effects due to multiple scattering. Hence, inversion based on this repre-
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sentation works best in media with small to moderate medium contrast. The tested sub-

surface models range from simple to complex, with mostly small to moderate reflection

coefficients. The results underscore that regularized least-squares migration performs as

expected within its theoretical limitations. It is found that least-squares wave-equation

migration can retrieve AVP/AVA functions that, despite inevitable finite aperture effects,

are close to the true AVA. In all examples, the smoothness constraint proves particularly

beneficial when the seismic data are compromised by incompleteness. Acquisition foot-

print effects in terms of kinematic artifacts and amplitude distortion in the ray parameter

CIGs could be successfully mitigated in regularized least-squares migration.

In spite of the good results, it must be acknowledged that the AVP/AVA estimate ob-

tained from migration is comparable to that of costly least-squares migration provided

the imaging Jacobian is considered, the medium is moderately complex and the seis-

mic wavefield is optimally sampled. Contingent on the above points, migration is likely

to be the method of choice. This also implies that if a reliable data reconstruction of

incomplete data prior to migration is possible, least-squares migration may be replaced

with data reconstruction followed by amplitude scaled migration (Duijndam et al., 2000).

There exists a variety of data reconstruction (interpolation) techniques (e.g., Duijndam et

al. (1999)). However, for sparse data in complex media data interpolation tends to be

unreliable, while regularized least-squares migration/inversion has the advantage of a

model constraint that enhances robustness and gives good results even for very sparse

data. Data interpolation schemes, in general, lack a comparable physical regularization

constraint. Therefore, they are likely to be less robust under very sparse conditions. A

systematic comparison of data reconstruction versus least-squares migration is beyond

the scope of this thesis, albeit desirable in the future.

The synthetic data tests are confirmed by the 2-D field data example. The dataset is

from the Gulf of Mexico and exemplifies a typical sub-salt imaging situation. The tar-

get is a potentially gas bearing sand whose AVA is characterized by an increase in the

reflection amplitude with angle. The marine data are well sampled and have no appar-

ent data variance issue. While the expected AVP/AVA trend could be well reproduced

with conventional migration, the least-squares migration CIGs are smoother and more

interpretable. Some multiple energy could be attenuated as well. This is a promising
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result, but much more experience with sparser and more challenging datasets needs to

be gathered in order to better assess the benefits of regularized least-squares migration

for real-world data.

Dense wavefield sampling is typical for marine data. Data acquired on land is of-

ten significantly more irregular. The incomplete data issue is particularly troublesome

when imaging/inversion is to be carried out in three spatial dimensions. This is because

of the often encountered sparseness and irregularity of 3-D seismic surveys owing to

economical and practical reasons. It is expected that least-squares migration becomes

particularly beneficial in such cases. Unfortunately, a computer implementation of the

3-D least-squares wave-equation migration is a major obstacle. The 3-D phase-shift type

propagators that are amended for complex media make substantial use of 4-D Fourier

transforms. A time-efficient computation of these is at the limit of today’s computer

technology. Efficiency is paramount, since geophysicists demand a fast turnaround in

order to conduct parameter and performance tests that allow them to develop effective

processing strategies. The real-valued Hartley transform as an alternative to the com-

plex valued Fourier transform has been employed to optimize the computation of the

wavefield operators. However, the Hartley transform must be regarded as a mere alter-

native and does not entail an optimization level that can not be achieved with Fourier

transform techniques. Fortunately, the 2-D implementation in a parallel computer en-

vironment (shared or distributed memory) yields excellent speed-up performance. It is

therefore only a matter of time before a parallel 3-D implementation of (least-squares)

wave-equation migration becomes feasible. The regularized least-squares approach is

expected to unfold its full potential in 3-D seismology.
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Appendix A

High frequency approximation

Consider the source-free acoustic wave-equation (1.1.8) for constant density:5 � 
 - , � � /j� &i � 
�� 
 - , � � /
�� � �YQ � (A.0.1)

where the velocity

i
is slowly varying. Assuming a time harmonic wavefield,
 - , � � / � � ���l� 
 - ,�/ � (A.0.2)

one arrives at the reduced wave-equation or Helmholtz equation:; 5 � 8 � �i � > 
 - ,j/ � Q W (A.0.3)

In the ray theoretical approach one seeks a solution of the form 
 - ,�/ �mld- ,�/ � ���,n � î � , where� is called the eikonal, ld- ,j/ is the slowly varying amplitude and the frequency � is as-

sumed to be large (high frequency approximation). Upon inserting this ansatz one finds:;)� � ; &i � � - 5 ��/ � > l 8 ( %�� 5 l 765 ��8:%�� 5 � � l 8 5 � l > � ���,n �YQ W (A.0.4)

This condition is approximately satisfied if:- 5 ��/ � � &i � � � � � (A.0.5)

which is the eikonal equation, andl 5 � ��8 ( 5 � 765 l �YQ � (A.0.6)

which is the transport equation. The high frequency approximation is violated where

amplitudes have a strong spatial dependence as in the vicinity of velocity discontinuities
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or at focal points or caustics (Cerveny, 1985). Ray-tracing finds the trajectories that are

perpendicular to the wavefronts defined by � � i o 'Ï� � W :k<�kT� � i 5 � � (A.0.7)

where � is the arc length of the ray and � is the ray vector. It is convenient to introduce the

slowness vector � � �ô �  � � that has magnitude
ñ � ñ � �ô � � and is tangential to the ray. The

ray trajectories are found by (numerically) integrating a system of first order equations

(ray-tracing system) (Cerveny, 1985):k<�kT� � i � and
k3�k�� � 5 &i W (A.0.8)

Since 5 � &i 7 k,�k�� � &i � � or
k0�kT� � &i � (A.0.9)

integration along the ray solution yields the eikonal (i.e., travel-time):� - � / � � - � ® /«8±° �� ² &i - � ³ / k�� ³ W (A.0.10)

The transport equation (i.e., amplitude) is solved by means of dynamic ray-tracing (Cer-

veny, 1985). Dynamic ray-tracing finds the local wavefront curvature about the cen-

tral ray up to the second order (parabolic wavefront). The first order corresponds to

a local plane wave approximation and gives rise to the relationship between slowness,

wavenumber and temporal frequency: � � ï� W (A.0.11)

Dynamic ray-tracing also allows for the extrapolation of travel-time information with

respect to the central ray. Figure A.1 and Figure A.2 illustrate numerical ray-tracing and

travel-time extrapolation based on the second order approximation, respectively, for the

Marmousi velocity model. In Kirchhoff migration/inversion the Green’s functions are of

the form: G - , � ,qpf/ �mld- , � ,qpf/ � ���,n � î " î È � � (A.0.12)

where the amplitude ld- , � , p / is the solution of the transport equation for a point source

at , ³ and � - , � , ³ / is the corresponding travel-time.
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Figure A.1: A sample shot with a ray fan consisting of 161 rays superimposed on the
smoothed Marmousi velocity model. Note the shadow zones and caustics. For sufficient
coverage with travel-time information extrapolation becomes necessary.
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Figure A.2: A sample shot with with rays and travel-times. The travel-times are extrapo-
lated from 161 central rays by a parabolic wavefront approximation (Beydon and Keho,
1987). The travel-times are given in seconds. The solid areas indicate that no travel-times
are available.
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Appendix B

Radial trace transform (RTT)

Consider the �1��
 transform (Ottolini and Claerbout, 1984):� - � � � � � $ � ��/ � ° k � ° k � � - � � � � $ � � / 4)- � � � ³ / ñ � È � n?q Ä � í £� ° k � � - � � � � $ � �h�g� � 7 � / W (B.0.1)

A temporal Fourier transform yields the equivalent equation:� - � � � � � $ � � / � ° k � � - � � � � $ � � / � q=� Ä � í £ � � °.k � � - � � � � $ � � / � q=�ìë � í £ � (B.0.2)

where ï[� � � � � . This is written as:� - � � � � � $ � � / � � - � � ï[� � $ � � / ñ ë � � Ä � � �%À ³�� - � � ï�� � $ � � / W (B.0.3)

This is the radial trace transform (RTT) in the offset wavenumber/frequency domain as

illustrated in Figure 1.10. The RTT maps cones from the - ï{� � � / into cylinders in the- � � � � / space. That is, in 2-D, radial lines are mapped into lines parallel to the � axis.

In practice, this mapping requires data interpolation in the gridded - ï � � � / space. The

adjoint À of the radial trace transform, relevant to modelling, achieves the opposite by

mapping data points located on concentric cylinders in the - � � � � / space into cones in the- ï[� � � / space: r� - � � ï[� � $ � � / � � - � � � � � $ � � / ñ Ä � � ë �iÅ � �uÀ � - � � � � � $ � � / � (B.0.4)

where the tilde sign indicates that the numerical RTT is not exactly invertible. In seismic

imaging/inversion the RTT transform occurs always in conjunction with a summation
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over frequency (imaging condition). For modelling and migration the adjoint operator

pair results: ß ° k´� À ³ ä ³ �%ÀÂÁ � � (B.0.5)

where Á � is the identity with respect to frequency.

139



Appendix C

2.5-D stationary phase approximation

The goal is to approximate integrals of the form� � ° st T - � / � �un>v � � � k � � (C.0.1)

where w - � / is called the phase function and � is a parameter. As the parameter � gets

large, the integrand becomes highly oscillatory, effectively summing to zero except where

the phase function is stationary (Scales, 1997). The method of stationary phase allows for

an approximation of this type of integral. If w - � / has a stationary point w ³ - � ® / in the

interval ¸ x �zy ¹ and w ³ ³ - � ®}/ O� Q in ¸ x �zy ¹ a good approximation for the integral (C.0.1) is

achieved by � � (/S�{w È È - � ® / T - � ® / � � � n>v � � ² � Â}| Å ~ � � (C.0.2)

provided T is not singular for
� ® (Bleistein and Handelsman, 1986). The stationary phase

approximation is invoked for the ê 6 � integral in equation (1.3.58). Let� � °.k ê 6 � � ��n#v � ý >(� � � (C.0.3)

with w -�ê 6 � / � � ° �� ² &i & � i � -�ê �� � 8 ê �� � /� � 8 &i & � i � -�ê �6 � 8 ê �6 � /� � kl$ ³ � (C.0.4)� � � , and T �'& . One finds:w ³ -�ê 6 � / � ° �� ²
i ê 6 �� � �� &� & � ô ¿ � ý ¿` j Â ý ¿` � �� ¿ 8 &� & � ô ¿ � ý ¿> j Â ý ¿>X� �� ¿ �� kl$ ³ (C.0.5)

140



and w ³ ³ -�ê 6 � / � ° �� ²
i � ê �6 �� ~ ��� &�Ð& � ô ¿ � ý ¿` j Â ý ¿` � �� ¿ � � Å � 8 &�Ð& � ô ¿ � ý ¿> j Â ý ¿>X� �� ¿ � � Å � ���� kl$ ³

8 ° �� ²
i
� � �� &� & � ô ¿ � ý ¿` j Â ý ¿` � �� ¿ 8 &� & � ô ¿ � ý ¿> j Â ý ¿>X� �� ¿ �� kl$ ³ W (C.0.6)

Hence, the stationary phase approximation is:� � � �=� ×����� (/S� ��g² � �ý&`Jÿ 8 �ý > ÿ � k0$ ³ � q=� Ò ÿÿ ² � ý#`�ÿ Â ý > ÿ � � � È � (C.0.7)

where it is understood that all involved quantities are to be evaluated at the stationary

point ê 6 �{� ê � �z�YQ .
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Appendix D

Ray parameter imaging Jacobian

Since ray parameter imaging is carried out for a constant offset slowness, the dispersion

relation for êl� is expressed as a function of � � :êl�T� ê � � 8 ê 6 �z� ¶ � � iú� � � ñ ï�� ���ê� � ñ �Î 8 ¶ � � iú� � � ñ ï��n8:�ê� � ñ �Î W (D.0.1)

The imaging Jacobian becomes (Sava et al., 2001):� � k´�k êl� ���� Ä � � ß k ê �kÐ� ä q �Ä �� � �ô ¿ 8 � ë � q � Ä � � í Ä �~ê � � 8 �ô ¿ � � ë � Â � Ä � � í Ä �~ê � � � q � � (D.0.2)

which is arranged to:� � ß ; &i � i � � 7 � �Î > ; �i ê � � 8 �i ê 6 � > 8
i ï � 7 � �Î � ; �i ê � � � �i ê 6 � >�ä q � W (D.0.3)

Note that for horizontal interfaces ê � �d�.ê 6 �d� ���X� ~ �ô , where } is the specular incidence

angle, and the Jacobian simplifies to (Wapenaar et al., 1999):� �àß ; &i � �#��� � }i > (L+° �E} ä q � �
i

( L+° ��}úW (D.0.4)

All involved quantities are understood to be evaluated locally at the target reflector.
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Appendix E

Phase-shift operator in Hartley
domain

To avoid notational clutter, the causal, upward extrapolated 2-D wavefield is denoted

by a prime, � ³ `cb | bXb -�ê � � � ê � � � � / � �a`cb | bXb -�ê � � � ê � � � $ü���A$ � � / , and the subscripts W ô andW ôlô differentiate between the Hartley transformed wavefields according to version I and

version II, respectively. For zero-offset propagators ê � � is set to zero.

Zero-offset phase-shift operator using Hartley transform (version I)

The 2-D Hartley transform (version I) is expressed as the sum of its even part F § �]`ib -�ê � � � � /�ª
and its odd part � § �h`cb -�ê � � � � /�ª :F § �h`ib -�ê � � � � /�ª � &( ¸��a`ib -�ê � � � � /¨8v�h`ib - � ê � � � ��� / ¹� &(/S ° ° � -edA� � � / L+° � -�ê � �"dA� � � � /gk dA� k � � (E.0.1)

� § �h`ib -�ê � � � � /�ª � &( ¸��a`ib -�ê � � � � /j�Ã�h`ib - � ê � � � ��� / ¹� &(/S ° ° � -edA� � � /T�#��� -�ê � �"dA� 8V� � /gk dA� k � W (E.0.2)

Comparison of the real part f § � -�ê � � � � /�ª and the imaginary part � § � -�ê � � � � /�ª of the

2-D Fourier transform with (E.0.1) and (E.0.2) yields:F § �a`cb -�ê � � � � /�ª � f § � -�ê � � � ��� /�ª �� § � ` b -�ê � � � � /�ª � ��� § � -�ê � � � � /�ª W (E.0.3)
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With � ³ `cb -�ê � � � � / � F § � ³ `ib -�ê � � � � /�ªü8�� § � ³ `cb -�ê � � � � /�ª , the relations (E.0.3), and the

Fourier zero-offset phase-shift operator the Hartley domain zero-offset phase-shift oper-

ator (version I) is found by direct substitution after a few algebraic steps:�z³ `cb -�ê � � � � / � �a`ib -�ê � � � � / L+° � -�êl� �	$0/¨8y�a`ib -�ê � � � ��� /T�l�¸� -�êÐ� �	$)/ W (E.0.4)

Offset phase-shift operator using Hartley transform (version I)

Given that version II of the 3-D Hartley transform satisfies�a`cbXb -�ê � � � ê � � � � / � f § � -�ê � � � ê � � � � /�ªT�W� § � -�ê � � � ê � � � � /�ª � (E.0.5)

one can easily find the corresponding offset phase-shift operator (version II):�z³ `cbXb -�ê � � � ê � � � � / � �a`ib(b -�ê � � � ê � � � � / L+° � -�êl� �	$0/8m�a`ib(b - � ê � � � � ê � � � ��� /T�l�¸� -�êÐ� �	$)/ W (E.0.6)

Using the addition formulas for cosine and sine in three dimensions (Bronstein et al.,

1997), the following relations between versions I and II of the Hartley transform are de-

rived: �a`cbXb -�ê � � � ê � � � � / � &( ¸��a`cb - � ê � � � ê � � � � /«8y�a`ib -�ê � � � � ê � � � � /8 � ` b -�ê � � � ê � � � ��� /1�Ã� ` b - � ê � � � � ê � � � ��� / ¹ � (E.0.7)

and �a`ib -�ê � � � ê � � � � / � &( ¸��a`cbXb - � ê � � � ê � � � � /«8y�a`ib(b -�ê � � � � ê � � � � /8 � ` bXb -�ê � � � ê � � � ��� /��z� ` b(b - � ê � � � � ê � � � ��� / ¹ � (E.0.8)

which means the same relation holds in both directions. Noting that sine terms change

their leading sign for negative frequencies to honor causality, the relations (E.0.6), (E.0.7)
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and (E.0.8) are used to find the offset Hartley phase-shift operator (version I):�z³ `cb -�ê � � � ê � � � � / � &( ¸���³ `ibXb - � ê � � � ê � � � � /«8v�z³ `cbXb -�ê � � � � ê � � � � /8 �z³ `ib(b -�ê � � � ê � � � ��� /j�Ã�z³ `cbXb - � ê � � � � ê � � � ��� / ¹� �h`ib -�ê � � � ê � � � � / L+° � -�êÐ� �	$)/8 &( ¸��a`ib(b -�ê � � � � ê � � � ��� /«8v�h`ibXb - � ê � � � ê � � � ��� /�z� ` b(b - � ê � � � � ê � � � � /¨8v� ` bXb -�ê � � � ê � � � � / ¹ �#��� -�ê � �A$0/� �h`ib -�ê � � � ê � � � � / L+° � -�êÐ� �	$)/«8v�a`cb - � ê � � � � ê � � � ��� /T�#��� -�êÐ� �	$)/8 ¸��a`ib(b -�ê � � � ê � � � � /j�Ã�a`cbXb - � ê � � � � ê � � � � / ¹ �#��� -�êÐ� �A$0/� �h`ib -�ê � � � ê � � � � / L+° � -�êÐ� �	$)/«8v�a`cb -�ê � � � ê � � � ��� /T�l��� -�êl� �	$0/ W (E.0.9)

That is to say, the complex phase-shift term is replaced by two real multiplications in the

Hartley domain.

145


