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Progreso y retroceso

Inventaron un cristal que dejaba pasar las moscas. La mosca venia, empujaba
un poco con la cabeza y, pop, ya estaba del otro lado. Alegria enormisima de la
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Todo lo arruino un sabio hungaro al descubrir que la mosca podia entrar pero
no salir, o viceversa a causa de no se sabe que macana en la flexibilidad de las
fibras de este cristal, que era muy fibroso. En sequida inventaron el cazamoscas
con un terron de azucar dentro, y muchas moscas morian deseperadas. Asi
acabo toda confraternidad con estos animales dignos de mejor suerte.
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Abstract

Seismic exploration has been proven to be a powerful tool for imag-
ing the subsurface of the Earth. There are cases, however, where
although sonic logs exhibit significant velocity stratification, seismic
processing is unable to obtain a well defined image of the reflectors.
Coal seams in the Western Canadian Basin are an example of such
a problem. Non-resolvable layers of coal cause large reflection coef-
ficients due to the strong impedance contrast with the background.
This behaviour, typical for a cyclic reflectivity causes apparent at-
tenuation of the transmitted signal due to intrabed multiples. The
interference between primaries and mutiples will be destructive for
certain frequencies. Therefore, the amplitude spectrum of the trans-
mitted signal will exhibit notches for such frequencies. This thesis is
intended to propose a processing sequence that helps to compensate
for that loss of frequency and therefore achieve a better image of the

subsurface.
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Chapter 1

Introduction

1.1 Seismic reflectivity sequences.

The goal in seismic exploration is to obtain an accurate description of geological
formations using seismic wave fields generated and recorded at the surface of
the Earth. However, there are cases where, despite sonic logs show significant
velocity stratification, seismic processing is not able to generate a well defined
image of the reflectors. The key word in those cases is resolution. Some areas
present a stratification that is so fine that cannot be resolved by the seismic fre-
quency band. Non resolvable sections in which the impedance structure is cyclic
present an apparent attenuation which differs from the linear frequency depen-
dence commonly attributed to absorption. One main cause for this attenuation
is the presence of short-path multiples. In cyclic systems, the impedances tend
to alternate rapidly between high and low values. Consequently, the reflection
coefficients tend to be large and transmission losses are important. Short delay
multiples do not show a distinct arrival, but overlays the primary and modifies
it by superposition. As more and more multiples are superposed, the primary

itself is decreased by transmission losses until the propagating wavelet is purely
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multiple energy. The main concept to understand this effect is that the time
difference between primary and first multiple is less than the width of the prop-
agating wavelet. Therefore, we are dealing with a problem that it is beyond
seismic resolution and as a consequence seismic processing fails to eliminate the
multiple energy.

O’Doherty and Anstey (1971) have shown that short path multiples exert
an important influence on the amplitude and character of the reflected waves in
systems in which the impedance stratification is cyclic. Schoenberger and Levin
(1974) attempt to separate the apparent attenuation due to this layering effect
from the common attenuation known due to absorption. Based on the latter
work, Mateeva (2001) tried to understand the coloring effect intrabed multiples
have on seismic trace spectra. Still it is a confusing subject, since on top of
the big processing limitation due to seismic resolution, there is the problem of
non-white reflectivity series. Conventional seismic processing assumes a white
earth’s reflectivity; hardly ever in the processing flow non-whiteness is taking
into account. Cyclic impedance layering presents an amplitude spectrum that
is far away of being white (Walden and Hosken, 1985). This property implies
another challenge for seismic processing in areas with this type of reflectivities.

Seismic data have to be properly processed in order to obtain a good rep-
resentation of the subsurface. Processing parameters and assumptions made at
this stage have to be coherent with the geological knowledge of the area under
study. The difficult task, however, it is to determine how should the right set of
parameters be chosen? General assumptions about the seismic model are made
during seismic processing so as to simplify the problem under study.

The processing step that needs a significant assumption about the Earth’s
response is the deconvolution step. Deconvolution is a process that improves

the temporal resolution of seismic data by compressing the basic seismic wavelet
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(Yilmaz, 1987). A recorded seismogram can be modeled as a convolution of the
Earth’s impulse response with the seismic wavelet. The Earth’s impulse response
comprises primary reflections (reflectivity series) and all possible multiples. Ide-
ally, deconvolution should compress the wavelet components and eliminate mul-
tiples, leaving only the Earth’s reflectivity in the seismic trace. Of course, to
be able to compress the wavelet, first it has to be known or approximately esti-
mated. Generally, the wavelet is assumed to be minimum phase, although this
is not enough to solve the problem. An extra assumption should be made; the
Earth’s response is white. Such a significant assumption becomes necessary in
order to find the wavelet through the autocorrelation of the trace. The immediate
question would be, is this a valid assumption? Computation of the autocorrela-
tion function of primary reflection coefficients from real well logs identifies them
as a non-white process evidenced by the presence of significant negative values
of autocorrelation at small lags (O’Doherty and Anstey, 1971). Investigations
on the spectral properties of primary reflection coefficients were made for a wide
variety of rock sequences around the world. It was found (Walden and Hosken,
1985) that each sequence has a 'pseudo white’ spectrum above a corner frequency
f.. The power spectrum below f, fell off as f? where 3 is between 0.5 and 1.5.
After Walden and Hosken (1985), it is clear that the whiteness assumption was
invalid.

This thesis is intended to deal with these two main effects, the apparent
frequency attenuation due to short path multiples in a cyclic impedance layering

and the property of nonwhiteness associated with this type of stratification.
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1.1.1 A Western Canadian Sedimentary Basin (WCB)

case study: the Rosebud data set

Data from the Western Canadian Sedimentary Basin (WCB) gives a good exam-
ple of the two effects mentioned in the previous section. Data from the Rosebud
area present a challenge at the time of being processed. Thin layers of coal cause
large reflection coeflicients due to the strong impedance contrast with the back-
ground. As it will be explained in chapters 2 and 3, this behavior, typical from
a cyclic reflectivity, cause apparent attenuation due to intrabed multiples. The
interference between primaries and multiples will be constructive for some fre-
quencies but destructive for others. As a consequence, the amplitude spectrum
of the transmitted signal will exhibit notches for certain frequencies. All these
effects will change the waveform of the signal as it propagates through the layers,
arising then the problem of non-stationarity of the wavelet. At this stage is where
the conventional processing fail to get a good image of the subsurface due to two
main factors. First, short delay multiples interfering with the primary energy,
distorting not only its amplitude but also its phase spectrum. Second, the cyclic
reflectivity implies certain order that deviates from the whiteness assumption.
These two effects together cause the non-stationarity of the signal. Windowed
processing of the data including filters to compensate for the loss of frequency
content and the lack of adequate assumptions in seismic processing, seems to be

the best way to approach this problem.

1.2 Motivation

As it was mentioned in the previous section, in the WCB thin coal layers act as
a layering transmission filter. A notch at certain frequency would then appear

in the amplitude spectrum of the transmitted signal just below the transmission
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filter. This loss of high frequency content in the signal makes difficult to have a
good image of the seismic horizons (reflectors) below the coal seams. Secondly,
reflectivity in the presence of coal seams has a non-white correlation structure
that should be taken into account at the moment of thinking in deconvolution.

The aim of this work is to propose a processing sequence that helps to com-
pensate for the loss of frequency due to intrabed multiples and therefore achieve
a better image of the reservoir. As well, techniques dealing with non-white re-

flectivity deconvolution will be considered.

1.3 Thesis outline

This thesis reviews the concept of cyclic and transitional layering. Stochastic
modeling of reflectivity for these two types of layering systems will be used to
model non-white reflectivities and will help at the moment of proposing a new
deconvolution scheme for this kind of scenario.

The effect due to intrabed multiples for one simple layer will be presented an-
alytically in order to understand the relation between the apparent attenuation
and the characteristics of the layer. Zero offset acoustic deterministic modeling
will help in understanding the idea of frequency notches in the transmitted signal
through a cyclic layering. Once the zero offset case is introduced and understood,
an analysis versus offset is presented. In order to have realistic simulations includ-
ing effects due to transmission loss and multiples I investigate which modeling
technique would be proper for this study. 1 found that for zero offset modeling
the algorithm due to Mendel (1979) and extended by Wyatt (1981) is more
flexible than the earlier approaches from Wuenschel (1960), Robinson (1968)
and Claerbout (1976). Mendel’s algorithm not only allows to place source and
sensors at different depth but also the usage of non-equal one way time. This

method treats all the equations for a layered-system media in the time domian.



CHAPTER 1. INTRODUCTION 6

In the case of offset dependent simulations I found that the reflectivity method,
although its algorithm is complicated as much as its implementation, it is the
best way to perform offset dependent seismic simulations. With this algorithm
we overcome the computation difficulties from the traditional matrix methods
introduced by Thompson (1950) and corrected and expanded by Haskell (1953)
such as growing exponentials. The algortihm I used builds the whole response
of an elastic half space in terms of the reflection and transmission properties of
the stratified medium (Kennet, 1983). This method do not contain any growing
solution and so completely avoid the loss of precision problems. Examples using
these techniques are shown to visualize the layering filtering effect.

The structure of the thesis is as follows:

x Chapter 1 provides an introduction, motivation and scope of the thesis.

x Chapter 2 provides an introduction to the concepts of cyclic and transi-
tional reflectivities. The main focus within this chapter resides on the cyclic
impedance layering, being this the one that corresponds to coals layering
in the WCB. Its probability distribution and autocorretalion structure are

also discussed. Models and examples are provided.

x Chapter 3 deals with the impulse response for the two reflectivity types
introduced in the previous chapter. Consequences of the short-period mul-
tiples associated with cyclic layering are explained theoretically and clarify

with examples.

x Chapter 4 first, reviews the existing approaches for deconvolution with
non-white reflectivity. Then, a new scheme is proposed to overcome the
effects of the apparent attenuation due to cyclic impedance layering. An

example is given to illustrate this technique.
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x Chapter 5 explains the modeling techniques used to understand the impulse
response of coal seams. Techniques involving all multiples and transmission

loss are explained for zero offset and offset dependent seismograms.

*x Chapter 6 it is a summary of my research and conclusions where I propose

a way to face the problem of processing data in the presence of coal seams.



Chapter 2

Cyclic and transitional

reflectivities

2.1 Introduction

This chapter deals with the concept of reflection coefficients and their influence
in the propagation of waves. The subsurface can be characterized by changes due
to different acoustic properties of successive layers. These changes are related
to the reflectivity of the subsurface. One can distinguish two extreme types of
reflectivity, cyclic and transitional. Several researchers have work in this problem
and there are many publications about the statistical properties of these types of
reflectivities as well as their effects on a propagating wavelet. The most important
contributions published are those by O’Doherty and Anstey (1971) and Walden
and Hosken (1985).

To introduce the subject, let us first start with a basic definition of reflection
coefficients. The ratio of the amplitude of the displacement of a reflected wave
to that of the incident wave is defined as the reflection coefficient. The normal

incidence definition for an interface which separates media of densities p; and po
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and velocities V7 and V5 , for a plane wave vertical incidence from medium 1 is

given by:
_ PQV2 - ,01V1
p2Vo+pi Vi

Many authors have studied the amplitude spectrum and distribution of the

Ry (2.1.1)

reflection coefficients of the earth. O’Doherty and Anstey (1971) made a com-
plete analysis on the amplitudes of reflected signal. Their paper paid special
attention to those variations in reflection amplitudes imposed by the subsurface
geology. According to their research, the factors affecting reflection amplitudes

can be enumerated as follows:

~» spherical divergence

~> absorption

~» interface reflection coefficients
~» interface transmission losses

~» multiple reflection effects

In this thesis, the focus is on those factors related with interface reflection co-
efficients, transmission losses and multiples reflections. This chapter deals with
the reflectivity properties and how to model them, next chapter is a discussion

of their effect in the impulse response.

2.1.1 Cyclic and transitional layering

A series of reflection coefficients as they were defined by equation 2.1.1 can be
classified in two main categories cyclic and transitional. These types of reflec-
tivity are associated with two extreme cases of layering. Cyclic layering is a
pattern of thin layers that alternate high and low velocity materials. Thin lay-

ers in this context are defined as those whose thickness is beyond the seismic
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resolution. This is to say, layers with thickness less than about A/8, where A is
the (predominant) wavelength computed using the velocity of the layer. In the
presence of noise the threshold of resolution is forced to thicker layers; less than
A/4 (Widess, 1973) .

Transitional layering would imply steady gradations of velocity within thick
layers (O’Doherty and Anstey, 1971). In terms of reflectivity it is found that for
the former type, the reflection coefficients tend to be large and with alternating
sign due to the significant contrast of velocities at every interface. On the other
hand, for the latter type, reflection coefficients are small since the contrast on
the layer properties are not so drastic.

Real data, in many cases it is a mixture of these two types of layering. A
clear example is shown by the reflectivity series corresponding to well data from
the Rosebud area in the WCB. The cyclic pattern, in this case, is given by the
presence of coals seams. These are thin layers of 1 to 10 m thickness with velocity
and density half of the background in packages of 20 to 30 m. An example of
these data is shown in figure 2.1 where sections of transitional and cyclic layering

are identified.



CHAPTER 2. CYCLIC AND TRANSITIONAL REFLECTIVITIES

Reflectivity from well data

0.5 T

dvcLic CYCLIC

TRANSITIONAL
0.3 TRANSITIONAL

0.2r

0.1

1 1 1 1
500 1000 1500 2000 2500 3000

DEPTH [M]

Figure 2.1: Reflectivity corresponding to a well in the Western Canadian Basin
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The classification of these types of stratification helps to identify the analo-
gous concept from the point of view of impedance contrast. I will refer from now
and on to cyclic reflectivity as the one associated with cyclic layering and transi-
tional reflectivity that associated with transitional layering. The auto-correlation
function (acf) of each reflection coefficients series (rc) present different features.
The acf for the transitional case, basically, has all positive values for small lags.
Instead, for the cyclic case, it reveals a second value strongly negative. This
behavior of the acf clearly reveals that reflectivity in neither case is white. A
white reflectivity would have an acf with its maximum value at zero lag and zero
at the rest of the lags.

Seismic processing, as it was mentioned in the introduction, often makes the
assumption of white reflectivity to simplify the deconvolution problem. Real
data generally deviate from the whiteness assumption.

The WCB presents clear examples of this type of non-white reflectivities.
Data from three wells on the Rosebud area (WCB) help to visualize the charac-
teristics just mentioned. All the wells include layers of coals (cyclic pattern) but
as it is shown in the sonic logs for Well 1 the presence of coal seams seems to be
stronger than in the other two wells.

As it is shown in figure 2.2 coal seams have a low velocity compared to the
background (high values in the sonic log) giving rise to large reflection coefficients.
The autocorrelation function shows strong negative values at small lags for well 1
remarking that for this well the influence of coals seams is quite important. The
acf for wells 2 and 3 still show negative values at small lags but not as important
as in well 1. Coal layers do not seem to have such a strong effect overall the

reflection coefficient series in wells 1 and 2.
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Figure 2.2: Sonic logs corresponding to three wells from Rosebud area in the WCB. Layers

of coal are identified by their high sonic values compared to the background.
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Figure 2.3: Top: Reflectivity series computed from three well sites in the WCB. The presence

of coal seams is evidenced by large reflection coefficients (OWT stands for one way time).

Bottom: Autocorrelation function (acf). Non-whiteness is exhibited by the oscillatory behavior

of the acf at small lags.
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It is interesting to visualize how the amplitude spectrum changes through
different time windows taken from the reflectivity series of each well. Figures
2.4, 2.5, 2.6 illustrate the amplitude spectrum for windows containing transitional
and cyclic reflectivity respectively. Note that reflectivity series are pseudo white

as observed by Walden and Hosken (1985).

Well #1 Reflectivity series
0.5

0.4 B
0.2
0.1 B
0 rﬂh
-0.1 4

-05 \ 1 I
0

0.1 0.2

\\ owT [sec] ‘G

Amplitude spectrum wi nd&w 0-0.1sec Amplltude spectrum window: 0.2-0.3 sec Amplltu spectrum window 0.3-0.4 sec

" Frequency[hd " Frequency[h " Frequency [h7]

Figure 2.4: Reflectivity series and windowed amplitude spectrum corresponding to cyclic and

transitional impedance layering for Well 1 from the WCB.
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Figure 2.5: Reflectivity series and windowed amplitude spectrum corresponding to cyclic and

transitional impedance layering for Well 2 from the WCB.
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Figure 2.6: Reflectivity series and windowed amplitude spectrum corresponding to cyclic and

transitional impedance layering for Well 3 from the WCB.
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2.1.2 Power spectrum and amplitude distribution for pri-

mary reflection coefficients

Studies of the spectral properties of primary reflectivity have been published, an
important contribution is the work done by Walden and Hosken (1985). They
basically investigated the form of the non-whiteness encountered in the reflection
coefficient series corresponding to different well data around the world.

It was found that the reflection series are pseudo-white only above a corner
frequency below which their power spectrum falls away according to a power
law f#, where B is between 0.5 and 1.5. Cyclic reflectivity has a value of 3
which tend to be greater than in the case of transitional reflectivity. Examples
illustrating this features can be seen in the figures from the previous analysis for
the Rosebud data and also in the stochastic modeling presented in the following
section (figures 2.7 and 2.8).

Another important property of the reflection coefficient series is its amplitude
distribution. In general no assumption is made about the probability distribution
of the reflection coefficients in conventional deconvolution, or if it is done, then is
assumed to be Gaussian. Walden and Hosken (1986) also studied this property
and they found that the distribution is essentially symmetric but has a sharper
central peak and larger tails than a Gaussian distribution.

While in many cases Gaussianity is assumed for convenience, in wavelet phase
estimation, it is necessary that the reflection coefficients are not Gaussian or else
phase recovery is impossible (Sacchi and Ulrych, 2000). A Gaussian reflection
coefficient series means that the trace is also Gaussian and its probability struc-
ture is completely determined by the modulus of the wavelet’s transfer function
at each frequency, that is to say, by the spectral density which carries no phase
information.

Walden and Hosken (1986) proposed that a mixture of two Laplace distribu-
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tions provides a good fit to the amplitude distribution of the primary reflection
coefficients. They found that the single distribution representation of amplitudes
of reflection coefficient always corresponds to an underlying kurtosis ! of about
six or above. They suggested that a suitable mixture model representation might
be in terms of two-component distributions whose sum always corresponds to a
kurtosis exceeding six whatever the mixing proportions. A model satisfying such
a constraint is a mixture of two Laplace (or double-sided exponential) distribu-

tions, such a mixture always has a kurtosis exceeding six.

2.1.3 Stochastic reflectivity modeling

Based on what was observed in terms of the spectral properties of the reflec-
tion coefficient sequences, it was found (Walden and Hosken, 1985) that an
ARMA(1,1) process would be a simple way for modeling the kind of spectrum
described in the previous section.

An ARMA(1,1) is a mixed autoregressive/moving average process (Chatfield,
1996) and is given by:

Ty = ¢1 Ti_1 + E¢ — 91 Et—1, (213)

where x; represent the reflection coefficients, ¢; is the autoregressive parameter,
f: is the moving-average parameter, ¢; is a pure random process with zero mean
and variance 02 with a Laplace distribution.

The Power Spectrum of an ARMA(1,1) can be computed by means of the

z-transform. Let us first introduce the concept of z transform (see for instance,

LGiven a zero mean time series z; kurtosis is defined as:

Blz}]

Ke = ()

(2.1.2)

where E[.] stands for expected value.
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Robinson and Treitel, (1980). Given a sequential collection of samples
0, L1y T2, eey Ty (2.1.4)

where z,, indicate the sample at time nAt¢. Then, the Z transform of z;, with

k=0,1,2,3...n is defined as
X(z) =)z 2, (2.1.5)
k=0
where z is known as the delay operator given by,
z=e", (2.1.6)

w is the angular frequency given in radians.

Now, using the z-transform, equation 2.1.3 can be re written as:
X(2) [1 —¢1z] = E(2) [1 — 0,2]. (2.1.7)
Then the power spectrum is defined by:
P(z) =X(2) X(z 1), (2.1.8)

by replacing z = €%,

_ 2 [1—0.2][1 — 6,27
e )

(2.1.9)

o 1+ 6% — 26, cos(w)
14 $? — 2¢1c08(w)’

The auto-covariance function ¢y = E(x:x144) (F(.) denoting expected value)

is given by (Box and Jenkins, 1970)

Pw) = (2.1.10)

co=0"= [(1+ 0% —2¢101)/(1 — (!5%)]0?- (2.1.11)

cr = [(1— ¢161)(¢1 — 01)/(1 — ¢7)]o?. (2.1.12)
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Cr = ¢1ck,1 k Z 2. (2113)

Then, the autocorrelation function (acf) py = cx/0? is given by:

po = 1. (2.1.14)
pr= (1~ ¢:101)(d1 — 01)/(1 — ¢})]. (2.1.15)

The acf decays exponentially from the starting value p;. The decay is smooth
if ¢, is positive and oscillatory if ¢; is negative (Walden and Hosken, 1985).
Notice that the sign of p; is given by the sign of (¢; — 6;). The process is
correlated if ¢; > 6; and anti-correlated (negatively correlated) if ¢; < ;. When
¢1 = 01 the process is uncorrelated and it reduces to white noise.

The mixed Laplace distribution is given by:

_lIrl 1—p _In
f(rip, A, A2) = 2%\1@ Mo er 2, (2.1.17)

p and (1 — p) are the mixing proportions of the Laplace distributions

1 _ Il ]

_1 X _1 Xo
T € 1and2/\2@ 2

where A\; and A\, are the scale parameters of the first population and second pop-
ulation, respectively. Values found by Walden and Hosken for the ARMA(1,1)
and for the Laplace distribution for the cases of cyclic and transitional reflectivity
are given in tables 2.1 and 2.2 respectively.

Notice that in both cases ¢; < 6; showing that the process should be anti-
correlated. In the cyclic case ¢; << 6, thus it is expected to find important
negative values for small lags in this case. Instead, the transitional case has a

¢1 which is closer to #;, though is still below it, but this reflects that this case is

closer to a white process than the cyclic one.
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rc sequence | ¢1 | 64

cyclic 0.1 0.9

transitional | 0.8 | 0.98

Table 2.1: Values of the autoregressive parameter ¢; and the moving average pa-

rameter 6 for cyclic and transitional reflectivities found by Walden and Hosken.

Ic sequence p A Ao

cyclic 1 0.09 0

transitional | 0.23 | 0.007 | 0.017

Table 2.2: Parameters p, A;, Ay for a Laplace distribution corresponding to a

cyclic and a transitional reflectivities found by Walden and Hosken.

Cyclic Reflectivity Amplitude Spectrum for a cyclic RC series
T T T 4

0.008|
350

0.006

3l
0.004|

0.002 250

RC | Amplitude
2k

-0.002 h
-0.004
-0.006

-0.008}

L L L L L L L L L L L L L
05 1 15 2 25 3 35 4 0 20 40 60 80 100 120 140

Time [sec] frequency [Hz]

Figure 2.7: Left: cyclic reflectivity series using ARMA(1,1). Right: Corresponding amplitude

spectrum computed using the periodogram and the theoretical power spectrum (smooth line).

The modeled reflectivity series for a cyclic and transitional case using ARMA(1,1)

with Walden and Hosken parameters is shown in the figures 2.7 and 2.8.
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Transitional reflectivity Amplitude Spectrum for a transitional RC series

RC

L L L L L L
0 20 40 60 80 100 120 140

° ’ 1.5 time [zsec] * ) * ! Frequency [Hz]
Figure 2.8: Left: transitional reflectivity series using ARMA(1,1). Right: Corresponding
amplitude spectrum computed using the periodogram and the theoretical power spectrum

(smooth line).
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2.2 Fitting ARMA models to WCB log data

Based on the ideas of Walden and Hosken (1985), ARMA(1,1) models were fit
to the well data from the WCB. Therefore, it is necessary to estimate the autore-
gressive parameter ¢; and the moving-average parameter #;. This estimation is
perfomed in an iterative way, the sum of squares of the residuals can be calcu-
lated at every point on a suitable grid of parameter values. The values which

give the minimum sum of squares may then be the best estimated parameters

(Chatfield, 1996). The model is given by:
Ty = ¢1 i1 + E¢ — 91 Et—1, (221)

where x; is the reflectivity series coming from log data. Given N observations
x1,...xy; values for ¢; and 6, are found by grid search. Given an initial value for

€0, the residuals are calculated recursively by:
Et = T — ¢1 Ti—1 + 91 Et—_1- (222)

The residual sum of squares may then be calculated as:

J=> ¢ (2.2.3)

Then, several values of ¢; and #; are tried until the minimum of J is found.
One fact to take into account when defining the range of values to test is that
an ARMA(1,1) process is stationary if | ¢; |< 1 and invertible or minimum
phase if | #; |< 1. This limits the range of parameters. In the case of fitting
ARMA models to the Rosebud well data, I used the values found by Walden and
Hosken (1985) as the reference values to set the limits. Therefore, the search
was done with 0.05 < ¢; < 0.9 and 0.5 < 6; < 0.92. Models were perfomed for
sections corresponding to cyclic and transitional patterns present in each well.

The sections chosen are time windows of 0.1 sec cointaining 100 samples. Figures
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2.9, 2.11 and 2.12 illustrate the three wells with their amplitude spectra computed
using a periodogram technique (Chatfield, 1996) and using ARMA models. The
corresponding plot of the residual sum of squares to find the parameters ¢; and
6 is shown at the bottom of those figures.

Notice that for well 1 the fitted model at window 0.3-0.4 sec does not give
a good approximation of the amplitude spectrum because it overestimates the
values. In this case, it was found that allowing ¢; and 6; to vary between -1 to
1 a better fit is obtained. As a result it was found a value for ¢; < 0, that would
agree with a more oscillatory acf as the one observed in this window due to the
strong effect of the coal seams. On the other hand, it can be seen from the plot
of the cost function J that the optimal parameters are in a wide region. Figure
2.10 illustrate this case, for better visualization of the minimum value log(J)
instead of J has been plotted.

In all the other windows changing the searching limits between -1 and 1 does
not result in significant differences. Only for well 1 and the window 03-04 sec
the parameters found in the larger interval were used. These parameters are

¢1 = —0.33 and 6, =0.2.
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Figure 2.9: Top: Reflectivity series and windowed amplitude spectrum of Well 1 and the

fitted ARMA model. Bottom: parameters ¢ and 6 found from minimum error.
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Figure 2.10: Top: Reflectivity series and windowed amplitude spectrum of Well 1 and the
fitted ARMA model. Center: Comparison of parameters ¢ and 6 for the window 0.3-0.4 sec,
using bigger search interval. Bottom: Log(J) is plotted in this case for better visualization of

the minimum.



CHAPTER 2. CYCLIC AND TRANSITIONAL REFLECTIVITIES 28
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Figure 2.11: Top: Reflectivity series and windowed amplitude spectrum of Well 2 and the

fitted ARMA model. Bottom: parameters ¢ and 6 found from minimum error.
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Figure 2.12: Top: Reflectivity series and windowed amplitude spectrum of Well 3 and the

fitted ARMA model. Bottom: parameters ¢ and 6 found from minimum error.
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2.3 Summary

In this chapter, the concepts of cyclic and transitional reflectivities were reviewed.

A cyclic impedance layering is the one that corresponds to high reflection
coefficients alternating signs. Its autocorrelation presents important negative
values at small lags revealing its non-whiteness. Its power spectrum decays
according to a power law f?, where 3 tends to be greater than in the case of a
transitional reflectivity.

The transitional case is described by small reflection coefficients. Its auto-
correlation is smoother than in the cyclic case with positive values at small lags.
Its power spectrum has a gently small slope.

Walden and Hosken (1985; 1986) have shown that reflectivity series, in gen-
eral, are non-white and its amplitude distribution is not Gaussian. They have
proposed that both types of reflectivity can be modeled by an ARMA(1,1) pro-
cess. This kind of process is defined by two parameters, an autoregressive param-
eter ¢ and the moving-average parameter 6. Its autocorrelation function suggests
that the process is uncorrelated when ¢ = 6. In the cyclic case the autoregressive
parameter ¢ tends to be far away from the moving-average parameter 6, while
in the transitional case they are closer. This fact clearly indicates that there is
certain order or correlation being stronger in the cyclic case.

In the Western Canadian Basin, the presence of sections with coal seams
perfectly fit into the definition of cyclic reflectivity. It is interesting to be able
to model cyclic reflectivities for further applications during deconvolution as it
will be explained in chapter 4.

Examples were given using well log data from the Western Canadian Basin.
Several log sections corresponding to the two types of reflectivity were chosen

and modeled using ARMA(1,1) processes.
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Chapter 3

Stratigraphic filtering

3.1 Introduction

In the previous chapter I have discussed two types of reflectivitites that can be
used to model seismic data. It is important to notice that, in general, reflectivity
series exhibit segments that can be considered of either cyclic or transitional be-
havior. In this chapter, I will focus on the study of the Earth impulse response
when the Earth consists of vertically stratified succession of layers. There are two
main factors to consider. First, the interface transmission losses and secondly
multiple reflection effects. As it was mentioned in the introduction of this thesis,
these effects are critical in the case of a cyclic impedance stratification. Interfer-
ence between primary and short path multiples is the key point to understand
the frequency attenuation of the transmitted signal.

Apparent attenuation due to layering is often known as stratigraphic filtering,
layering filtering or simply transmission filtering.

O’Doherty and Anstey (1971) proposed a connection between the amplitude
spectrum of the pulse transmitted through the stratigraphic filtering and the

power spectrum of the reflection coefficients corresponding to the layering filter.
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After their work, many others authors focus on the problem of stratigraphic
filtering and study different approaches to derive the O’Doherty and Anstey
formula since their derivation seems to be too sketchy to follow. Banik (1985b)
proposed a new derivation of O’Doherty and Anstey formula based on the mean
field theory (see Appendix B). Schoenberger and Levin (1974) accept O’Doherty
and Anstey derivation and focus on separating the apparent attenuation due
to layering filtering from the common one known due to absorption. Mateeva
(2001) follow this latter approach to explain the “color” imposed by the short-
delay multiples in the spectrum of the seismic trace.

In this chapter the concept of layering filtering will be discussed. Examples
are given in order to clarify the difference on the impulse response for transitional
an cyclic reflectivities. Deterministics and stochastic reflectivity models are used
to illustrate the effect of a cyclic layering. Finally, following Schoenberger and
Levin (1974), an example will help to illustrate that the effects of layering

filtering are a combination of transmission loss and multiple interference.

3.1.1 Interface transmission losses

The importance on the classification of cyclic and transitional reflectivity arises
when we compare the interface transmission losses for each case. To clarify the

idea let us write the two-way transmission loss for a normal incidence case:
T, =1- R3,. (3.1.1)

where R, is the reflection coefficient between layers 1 and 2. T}, is the two way
transmission coefficient between same layers as they are illustrated in figure 3.1.

From this expression it is easy to see that in the case of transitional reflectivity
where the reflection coefficients are small, transmission loss is not significant.
Instead, for a cyclic case, represented by high reflection coeflicients, transmission

losses becomes quite important.
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Now, we consider the amplitude of a reflection coming from the third layer

as shown in figure 3.1

¥ % 171
VS
v

Figure 3.1: Reflected signal in a layered media.

Then, the amplitude of the reflected signal is given by:

Rz, .(1 - R%). (1 — R3). (3.1.2)

Since Rfj% 0 for the transitional case, the amplitude would basically be the one
of convolving the wavelet with the reflection coefficient series. In the case of a

cyclic reflectivity amplitude would significantly be affected by transmission loss.

3.1.2 Multiple reflection effects

The most important effect to take in account when dealing with the computation
of the impulse response is the one due to multiple reflections. There are two main
effects involved: one is caused by the waves trapped inside thin layers, the other
is the cumulative effect of multiple reflections from a sequence of thin layers
(figures 3.2 and 3.3).

In the first case, it can be shown that for one layer its thickness plays an important
role in determing the appeareance of a frequency notch in the amplitude spectrum

of the reflected signal. In the second case (figure 3.3), the multiply-reflected signal
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Figure 3.2: Intrabed multiple reflected signal for a layered media.

in a sequence of thin layers, which are bounded by interfaces of opposite polarity,
it is always of the same sign as the direct transmitted signal and tends to overtake
it in amplitude. The contribution of these multiples tend to compensate some of

the large transmission loss that would otherwise occur.

Incident
+
+
+
+
Direct Sum of 2-bounce multiples
transmitted

Figure 3.3: The cumulative effect of the multiple reflections for a sequence of thin layers.

The result of these two effects together is known as layering filtering.
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3.1.3 Layering Filtering

The term stratigraphic filtering or layering filtering is used in the literature for
the shaping of transmitted waves by superposition of multiples reverberating
in beds too thin to be resolved individually (Banik et al., 1985a). O’Doherty
and Anstey (1971) found an approximate relationship between the amplitude
spectrum T'(w) of the transmitted pulse and the power spectrum R(w) of the

reflection coefficients series !, given by
T(w) = e B4 (3.1.3)

where At is the traveltime of the directly transmitted wave.

The key concept to understand the idea of stratigraphic filtering is the inter-
ference between primary and short-period multiples. The qualifier “short-period”
means the time difference between primary and first multiple is less than the
width of the propagating wavelet. Thus the multiple does not show as a distinct
arrival but rather, it overlies and modifies the primary by superposition. Then,
as more and more multiples are superposed, the primary itself is decreased by
transmission losses until the propagating wavelet is purely multiple energy.

It is this transformation from primary to superposition of multiples that
may be conceived as a filter. Since the cause of this filtering is the presence
of successive beds too fine to be resolved, the term “stratigraphic filtering” or
“layering filtering” is appropriate. Studies on this subject indicate that the
qualitative effects of stratigraphic filtering are preferential attenuation of high
frequencies. The apparent attenuation in stratigraphic filtering is due to loss of
coherence not absorption of energy (Banik et al., 1985b) .

Schoenberg and Levin (1974) studied the apparent attenuation due to in-
trabed multiples and found that transmission losses attenuates amplitudes uni-

formly at all frequencies, while intrabed multiples tend to raise the amplitudes

LA derivation of this formula is given in Appendix B.
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at the low-frequency end of the spectrum and lower those at the high frequency
end. When the input pulse pass through a cyclic section, the transmitted signal

appears broaden with a set of intrabed multiples following it.

3.1.4 Layering Filtering in the Western Canadian Basin

Examples of layering filtering can be found in the Western Canadian Basin.
Coulombe and Bird (1996) were one of the first to publish on stratigraphic
filtering caused by coals seams in the Western Canadian Basin.

The term coal refers to a rock that comprises mainly plant-derived carbona-
ceous material. Coal is formed from peat that appeared from the accumula-
tion and decomposition of vegetal debris in the stagnant waters of swamps and
marshes. In the Western Canadian Basin it was observed that coals from the
Mannville formation in the lower Cretaceous act as a transmission filter. The
Mannville group is a mainly non-marine succession with a middle interval of
marine shale and limestones and glauconitic sandstones. Thin coal beds were
originated in alluvial-plains and deltaic enviroments during the deposition of the
Lower Mannville (Smith, 1989; Smith et al., 1994).

Coulombe and Bird (1996) examined zero offset data and noticed that layers
on the Devonian (deeper than the Mannville coals) were lacking in frequencies
above 50Hz even though the Cretaceous section (shallower than the coals) present
plenty of signal up to 75 Hz. Their studies showed that the intrabed multiples
created by coals were acting as transmission filter attenuating the higher fre-
quency data.

More recently, Perz (2000) examined the angle-dependent transmission filter-
ing effect introduced by high amplitude coal reflectors. His research reveals that
the offset-dependence for amplitude attenuation was a small effect compared to

the magnitude of the basic spectral notching effect common to all offsets.
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Next sections will covered the problem of lack of high frequencies due to thin
layers with high impedance contrast. The impulse response at zero offset for the
simple case of one layer is modeled to understand which are the variables control-
ling the presence of notches. Next, stochastic reflectivity models (ARMA(1,1))
are used as input for zero offset simulations to study the impulse response of

cyclic and transitional impedance layering.

3.1.5 Analysis of the impulse response for a single layer

using the Z transform

As it was mentioned before, a simple way to visualize the effects of multiples is
considering only one layer and writing the reflection response in terms of the Z

transform. Where the delay operator z in this case is given by,
z = e 2T, (3.1.4)

with w as the angular frequency given in [rad/sec] and 7 is the transit time.

ro trit trl I'O’?t' trl I'O’% rorlt trlro rlro' rlro rlt
7 interface 0

r interface 1
t=1+ro t'=1+ro’ ro =-ro

Figure 3.4: Reflection and transmission coefficients for a wave traveling through a single

layer.

The reflection response for a single layer can be written as:

R(2) = 2%[ro + torityz + torirgte?® + tordrgtes® + ... (3.1.5)
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R(2) = 2%ro + (1 + ro)r1(1 — 10)z 4+ (1 + 7o) 727 (1 — 10) 2] (3.1.6)
R(z) = 2%[ro + (1 = r)ri2[1l — rirez + rirg2” — ... (3.1.7)
d (1—72)r12
= ~ 0 F 1.
R(z) = 2o + 3= . (3.1.8)

Finally, it can be written as:

o+ 712
R(z) = 2° : 3.1.9
(2) 14 rirez ( )
The power spectrum is given by:
Pr(z) = R(2)R(1/2). (3.1.10)

To find the amplitude spectrum we replace the delay operator z by expression

3.1.6

2 2 2 2
Pa(w) = 5 + 17 + 2ror1 cos(2wT)

= . 3.1.11
1+ (ror1)? + 2191y cos(2wT) ( )
Now, let us analyze the position of minima and maxima in 3.1.11. The condition

to find the minimum on the spectrum is given by

dPR (w)
dw

=0. (3.1.12)
It can be shown that this will be true when

sin(2wt) = 0. (3.1.13)
The latter leads to the following condition

2wt = km, (3.1.14)
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or
km
= — 1.1
T= o0 (3.1.15)
and if the layer transit time is given by
h
= . 3.1.16
= (3.1.16)

where h is the thickness and v the velocity of the layer, then replacing equa-
tion 3.1.16 into equation 3.1.15 with w = 27 f we can write the condition for a

stationary point as:
vk
=F

where f is the nodal frequency and £ an integer number.

h (3.1.17)

If k£ is even, then the power spectrum for a stationary point can be written as:

(7“0 + 7‘1)2
= 3.1.18
R (1 -+ 7“07'1)2 ( )
If £ is odd then the power spectrum for a stationary point is given by:
(ro —m1)?
Pr=——-"=. 3.1.19
R (1 — 7”07'1)2 ( )

Then, the expression of the minimum of the power spectrum would depend on
the relation between ry and r;. When ry and r; have different signs, then minima
will be given by equation 3.1.19. When they have the same signs, minima will
be given by equation 3.1.18. This is shown in the figures 3.2 and 3.3 where the
reflection response was computed using the previous formula for a layer with a
velocity of 1200 m/s, and the thickness was calculated using equation 3.1.17 for
fo =50 Hz. In figure 3.2 1o = —0.9 and r; varying from 0.1 up to 0.9, then
minima are given by equation 3.1.15 and the nodal frequencies are at multiples
of fo. Figure 3.3 illustrates the case of ry = —0.9 and r; varying from —0.1 down
to —0.9; notice how the minima from the previous case changed into maxima.
As it can be seen from these figures the closer the reflection coefficients from the

two interfaces, the more pronounced the minima.
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In the case of two layers the reflection response is given by:

ro + [r1 + rorirelz + roz?
R(z) = o+ [r1 + 7or179] 2

= . 3.1.20
1+ [rory + 172z + ror1] 22 ( )

The power spectrum is given by:

_ r§+[ror1 + rdriry + rire + rorir3)cos(2wr) +rorocos(4wt) +[ry + rorire)® 4 3

P = ]
() 1+[ror1 4+ r1re + 1272 4 rorire]cos(2wt) +roricos(4wt) +[ror1 + T2 +rir?
(3.1.21)

As it can be seen the expression gets more complicated as one adds more layers.

Finding the minima of the spectrum, analytically, becomes quite cumbersome.

Single layer (r0 = -0.99)
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Figure 3.5: Amplitude spectrum for the impulse response of a single layer system as the one

presented in figure 3.4. Case 1 : reflection coefficients at the interfaces have opposite signs.
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Single layer (r0 = -0.99)
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Figure 3.6: Amplitude Spectrum for the impulse response of a single layer system as the one

presented in figure 3.4. Case 2 : reflection coefficients at the interfaces have same signs.

3.2 Impulse response for transitional and cyclic
reflectivities.

Let us start with an example where the reflection coefficient series was created in
order to simulate a cyclic scenario with values representative for the coals seams
described in section 2.1.1. The model is shown in figure 3.7.

With this simple example the idea is to illustrate step by step what hap-
pens when multiples are added one by one. It is important to clarify what is
understood as primaries, first order multiples, second order and so on.

Zero offset simulations are generated with the algorithm developed by Mendel

(1979) and extended by Wyatt (1981). Details of this algorithm are given
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Synthetic model for coal seams
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Figure 3.7: Model for coal seams.
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Figure 3.8: Ray path for primaries, 1st order multiple and 2nd order multiple.

in chapter five. In this example, I will consider the contribution of first and
second order multiples only. First, let us see the impulse response for the model
considering only primary reflection, transmission effects included. This is shown
in the figure 3.9. As it can be seen amplitude decay quite quickly, it can also be
seen from the the amplitude spectrum how some spectral amplitudes are slightly

attenuated.
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" Impulse response no multiples
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Figure 3.9: Top: impulse response with transmission loss but no multiples. Bottom: corre-

sponding amplitude spectrum.

Now, let us see the case when all the first order multiples are included in
the impulse response. Comparing with the previous case, it seems that all the
minima are accentuated and some of the primaries amplitude are reinforced by
the multiples as is shown in the seismogram (figure 3.10).

Finally, figure 3.11 shows the effect of adding the second order multiples in
the impulse response. Again multiples reinforce primary reflection amplitudes
as it was shown in section 3.1.2, figure 3.3, multiples coming from these thin
layers overtake the amplitude of the direct waves. Also notice the presence of

new notches on the amplitude spectrum in the minima sections. It is interesting
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Impulse response with first order multiples
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Figure 3.10: Top: impulse response with transmission loss and 1st order multiples. Bottom:

corresponding amplitude spectrum.

to notice in this three cases the minimum at 100Hz for the first two cases,
that turn out to be a local maximum in the third case. The idea behind this
example is that when adding multiples of different order, the section between
75Hz and 125H z exhibits the appereance of new minima caused by destructive
interference between primaries and multiples. Including higher order of multiples
could slightly move the position of this minimum due to a new interference
between the added multiple and the previous impulse response.

Let us now see two examples of impulse response where the reflectivity series is
a little bit more complex. Using the ARMA(1,1) model described in the previous

chapter, simulations of cyclic and transitional reflectivities were generated with
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Impulse response with second order multiples
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Figure 3.11: Top: impulse response with transmission loss and with 2nd order multiples.

Bottom: corresponding amplitude spectra.

a total of 200 samples (sampling inerval of 0.001 sec). Figure 3.12 illustrates
the two reflection coefficient series with their corresponding amplitude spectra
(periodogram in full line and ARMA model in dashed line).

Seismograms at zero offset were generated based on these rc series using a
unit pulse as a source. First, the computation of the seismogram was made
without any multiple, only primaries were included. Results are shown in figure
3.13. From this picture it can be corroborated what was explained in sections
3.1.1 and 3.1.2, the impulse response for a reflectivity “transitional type” is like
convolving the source with the reflection coefficient itself. It can be seen that the

corresponding amplitude spectrum is pretty similar to the one corresponding to
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the rc series itself and the impulse response looks like the rc series multiply by a
scale factor. The reason for this is that since the reflection coefficients are small,
the effects of transmission loss are also quite small. Conversely, for the impulse
response of a cyclic reflectivity, the effects of transmission loss are quite strong
and the amplitude of the signal decays rapidly. The amplitude spectrum exhibits
accentuated minima as an evidence that transmission losses here are important.

Now, let us examine the effect of including all the multiples in the impulse
response. This is shown in figure 3.14. Again, it can be seen that this is not
an important problem for a transitional case, multiples die quite soon as the
reflection coefficients are not large enough. Therefore, the amplitude spectrum
is still quite similar to the reflection coefficient series. Instead, for the cyclic case
the contribution of multiples is quite important. They reinforce the primary
signal and they overcome it, as it was shown on section 3.1.2 (figure 3.3). The
effects of the multiples trapped inside thin layers with high reflection coefficients
cause the presence of notches in the amplitude spectrum, just as it was shown
for a single layer, but here the complexity of the model mark the presence of few

important notches.
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Reflectivity Series
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Figure 3.12: Top: transitional and cyclic reflectivity sequences. Bottom: corresponding

amplitude spectra.
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Zero offset synthetic seismograms — Only primaries
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Figure 3.13: Top: impulse response with transmission loss and no multiples for a transitional

and cyclic reflectivity sequences. Bottom: corresponding amplitude spectra.
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Zero offset synthetic seismograms — Full response
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Figure 3.14: Top: impulse response with transmission loss and all multiples for a transitional

and cyclic reflectivity sequence. Bottom: corresponding amplitude spectra.
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3.3 Seismic attenuation due to layering

In the previous section it was shown, the difference between the impulse response
of a transitional and cyclic layering in terms of their amplitude spectra. It be-
comes clear that layering is an important point when dealing with attenuation.
It is worth to clarify that with attenuation due to layering I am not implying
intrinsic attenuation. The first one is only caused by the concept of a geometrical
disposition of a package of layers, where their thickness and impedance contrast
are responsible for the observed apparent attenuation. Intrinsic attenuation @,
which is mainly caused by energy loss due to friction (Lay and Wallace, 1995).
Seismic attenuation due to layering alone arises from a combination of the trans-
mission losses through the interfaces of a layered subsurface and the generation
of intrabed multiples. Such a statement was concluded by O’Doherty and Anstey
(1971) and confirmed by Schoenberger and Levin (1974). Following their ap-
proach it is possible to visualize the effects of transmission losses and intrabed
multiples in cases like the idealized model of coal seams used in the previous
section. An instantaneous transmission loss due to layering only (no multiples
considered) can be obtained as the ratio of a point on the primary time trace
to the same point of the input time trace. Understanding by input time trace
the one that contains all the primary reflections without transmission losses (it
would be just the convolution of spike with the reflectivity series). The primary
time trace will contain all the primary reflections including transmission losses.
In a similar way, it can be obtained the effect of adding multiple reflections
by computing the ratio between the primary time trace and the multiple time
trace, seeing that part or all the attenuation on seismograms can be attributed
to intrabed multiple reflections rather than to the intrinsic properties of rock
materials. On the other hand, as it was mentioned before, short-period multi-

ples tend to compensate for simple reflection losses due to transmission across
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the layers.

Figure 3.15 shows how important is the attenuation due to transmission loss in
a case that behaves like coal seams. As for the effects of multiples, the multiple
time trace correspond to the full response considering multiples up to order
50. As it can be seen this short multiples tend to raise the amplitude of the
transmitted signal but, on the other hand, some of the minima on the spectrum
became more pronounced than in the primary trace spectrum. This could be
attributed to the interference between this short delay multiples and the direct

signal.
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Figure 3.15: Attenuation due to layering only. Attenuation due to transmission loss com-
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3.4 Summary

This chapter provided several examples of impulse response for transitional and
cyclic layering. The transitional type has an impulse response that resembles
the original reflectivity series. Transmission losses are not significant and the
amplitude of multiple reflections die quite fast.

The cyclic case, as it would be the case of a succession of coal seams, leads
to more complicated impulse responses. In this case, the impedance contrast
between layers is high, therefore transmission losses are very important. A suc-
cession of thin layers cause short-period multiples that overlap with the primary
wave causing two effects on the amplitude spectrum of the transmitted signal.
First, multiples tend to raise the amplitude of the primaries and overtake it.
Secondly, for certain frequencies this interference between multiples and primary
can be destructive, causing notches for some frequencies on the amplitude spec-
trum. Frequency minima depend on the thickness and impedance of the layers;
also the number of layers since this would be directly connected with the number
of multiples interfering.

Apparent attenuation due to layering alone can be said to have two compo-
nents, one due to transmission loss and the other due to multiple interference.
The first one can be estimated computing the ratio between amplitude spectra of
the primary trace (primary reflections with transmission loss) to the input trace
(primary reflections without transmission loss). The second one can be computed
with the ratio between amplitude spectra of the multiple trace (primary reflec-
tions with transmission losses and all multiples included) to the primary trace
(primary reflections with transmission loss). Well data can be used to compute

the corresponding traces to have an estimate of this apparent attenuation.
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Chapter 4

Deconvolution

4.1 Introduction

The main idea behind this chapter is to propose a way to overcome the effects
caused by cyclic reflectivity, not only in terms of its color but specially in terms
of its filtering behavior.

So far, in the previous chapters I explained two different types of reflectivities,
transitional and cyclic. Real log data are often composed of a mixture of these
reflectivities. The coal seams in the WCB are better represented by a cyclic type.
It was explained in chapter two that neither transitional or cyclic reflectivities
are white, but they do have some color. This non-white character should be
contemplated at the deconvolution step. In chapter 3 it was shown how the
impulse response is distorted when a cyclic reflectivity is present. When a wave is
traveling through such a profile it will suffer distortions, mainly in the amplitude
spectrum. The main consequence will be the nonstationarity of the signal. The
signal looses frequency content and experiences a phase change while is passing
through what it is called stratigraphic filter. However, it is possible to design a

filter that is able to compensate for most of this effect.
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The chapter is organized as follows. First, a review of deconvolution methods
is provided. Then, a description of some of the techniques to take the reflectivity
color into account at this processing step. Next, it is proposed a way to compen-
sate for the effects of stratigraphic filtering due to cyclic non resolvable layering.
Following this, it is a discussion about the nonstationarity of the signal. Finally,

an example and a summary are provided.

4.2 Deconvolution

Deconvolution is a process that improves the temporal resolution of seismic data
by compressing the basic seismic wavelet (Yilmaz, 1987). A recorded seismo-
gram can be modeled as a convolution of the Earth’s impulse response with the
seismic wavelet. This wavelet has many components, including source signa-
ture, recording filter, surface reflections, and geophone response. The earth’s
impulse response comprises primary reflections (reflectivity series) and all pos-
sible multiples. Ideally, deconvolution should compress the wavelet components
and eliminate multiples, leaving only the earth’s reflectivity in the seismic trace.
Of course, to be able to compress the wavelet, first it has to be known or approx-
imately estimated. Some assumptions are to be made about the seismic model
in order to be able to solve this problem. Different deconvolution methods make
different assumptions.

Deconvolution methods include least squares deconvolution (being predic-
tive deconvolution the most important, which includes spiking deconvolution as
a special case), maximum-likelihood deconvolution, maximum-entropy deconvo-
lution, homomorphic deconvolution, minimum-entropy deconvolution, iterative
deconvolution, surface-consistent deconvolution, deterministic deconvolution and
various deconvolution methods based on other criteria.

The seismic convolutional model has two components, namely the reflection
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sequence and the wavelet, each of the deconvolution methods mentioned, make
assumptions on these two components which validity will strongly depend on
the area of interest. One of the most common assumptions made deals with
white reflectivity. As it was explained in chapter two, it was found in many wells
around the world that the reflectivity is not white (Walden and Hosken, 1985).
For the type of geology whose seismic response is analyzed in this thesis, the
hypothesis of a white reflectivity series is a very weak one.

The following section provides a brief review of the most widely used type of
deconvolution and the most robust under a variety of input conditions (Jurkevics
and Wiggins, 1984), this is the least squares deconvolution. After this, methods
for deconvolving signal with non-white reflectivity series will be discussed and it

will be found which would be the best for the case of an area with coal seams.

4.3 Least squares deconvolution

The standard method of performing seismic deconvolution is based on least-
squares prediction-error filtering (Robinson, 1957). In its usual form, this
method assumes that the seismic wavelet is minimum-delay and that the re-
flectivity is white. Wiener spiking deconvolution works under the same seismic
model (Robinson and Treitel, 1967). One of the main limitations of this type of
deconvolution is the assumption of a white reflectivity series. Walden and Hosken
(1985) found that reflectivities series are more like a pseudo-white series. After
their work talking about white reflectivity is very questionable. In chapter two
it was shown that in the case of a transitional reflectivity, this assumption could
still work, but for a cyclic case (coal seams) is critical. Let us review briefly the
Wiener deconvolution (Robinson and Treitel, 1967; Leinbach, 1996) to under-
stand why those assumptions are made. The simplest representation of a trace

s(t) consists of a wavelet w(t) convolved with a reflection coefficient series r(t).
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The noise-free trace is given by
s(t) = w(t) xr(t), (4.3.1)

where x stands for discrete convolution. The reflection coefficients are represented
by sharp spikes generated by the acoustic impedance between different rock types.
Each spike is convolved with the seismic wavelet as it passes through the earth.
Since reflection spikes are close together than a wavelet length, the spike locations
become confused. Adjacent wavelets overlap each other, producing a tangle
of constructive and destructive interference. Spiking deconvolution attempts
to compress these wavelet in time, unravel confusion and resolve each sharp
reflection. Spiking deconvolution assumes that wavelet properties do not change
with time (are stationary). The least squares deconvolution filter then attempts
to shape the input seismic trace s(¢) into the desired output r(¢) by minimizing
the mean squared error between the desired output and the actual filter output
y(t). The actual output is simply the input s(¢) convolved with the filter f(t).
The equation defining the filter are:

Oss(T) % f(T) = ¢dps(7), (4.3.2)

where ¢, is the auto-correlation of the trace and ¢,; is the cross-correlation
between the the reflectivity and the trace. The auto-correlation of the trace can

be written as:

¢ss = ¢rr * ¢ww- (433)

While the cross-correlation of the trace and the reflectivity is written as:

Ors(T) = Grp(T) x wW(—T). (4.3.4)

The normal equations can now be rewritten as:

(007 (T) * Do (T)] % f(T) = &pr(7) * w(—7). (4.3.5)
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Here comes the assumption to solve for the filter. First, is assumed that the
reflectivity series has the statistical properties of random white noise. This means

that its auto-correlation is given by a spike at zero lag scaled by its power P,
¢rr(T) = P6(0). (4.3.6)

This is a paradox of spiking deconvolution: one first makes a questionable statis-
tical assumption concerning the reflectivity of the earth in order to subsequently

estimate this reflectivity. Now the normal equations became,

Gww(T) * f(T) = w(—7). (4.3.7)

Second,the wavelet is assumed minimum phase. Then, we can estimate this
minimum phase wavelet from its left side auto-correlation function (¢, ). Finally
the filter can now be computed and afterward apply to the trace to compress the
wavelet and recover the reflectivity.

Todoeschuck and Jensen (1988) studied the predictive deconvolution prob-
lem and proposed what they called a Joseph filter '. This filter was intended
to recover a reflection sequence which power spectrum is proportional to the
frequency f and presents negative auto-correlation at small lags. Their results
seems to work better when comparing with those using prediction error filter.
This could be one approach to be tested with the Rosebud data. The approxima-
tions made in that method are valid for small values of the reflection coefficients,
| 7 |< 0.4. This is within the range of the well data from Rosebud area (figures
2.1 and 2.3).

Other contributions on this type of deconvolution focus on the amplitude dis-

tribution of the reflectivity series. In chapter two it was mentioned that seismic

1 Joseph as referring to the statistics of the floods of the Nile, specifically the tendency of
periods of flood or drought to persist. The power spectra of the flow of the Nile and of other
rivers show a dependency on frequency f of 1/f% with 3 between 0.5 and 1.1.
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processing usually assumes Gaussianity for its convenience. However, Walden
and Hosken (1986) found that the distribution is essentially symmetric but has
a sharper central peak and larger tails than a Gaussian distribution. This concept
is exploited in higher order statistical methods for wavelet estimation (Lazear,
1993; Velis and Ulrych, 1996; Sacchi and Ulrych, 1998; Sacchi, 1999). Besides,
assuming that the reflectivity sequence is Gaussian inhibits wavelet phase esti-
mation. Tenorio (2002) proposed a generalized Wiener-Levinson deconvolution
using non-Gaussian modeling. The main idea behind this assumption is to be
able to recover wavelet phase information. This non-Gaussian distribution is
simulated by a mixture of Gaussian distributions. This method leads to bet-
ter amplitude and phase estimates for high signal to noise ratios, meaning that
spikeness of the reflectivity is above the noise level, but still assumes a white
reflectivity sequence.

Besides the limitations of the assumptions made on the seismic model, one
seek for a deconvolution method able to get rid of the multiple energy, specially
short-delay multiples. Robinson (1966) study the problem of short-delay multi-
ples in the water layer. This author proposed the statistical method of predictive
deconvolution to keep the front part of the minimum-delay seismic wavelet but
destroys the back part, getting rid of the water reverberations. Since intrabed
multiples due to coal seams have a behavior similar to those inside a water layer,
one can think that this could be a nice solution. Unfortunately, one extra prob-
lem comes from the very fine thickness of the coal layers. On the contrary of
the thickness of a water layer, coal beds have a thickness in the order of 2-10m,

beyond seismic resolution what makes things difficult to solve.
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4.4 Deconvolution for non-white reflectivity

Saggaf and Robinson (2000), provided a review on deconvolution methods for
non-white reflectivity. They suggested processes that include ARMA, scaling
Gaussian noise, fractional Brownian motion, fractional Gaussian noise and frac-
tionally integrated noise to face the problem on non-whiteness. The idea behind
all these methods is to find a model for the reflection coefficients that honor their
correlation structure better than white noise.

Let us first analyze the case when the non-white reflectivity component is
taken into account in the conventional deconvolutional method. The trace is
taken to be the convolution of the Earth’s reflection coefficients r with the effec-

tive wavelet w (which will be assumed to be minimum phase)
S=w*T. (4.4.1)

The reflectivity can be factored into a minimum-phase non-white-noise compo-

nent 7, and an all pass component 7, that is white noise:
T =Ty % Tq. (4.4.2)

When reflectivity is a non white process, the minimum-phase component r,, does
not vanish. Denoting the auto-correlation function as ¢, and since r, is white,

then the auto-correlation of the trace is given by:
6(5) = B(w * ). (4.43)
Then, the filter used to recover the reflectivity from the trace is given by:
fr(wsr,)™, (4.4.4)

frs=r,. (4.4.5)
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This will be the error inflicted on the deconvolution by the assumption of white
reflectivity, the output of the conventional deconvolution is not the whole re-
flectivity but only its white component. The conventional filter removes the
minimum-phase component of reflectivity as it compresses the wavelet.

One way to tackle this problem is to find a way to model the stochastic
properties of the reflection coefficients. It will be useful to make the distinction
between the probability distribution structure of a process (described by the
probability density function, e.g. being Gaussian) and the correlation structure
(described by the auto-correlation function, e.g. being white noise). Saggaf and
Robinson (2000) showed different ways of modeling a nonwhite reflectivity with
a Gaussian distribution although some of the processes need not to be Gaussian.
In chapter 2 we show that modeling with an ARMA process allow as to include
a non-Gaussian density distribution like a mixture of two Laplace distributions.
As for the models presented in their paper include ARMA models, Scaling Gaus-
sian noise, that is the same idea mentioned in the previous section in the case
of the Joseph filters (Todoeschuck and Jensen, 1988), Fractional Brownian Mo-
tion (FBM), Fractional Gaussian Motion (FGM) and the Fractionally Integrated
Noise (FIN) . Methods like FBM and FGM present the complexity of not having
an analytical expression for the power spectrum. The FIN not only has analyt-
ical expressions for both the auto-correlation function and the power spectrum
but has the advantage of requiring only one parameter for its definition. Instead,
ARMA models have the disadvantage of requiring two parameters for their def-
inition. Taking into account the advantages and disadvantages of each method
choosing the one that better fits the data would certainly depends in its type
and complexity.

Once a suitable model was found for the data, the next step is to construct

a filter to generalize the conventional deconvolution method. Four equivalent



CHAPTER 4. DECONVOLUTION 62

methods for constructing and applying the filter were proposed (Saggaf and

Robinson, 2000) and will be reviewed in the following section.

4.4.1 Reflectivity whitening filter

As it was explained before, conventional deconvolution only recovers the white
part of the reflectivity. In other to be able to properly apply this type of decon-
volution, one can whiten the trace before applying it. A filter g can be designed

as the least squares inverse of the minimum-phase component of reflectivity 7,

gL (4.4.6)

m

When this filter is applied to the trace,

g% 8= g*W*Tmy *Tq, (4.4.7)
g* SR W T, (4.4.8)
(g * s) = ¢(w). (4.4.9)

Now, the auto-correlation of the wavelet is well estimated and from here it can
be used the typical approach to design the deconvolution filter f to compress the
wavelet

faw? (4.4.10)

Notice, that this filter is computed from the output of the reflectivity whitening
filter rather than from the original trace. Once it was computed, it is applied to

the original trace to recover the reflectivity.
frsm frwsxr, (4.4.11)

frsar. (4.4.12)

This method is the most natural generalization of the conventional deconvolution

procedure. However, its disadvantage is that it complicates the deconvolution
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routines since the filter f is computed from a trace different from the one to

which it is applied.

4.4.2 Frequency domain filtering

From (4.3.1) the power spectrum of the trace P;(w) can be written as:
Py(w) = Py(w).Pr(w).- (4.4.13)

By modeling the rc series by a process that well approximates its stochastic
properties, a good estimate of its power spectrum can be obtained. Calling

P,(w) this estimate can be written as:

Py(w) ~ w
f’r(w) ~ P,(w). (4.4.14)

Then a good estimate of the auto-correlation of the wavelet can be obtained by

spectral division. Transforming the trace to the frequency domain, dividing by
the power spectrum of the process used to model the rc series, and then going
back to the time domain. This method has the same disadvantage than the

previous one, plus some numerical inaccuracies when P, (w) is very small.

4.4.3 Double filtering

In order to re-use existing deconvolution routines, another way is to compute the

deconvolution filter f as in the first method but then apply it on the output of

the reflectivity whitening filter (the same from which it was computed) rather
than on the original trace.

frgxsmg*r (4.4.15)

(frgxs)xg T (4.4.16)

The disadvantage of this method is that it requires the application of two addi-

tional filters (g before deconvolution and g~! after it) rather than just one.
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4.4.4 Spectral compensation filter

Another way to approach the problem caused by conventional deconvolution
would be to design a filter that restores the minimum phase component of re-
flectivity to the output of conventional deconvolution. From equation 4.46 we

have,

g T, (4.4.17)

Convolving ¢g~! with equation 4.4.5,
g frsmg R, (4.4.18)

then,

gl frsmry xT,. (4.4.19)

Finally, we were able to recover both components of the reflectivity series r,
g lixfrsaT. (4.4.20)

Where f is the conventional deconvolution operator computed from the original

! is the spectral compensation filter, since it compensates for the

trace and ¢~
spectral distortion of reflectivity caused by conventional deconvolution. This
method is the easiest to implement and use, since it reuses existing deconvolution

codes and requires only to apply one extra filter.

4.5 Deconvolution in the presence of layering
filtering

In the presence of layering filtering, conventional deconvolution is not capable

of recovering the “right wavelet” below the stratigraphic filter. It is clear that
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it is necessary to explore the data by windows and compensate somehow the
effect due to this layering filter. This could be achieved by taking time windows
above and below the stratigraphic filter from the stack seismogram s,pe(t) and
Sbetow(t). Then, we compute the amplitude spectrum above Agpope(w) and be-
low Apeow(w) the transmission filter using the periodogram technique. Then, a
transfer function can be computed by dividing these spectra in the frequency
domain for the range of frequency of interest.

TRF(w) = Autone (@) (4.5.1)

B Abelow(w)’
TRF(w) being the amplitude spectrum of the filter to be applied to the window

below the stratigraphic filter. Using the Hilbert transform H (Claerbout, 1976) it
is possible to determine a minimum phase filter ¢r f,,;,(¢) for the given amplitude

spectrum TRF (w)

11 frin () = H[TRF (w))]. (4.5.2)

Once the transfer filter ¢r f,;,(t) was computed, it can be convolved with the

data below the stratigraphic filter, Spejon (%)
slj)‘gzzed(t) = Sbelow(t) * trfmm (t) (453)

Now, applying conventional deconvolution to the windows above and below
should yield to approximate the same wavelet. This approach could be a simple
way to compensate the problems of the non stationarity of the wavelet due to
the stratigraphic filtering. The main difficulty on this technique is the criteria
on choosing the windows length involved, not only for the data above and below
the layering filter but also for the computation of the transfer function in the
frequency domain. In the following section, I illustrate this technique with an

example.
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4.6 Non-stationarity of the signal

Deconvolution as it was said has the task to improve resolution of the data. In
the presence of a cyclic reflectivity this task becomes quite difficult due to the
interference between the primary signal and many short-period multiples coming
from that cyclic pattern. Understanding by short period that the time difference
between primary and first multiple is less than the width of the propagating
wavelet. Then the multiple overlies the primary and modifies it by this super-
position. Since we are dealing with multiples beyond seismic resolution, NMO
(normal moveout correction) and deconvolution fails to isolate the primary ar-
rival.

Since real data present a mixture of transitional and cyclic reflectivities, the
wavelet will be distorted as it travels through the earth, changing its phase
and amplitude spectrum, being this effect more critical under the presence of
a cyclic pattern. There were shown in chapter 3, examples where exploring
the full impulse response for a cyclic reflectivity give rise to the appearance of
a notch in the high frequencies in the amplitude spectrum of the signal. The
cyclic system therefore acts like a low pass filter. The low frequencies see a
nearly homogeneous system and pass through it with little attenuation. Higher
frequencies begin to see the velocity structure and are multiply reflected within
it. Consequently, higher frequencies are delayed and ultimately removed from
the transmitted pulse (Spencer et al., 1977). Besides this filtering effect, the
concept of colored reflectivity cannot be avoid in the case of cyclic reflectivities.
Although transitional reflectivities are not white, the whiteness assumption still
works as a good approximation. Instead, for the cyclic case this becomes a
critical assumption leading to a wrong estimation of the wavelet. Therefore, in a
mixture reflection coefficient series this change in its character should be taken

into account. Windowed deconvolution seems to be the best way to deal with
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non-stationarity. Identifying different windows that should be compensated for
color or lack of frequency content in order to recover a wavelet consistent within

the complete seismogram.

4.7 Examples

This synthetic example is generated using a model illustrated in figure (4.1).
Coal layers are characterized with low density and velocity (peoss = 1.7¢/cc and
Veoar = 2400m/s), while the background has velocity and density almost twice the
former ones ( pPrackground = 2-29/cc and Vpackgrouna = 4200m/s) for the stratigrafic
filter.

The package of layers within the transmission filter were designed taking into
account the condition of non-resolvable layers. That is to say, the thickness is
less than about A/8, where )\ is the (predominant) wavelength computed using
the velocity of the layer. As a source for the propagation of waves it was used a
50H z Ricker wavelet, the sampling interval chosen is 0.002sec.

First, I compute the amplitude spectrum of the O’Doherty and Anstey the-
oretical transmission filter generated by the present reflectivity. This spectrum

helps to visualize the possible frequency notches caused by this example.



CHAPTER 4. DECONVOLUTION

200 m

15m
15m
15m
15m

8m
8m
8m
8m

400 m

v=2000 m/sec p=1.85 gr/cc

v=2400 m/sec p=1.7 grlcc

v=2400 m/sec

Figure 4.1: Earth model for a transmission filter.
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> v=4200m/sec  p=2.2 gr/cc

p=17 grlcc

Then, zero offset simulation with and without multiples were made. Simula-

tions were done using the algorithm proposed by Mendel et al. (1979). Details

of this algorithm are given in the following chapter, section 5.1.

Figure 4.2

portrays the input reflectivity model and the output impulse response for the

Ricker wavelet traveling through such reflectivity. From figure 4.3 illustrates the

O’Doherty and Anstey theoretical amplitude spectrum and the computed spec-

trum for the transmitted signal. Based on the theoretical amplitude spectrum it

should be expected to find a drop in the amplitude between 50H z up to 90H z.

The computed periodogram for the zero offset data corroborates this lack of

frequency content in a window between 0.5 — 0.7sec.
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Reflgctivitv Model

05
0 | “ v v V
-0.5 1 1 1 1
0 0.1 02 OWT [sec] 03 0.4 0.5
Impulse Response - Only Primaries
T T T T T
0.011 s
0 /T
-0.01f s
| | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Full Impulse response
T T T
0.011 . . E
Window A Window B
0 \/\/\/\/V\/W\/\N
-0.01
| | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
TWT [sec]

Figure 4.2: Top: reflectivity model. Middle: zero offset-impulse response (only primaries).
Bottom: zero offset-full response. Window A stands for ’Above the transmission filter’ and B

stands for ’Below the transmission filter’.
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Figure 4.3: Top: O’Doherty and Anstey theoretical amplitude spectrum for the transmit-
ted signal.Bottom: amplitude spectrum A for data between 0.1-0.3 sec overlying amplitude

spectrum B for data between 0.5-0.7 sec.
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A simulation with offset was also performed by means of a wave propagator
method, working in this case only with acoustic waves. The propagator method
used here is called the reflectivity method. This is based on the algorithm pro-
posed by Kennet (1983). A derivation of the algorithm used is given in next
chapter, section 5.2.

Shot gather data corroborates the drop in the amplitude spectrum observed
for the same reflectivity model at zero offset simulations. It is interesting to note
that, as observed by Perz (2000), the effect of the transmission filter does not

seem to have a strong dependency on offset (figure 4.5).

Shot gather after nmo correction

01f 4
Window
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1+ | | ]
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Figure 4.4: Full impulse response with offset. Window A stands for ’Above the transmission

filter’ and B stands for ’Below the transmission filter’.
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Amplitude spectrum for data above the transmission filter
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Figure 4.5: Top: amplitude spectrum for data between 0.1-0.3 sec. Bottom: amplitude

spectrum for data between 0.5-0.7 sec, below transmission filter .
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Next, the normal moveout correction (nmo) was applied and data was stacked
to minimize the effect of multiples. However, since we are working beyond the
limits of resolution there are still some remnants of multiple energy in the stack
section. Notice that the arrival below the transmission filter is delayed by almost
90 degrees, being a trough instead of a peak at ¢ = 0.612sec. This effect on the
phase of the signal was pointed out by Banik (1985b), Coulombe and Bird (1996)
and by Perz (2000).

Stack data
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Figure 4.6: Full impulse response-stack data. Window A stands for ’Above the transmission
filter’ and B stands for ‘Below the transmission filter’. Stacked trace was repeated for plotting

purposes.
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This example is intended to illustrate the technique from section 4.5 to com-
pensate for the effect of the transmission filter. A window above the transmission
filter was chosen between 0.1 — 0.3sec (window A). Another window below the
transmission filter was chosen between 0.5 — 0.7sec (window B). Data and the
amplitude spectrum for these windows is shown in figure 4.7. We define the
transfer function TRF(w) in the frequency domain as the one computed by di-
viding the spectra from window A and window B in the frequency range between

25— T5Hz.

Data A 1 Amplitude spectrum A
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202
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-100 0 100 200 300 400 0 50 100 150 200 250
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DataB Amplitude spectrum B
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0.8
8 06
0.6
£ 0.4
|_
0.2
0.7 0
-100 0 100 200 300 400 0 50 100 150 200 250
Frequency [Hz]

Figure 4.7: Top left: data A (Above transmission filter). Top right: amplitude spectrum A
for data A. Bottom left: data B (Below transmission filter). Bottom right: amplitude spectrum
B for data B.
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Using conventional deconvolution, the corresponding wavelets above and be-
low the transmission filter were extracted. Figures 4.8 and 4.9 present the ex-
tracted wavelet for each case with their corresponding amplitude spectrum. It
can be seen from them that the amplitude spectrum of the wavelet below the

transmission filter is shifted toward the low frequencies.
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0.2
0.3k _— 0
-100 0 100 200 300 400 0 50 100 150 200 250
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Figure 4.8: Right: data A (Above transmission filter). Left top: extrated wavelet from data

A by conventional deconvolution. Left bottom: amplitude spectrum of extracted wavelet A.
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Figure 4.9: Right: data B (Below transmission filter). Left top: extrated wavelet from data
B by conventional deconvolution. Left bottom: amplitude spectrum of extracted wavelet B

overlying amplitude spectrum of extracted wavelet A.
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Next, the transfer filter ¢r f,,;,(t) was computed and convolved with the data
below the transmission filter. Figure (4.10) compared data below transmission
filter before and after applying the compensatory filter. It can be seen an incre-
ment in frequency content after filtered and also notice that the signal was slighty
correct in terms of phase. In terms of the amplitude spectrum of the signal below
the transmission filter, after convolution with ¢r f,,;, (%), it was possible to boost
up the spectrum at the notch window. However, the result overestimates the

amplitude for frequencies towards the end of the spectrum.

Seismic dataB Seismic data Bf

05F ™ 05F I
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0.6124} - 0.6124 -

0.65f - 0.65f -

0.7k ‘ ‘ ‘ ‘ L 0.7t ‘ ‘ ‘ ‘ L

-100 0 100 200 300 400 -100 0 100 200 300 400

Figure 4.10: Left:seismic data B, Below transmission filter. Right: seismic data Bf, Below
transmission Filter after applying compensatory filter to overcome the loss in frequency content

t7 finin (equation 4.5.4).
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Amplitude spectrum
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Figure 4.11: Amplitude spectrum A for the data above the transmission filter, overlying the
amplitude spectrum B for data below the transmission filter and amplitude spectrum Bf for

data below transmission filter after applying compensatory filter tr f:n.
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Finally, conventional deconvolution was applied to extract the corresponding
wavelet from the data below the transmission filter after compensatory filtering
(figure 4.12). The amplitude spectrum of the filtered wavelet seem to be a better

approximation for the extracted wavelet above the transmission filter.

— Extracted wavelet B — Extracted wavelet Bf
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Figure 4.12: Top left: extrated wavelet B from data below the transmission filter. Bottom
left: amplitude spectrum of the extracted wavelet B overlying amplitude spectrum from ex-
tracted wavelet A (Above transmission filter). Top right:extrated wavelet Bf from data below
the transmission filter, after compensatory filter. Bottom right: amplitude spectrum of the

extracted wavelet Bf, overlying amplitude spectrum from extracted wavelet A.
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4.8 Summary

The first sections of this chapter provided a review on conventional deconvolution
techniques. It was explained how deconvolution can be improved to overcome
the weak assumption on autocorrelation structure of the reflectivity component.
Works on deconvolution with non-white reflectivity were reviewed (Todoeschuck
and Jensen, 1988; Saggaf and Robinson, 2000). Generally, all of them proposed
a way to whiten the seismic trace before applying conventional deconvolution.
The most practical approach to the problem of nonwitheness seems to be the
spectral compensation filter. This method is the easiest to implement and use,
since it re-uses existing deconvolution codes and requires only one extra filter to
apply.

The second part of this chapter is intended to suggest a way to overcome the
effect of stratigraphic filtering. The approach proposed here is easy to implement
and able to improve the signal below the stratigraphic filter. It is recommended
to apply this technique after stack to minimize multiple contribution. The exam-
ple given in section 4.7 illustrates the apparent attenuation due to stratigraphic
layering. The computed amplitude spectrum for the signal below the trans-
mission filter corroborates the predicted notches from the theoretical amplitude
spectrum given by O’Doherty and Anstey. Data below the transmission filter
was convolved with the compensatory filter and afterward conventional deconvo-
lution was used for wavelet extraction. Comparisons between extracted wavelets
below the transmission filter before and after applying the compensatory filter
show the effectiveness of the applied compensation. The extracted wavelet and
its amplitude spectrum below transmission filter after compensatory filter resem-
bles better the wavelet above transmission filter. So far, the existent literature on
this subject propose to include a post stack two gate deconvolution (gate above

and below the transmission filter) to remove the effects caused by the presence
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of coals (Coulombe and Bird, 1996). The approach presented in this chapter

is easy to implement and could be a way to normalize the wavelet along the

seismogram.
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Chapter 5

Modeling techniques

5.1 Synthetic seismograms at zero offset

Zero offset synthetic seismograms for a layered-media system were computed
following the method proposed by Mendel et al. (1979) and extended to synthetic
vertical seismic profile (SVSP) by Wyatt (1981). This method not only allows to
place source and sensors at different depth but also the usage of non equal one way
travel times. Earlier approaches for zero offset modeling, like Wuenschel (1960),
Robinson (1968) and Claerbout (1976) used uniform travel times, source and
sensor are located at the surface. Those methods recursively connect adjacent
layers by means of frequency domain relationships. The approach used here treat
all of the equations that describe a layered-media system together in the time

domain. Details of this method are explained in the following section.

5.1.1 Interface equations

As it was defined in the previous chapter the reflection coefficient at zero offset

is given by:
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Figure 5.1: Reflection coefficient model.

_ PiVi = piniVin

Tj

Layer |

Interface

Vi Vi

Layer j+1

Figure 5.2: Reflection and transmission coefficients.
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(5.1.1)

At any interface a down-going wave with amplitude d will be reflected and

transmitted as it is depicted in figure 5.2 (left), being (1 + ;) the downward

transmission coefficient. Similarly situation is illustrated in figure 5.2 (right) for

an up-going wave of amplitude u where the upward transmission coefficient will

be (1—7;). For this modeling technique we use the convention that the reflection

coefficient from below the interface is —r; and and from above the interface is

+r;. The algorithm used for zero offset seismograms starts with the ray diagram

at figure 5.4.

First, notice that the down-going wave d; is just a time delayed version of d}(t—7).
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Figure 5.3: Waves at a layer j, time t.

Having this in mind, now focus on figure 5.4.
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Figure 5.4: Reflected and transmitted waves at interface j.

The up-going wave is made up of two contributions, one due to the reflected part
of d;(t — 7) and the other one coming from the transmitted portion of u; (%),

then it can be written
Uj(t+7) =rjd3-(t—7')+(1—7“j)uj+1(t), (512)

similarly for the down-going wave,

() = (1 +715)d;(t = 7) = rju541(t). (5.1.3)

These two equations conform the “interface equations” and they are the ones
that will propagate the wave field for a model of £ layers. In a system of &

layers the previous equations are valid for layers 2...k — 1. A few considerations
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should be made for the first interface (surface) and the last one (k) in terms of
the boundary conditions of the system. The example in chapter four considered
source and receiver at the surface, the algorithm for such configuration is ex-
plained as follows. At the surface, the source impinge on the layered-media with
a signal m(t) that propagates through the layers. Then, the up-going wave to

the receiver at the surface is given by:

y(t) = rom(t) + (1 — ro)uq (%), (5.1.4)

and the down-going wave is given by:

di(t) = (1 + ro)m(t) — rous(t), (5.1.5)

where ry is the reflection coefficient at the surface.
Boundary conditions for last layer set that there should be no up-going waves
coming from below this interface since no source o reflector are there. Then,

u;41(t) = 0 and the corresponding equations for this layer are:
up(t +7) = rpd(t — 7), (5.1.6)
and the down-going wave will be given by:
d 1 (t) = (1 + rp)dy(t — 7). (5.1.7)

So far we delineate the basic equations involved in this algorithm. Next section

explains the dynamic of the method for a full response modeling.

5.1.2 Full response model

To clearly show the dynamic of the algorithm it is convenient to group the

previous equations in a layer ordering.

di(t) = (1 + ro)m(t) — rouy(t), (5.1.8)



CHAPTER 5. MODELING TECHNIQUES 86

uy(t+7) = rd(t — 7) + (1 — ryuy(t)), (5.1.9)
di(t) = (147, )d_ (t—7) = uy(2), (5.1.10)
wj(t+7) = rid; (¢ —7) + (1 = rj)uj 1 (1), (5.1.11)
di(t) = (1 + 1)y (¢ — 7) — re_qug(t), (5.1.12)

ug(t +7) = rdl(t — 7). (5.1.13)

It is useful to re-arrange these equations in such a way that on the left hand
side we place all the events that occur at time ¢ + 7 and on the right hand side

all the events that occur at time ¢. In order to do this, notice that
di(t) = dj_(t — 7). (5.1.14)

Then, the system of equations can be re-written as follows:

di(t+7) = (1 +ro)m(t) — rous (t), (5.1.15)
ur(t+7) = ridy (t) + (1 — ryus(t), (5.1.16)
di(t+7) = (1 +rj_1)dj_1 (t) — 7j_1u(2), (5.1.17)
wi(t+7) = r;d;(t) + (1 = r;)uzpa(2), (5.1.18)
dp(t +7) = (1 + r4_1)dp1(t) — ro_rug(t), (5.1.19)
ug(t +7) = rdy (t). (5.1.20)

Then, the the wave field at the surface y(t) is given by the sum of the reflected
portion of the energy source ry m(t) and the transmitted portion of the up-going

wave at the top of the first layer (1 — r¢) u1(), i.e.,

y(t) = rom(t) + (1 — ro)uy(t), (5.1.21)
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where u;(t) is computed using the previous set of equations (5.1.15-5.1.20). The
signal y(t) includes transmission loss and all possible multiples for the time of
simulation. One can also choose the order of multiples to be included in the
impulse response by slightly modifying the algorithm (Wyatt, 1981). This is
the method used to generated the zero offset examples in chapters three and

four.

Synthetic VSP algorithm

The extension to SVSP made by Wyatt (1981) lead to the following algorithm.
At the top of the first layer

y(t) = rom(t) + (1 — ro)uq(2). (5.1.22)
And for a layer j,
yi(t) = u;(t +7) + d;(t) = (1 +15)d;(¢) + (1 — ry)usa (2). (5.1.23)

These equations express the complete wave field for a vertical seismic profile,

including all multiples and transmission loss.

5.2 The reflectivity method (including offset)

Several different methods have been developed to calculate theoretical seismo-
grams in realistic, horizontally stratified models (Fuchs and Miiller, 1971; Miiller,
1985; Kennet, 1983). The reflectivity method is a wave number or slowness in-
tegration method (Chapman and Orcutt, 1985; Mallick and Frazer, 1987). The
name of the method stands for the fact that the function which is integrated
is the reflectivity of a layered medium (Miiller, 1985). Originally this method
was valid for a layered medium without a free surface and a source on one side

of those layers whose reflections are sought (Fuchs and Miiller, 1971). This
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method was mainly applied to seismic prospecting problems with special focus
on coal-mining problems (Fertig and Miiller, 1978). Later, Kennet (1983) found
a recursively formula for the calculation of reflection coefficients. Kennet and
Kerry (1979) expanded the method for the case of a layered half-space including
a free surface and a source at arbitrary depth. They showed that the integrand of
the slowness integral in such a case can be expressed mainly by the reflectivities
of two partitions of the medium, the layers above the source and those below.

The example in chapter 4 was generated by the reflectivity method as it is
presented by Chapman and Orcutt (Chapman and Orcutt, 1985), and Kennet
(1983) .

The reflectivity method allows to compute offset dependent synthetic seismo-

grams by integrating the momentum equation,
—pw?u = V.o+f, (5.2.1)
and the constitutive equation
o =c: g (5.2.2)

where o and ¢ are the infinitesimal stress and strain tensors, p is the density, u
is the elastic displacement, f is the body-force density, and c is the four-order
elastic tensor. Since our elastic medium is stratified, we can transform out the
dependence of u and ¢ on radius x and azimuth ¢ by expanding them as series
of cylindrical harmonics via the Fourier-Hankel transform (Takeuchi and Saito,
1972). The details of this procedure can be found in many books and papers
(Kennet, 1983; Chapman and Orcutt, 1985). Then problem is converted to an
ordinary differential equation in z. The system to solve is a two boundary value
problem. For a model with n layers, it has at the surface (z = 0) zero stress

and at the last interface (z = z,) absence of incoming waves since they are no
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sources or other interfaces below it. The resulting equation is written as:
0,y(2) = wA(2)y(z) + F, (5.2.3)

where y(z) is the stress-displacement vector, each of its components has been
expanded as series of cylindrical harmonics via the Fourier-Hankel transform. F

is the term corresponding to the source. And A(z) is given by:

A 1
( 0 pPxism 0 yes R O\
—p 0 0 0 i 0
0 0 0 0 0o L
z (5.2.4)
—p ’% 0 0 p 0
Bt —p 0 —pxy 000
\ 0 0 mw*-p 0 0 0)
2
a2 B
6 = 4pB(1- =), (5.2.5)

where w is frequency, p = k/w is the ray parameter with k as the wave number,
a(z) stands for the compressional wave (p-wave) velocity and 3(z) for the shear
wave (s-wave) velocity, A(z) and p(z) are the Lame parameters.

Each component of stress-displacement vector can be recovered in the offset

domain by the inverse Fourier-Hankel transform:

o0
y.w) = [ W pdo§(p.w) Swpo) (526)
0
Jo is the Bessel function of order zero. The Inverse Fourier transform is used to
recovered the components in the time domain.

1 o0

— dw e
2T we

y(z,t) = Wty (2, w) (5.2.7)

—00
Finally, y(z,t) gives the complete wave field at the surface including all multiples,

transmission loss included. This method allows the user to choose which waves
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to propagate. In the example shown in chapter four we only consider the acoustic

case.

5.2.1 Homogeneous differential system

Let us consider first the solution of the homogeneous differential system:

0,y(2) = wA(2)y(2). (5.2.8)

The stress displacement vector can be written in terms of the eigenvectors of A
as,

y = N.w, (5.2.9)

where, w is called the “wave vector”. N is the eigenvector matrix as defined in
Appendix 1. The elements of N are scaled so that s Nt = N~ !

Replacing y in the equation of motion 5.2.3, we obtain:

0,(Nw) = w ANw, (5.2.12)
O,w = [wNTAN — N7'9,N]w. (5.2.13)

Since
wN"P AN =iwq, (5.2.14)

where iq is the the diagonal matrix of eigenvalues of A,

q = diag[da, q8, 48, —a, —4s, —438); (5.2.15)

LN* satisfies the following property,

Nt = —JNTJ, (5.2.10)

J= : (5.2.11)
I 0
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with,
4a(p, 2) = [ 2(2) — p?]'/? (5.2.16)
qs(p, 2) = [8%(2) — p°]'* (5.2.17)
with, Im(wg,) > 0 and Im(wgs) > 0 2.
In a uniform medium the coefficient matrix A is constant so the eigenvector

matrix N is independent of z. Therefore
N—9,N = 0. (5.2.18)

Then the wave vector w is governed by

O,W = iwqw, (5.2.19)
a solution can be written as,
w(z) = e’ w(z), (5.2.20)
then,
w(z) = S(z — z) wW(zo)- (5.2.21)

In the last equation we have introduced the “wave propagator” S. Now, the

stress-displacement solution is given by
y(2) = N, e’=0)4 N2y (z). (5.2.22)

We define the Propagator matrix P, commonly known as the Haskell matrix as

(Haskell, 1953):
P(z,2) = N, e?C72)a N = N, e“*~0)a N} (5.2.23)
The propagator will propagate the solution from one layer to the other like
v(z) = P(z, 2) y(20). (5.2.24)

Once that we have introduced this concept for a uniform medium, we can apply

it to a layered-media as it is explained in the following section.

2I'm stands for the imaginary part of the complex number
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5.2.2 Layered medium

Let us first start with the solution y(z) propagating through a single interface

z¢. The propagator P will be expressed as:
P(zm, zn) = P(2m, z0) P(2e, 2n)- (5.2.25)
Replacing the propagator by its expression 5.2.23 into equation 5.2.25 we obtain,

P(zm, ) = N, _, ¢S 9% [ NF N, ] e@/iiad Nt

2040 Zn+0"

(5.2.26)

Notice that we used /= 1% instead of e“(*~#0)a gince we are dealing with a
not-uniform layered media.

We recall the wave propagator to be,

Sg = S(Z£—|—Oa Zg_()) =1 N:—Ho NZz-o’ (5.2.27)
which connects the waves across the interface at z,.
Similarly,
S(Zmio’ Ze+0) — eiw f;{m qdf — /\Z @ /\21’ (5.2.28)

propagates the waves across the layer from 2, to z, (@ is used to denote a
generalization of the usual direct sum). Where A is a 3x3 matrix of the positive

phase factors,

G 0 O
Ao = exp{iw/ 0 g O dg} (5.2.29)
2y
0 0 g

Then, we can express the propagator P in terms of the wave propagator S as,

P(zm, zn) = N(2m-0) S(2m—0, ze10) Se S(z¢—0, 2Zn+0) ¢ N(zn10)- (5.2.30)

The interesting point of this expression resides on the fact that the wave prop-

agator S can be written in terms of the reflection and transmission coefficients
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(Kennet, 1983). In this way, the algorithm will be more stable, avoiding growing
exponentials what was usually the problem with propagator theory (Thomson,
1950; Haskell, 1953; Knopoff, 1964).

Consider an incident wave of unit amplitude at an interface z,. this will

generate reflected and transmitted waves as it shown in this figure

Figure 5.5: Reflected and transmitted ray at an interface z,. Subscript indicates the incident

wave direction.
Then, the continuity of the solution through the interface requires,
NZZ,O I + NZZ,O RU - NZ['H) r:[‘U7 (5231)

and

NZ[—O TD = Nzﬁ_() RD + Nze—l—O I (5232)

The continuity of the solution vector y at the interface for the six possible incident

wave conditions can be expressed in a matrix equation,

I 0 Ty Rp
NZ@—O = Nzl+0 (5233)
Ry Tp 0 I

Where Ry, Rp, Ty, Tp are reflection and transmission matrices for incident waves



CHAPTER 5. MODELING TECHNIQUES 94

traveling in the upward and downward directions. i.e.,

RY R} 0
Ry = RY R¥ 0 , (5.2.34)
0 0 RM

where the first superscript refers to the incident wave type, in this case traveling
in an upward direction from below the interface. The second superscript refers
to the reflected ray type. P refers to a P-wave, v to an SV-wave and h to
an SH-wave. It was included the separation of the P-SV and SH systems by
setting some coefficients to zero. The elements of the other matrices are similarly
defined. Appendix 2 will show the explicit form of the reflection and transmission
coefficients.

We recall the wave propagator from equation 5.2.27,
Se = N_ Lo N0 (5.2.35)

Combining this equation with equation 5.2.33 we obtain,

Ty —-Rp T, Ry Rp T}
S, = vomp S DD (5.2.36)
~Tp Ry T,

The wave propagator S can be used to expand the propagator P in terms of the
reflection and transmission coefficients in a recursively formula due to Kennett
(1983).

Suppose we have found the solution for a stack of layers from z,, to z,_; and

we add a new layer from z,_1 to z,.

In terms of the wave propagator we can write,

S(zm — 0,2, —0) =S(2, — 0,2, 1 —0)S(2,_ 1 — 0,2, +0)S,, (5.2.37)
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Tp Ty
R R
U U
Zn-1
g; g; z Rm En
n
R

D R

n | D Ry

Tp TU
R R
U U
Zn-1
T
Dp RDn
b |

Figure 5.6: The generation of the ray expansion when an extra layer 2z, 1 < z < 2, is added

to a stack of layers z,, < z < z,—1. One ray in each set of reverberations is illustrated.

Replacing equation 5.2.36 into equation 5.2.37 we obtain,
T, -R,T,; 'R, R,T,;'\ [Tv-RpT,'Ry RpT,
7 = x
-TpRy T,! -TpRy T,
An O Ty, —Rp, Tp' Ry, Rp,Tp!
x Un = 5D 2Dy 2Un - 2D =Dy (5.2.38)
0 Al -Tp, Ry, T, .
Where T' refers to the complete stack from z, to z,, T refers to the stack from
Zm to z,_1 and T,, refers to the interface at z,. Solving this system we obtain
Kennett’s recursive formula between reflection and transmission coefficients from

a stack of layers.

5.2.3 The Source term

So far, we deal with the solution of the homogeneous differential system. Now
let us incorporate the contribution of the seismic source. Then equation 5.2.8
will be modified as,

0.y(z) = wA(2)y(z) +F (5.2.39)

where F' is the source contribution.
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The complete solution of this equation (Chapman and Orcutt, 1985) is given
by,

v(z) = P(z,2,) y(2n) + /ZP(Z,S) w(£)d¢ (5.2.40)
where
w! =[0,0,0,—F™(2), -G (2), —H™(2)] (5.2.41)

The source force f, has been expanded in the harmonic functions F*, GI*,H}".
Let us take the case of an infinitesimal point source at x = zy,. We consider the

seismic source as being due to a stress glut I'(z,¢) (Backus and Mulcahy, 1976),
fo=-V.I (5.2.42)
Then, we define the moment tensor m(t) as the volume integral of the stress glut
m(f) = / T(x, £)dx. (5.2.43)

We write the source force for the idealized point source as (Gilbert, 1971),
fo = £(t)d(x — x0) — V.m(¢)d(x — xo). (5.2.44)

For the cylindrical system the delta function is given by

d(x —x¢) = lim 0(z = 20)0(x = 20)3(¢)

x0—0 e

(5.2.45)

where the harmonic coefficients for order m=0 are (Kennet and Kerry, 1979),

N E(2) = Fow)d(z — 20) — (W) 6" (2 — 20) (5.2.46)
17 GR(2) = —=(k/2) e (w) + e (w)]0(z — 20) (5.2.47)
n 'HY(z) =0 (5.2.48)
with,
n= ()2 = (B (5.2.49)

2T
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The relevant quantity when including the source is the discontinuity in compo-
nent waves at that point. The saltus in the component vector can be written

as:

20+0
[r(zo)]z/ ) F1(&)w,(€)dE, (5.2.50)
using that
F = Neliw/  a®®) d] (5.2.51)
then,
20+0 )
[r(20)] =i / el @OINT (6w (€)dE. (5.2.52)
20—0

Replacing the expressions of w; from equation 5.2.41 and the harmonic functions

from equations 5.2.46, 5.2.47 and 5.2.48 we get,

[r(20)] = W [(¢a; ip; 0, Ga, —ip, O)T fZ(UJ) -

—iw (qia _Z'pCIﬂa Oa _qge: _iPQﬁa O)T mzz(w) -
)T Mg (W) + m¢¢(w)
2

2 2

) ZPQﬂ, 0: -, ZPQﬁa 0

—iw(p (5.2.53)

Terms on the right hand side (RHS) are evaluated at the source depth z,. W
is a diagonal matrix that contains the phase at the source and the eigenvector

weighting,

(2pga) "1/
(2pgs)~"/* 0
W = el iwr(zo)] (215) /2
(2pga) 1/
0 (2pgs) =/

(2ugs) /2
(5.2.54)

Since these expressions are the change in waves across the source depth, the first
three components of [r(zy)] are the amplitudes of the source waves propagating

in the positive direction from the source and the last three components are minus
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the amplitudes of source waves propagating in the negative direction. Then we

can write the jump due to the source as,
[v(20)] = N(zo)e[*iw(zo)] [r(z0)] (5.2.55)

Normally we take the phase of the source 7(zp) as zero. Now, in the case of an

explosive source, the moment tensor is diagonal
(W) = My, (W) = Mge(w) = Mge(w). (5.2.56)

Then for this case equation 5.2.53 for [r(zy)] ca be simplified as,

_ —iwm(w) n
[I'(ZO)] - a% (2,00 QQ0)1/2

Where we consider for W a source that generates only p-waves. In the example

[1,0,0,—1,0,0]". (5.2.57)

shown in chapter four we also consider a zero phase source.

5.2.4 Complete solution

Once the source term was defined, we can look for the complete solution of the

in-homogeneous differential equation:
0,y = wAy+F (5.2.58)
Under the following boundary conditions:

e Top(z = 0) : Free surface, stress components—zero

e Bottom(z = 2,): only downward propagation. There are no sources or

reflected energy.

Then, the solution can be written as

y(0) 0 ry
=Y Y ()
0 wp(2n) r'p
————
stress set to zero upoing waves set to zero upward and downward source contribution

(5.2.59)
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Where

Y = P(0,2)N(2)

wp down-going wave field at z = z,,.

zg — source depth.

ry — up-going waves from the source.
rp — down-going waves from the source.

In terms of propagators, the solution at the surface is given by:

v(z0 +0) =P(0, 2,)N(2n) W(zn) — P(0,20)N(20) Wsource (5.2.60)
——_— ——— ~———
N(20)S(0,2n) N(20)S(0,20)

Since we know how to write the wave propagator S in terms of the reflection and

transmission coefficients, we rewrite the solution as:

y(O)_ N1 Ny Si1 Sio 0 N1 Nio Si1 Si2)\ [ru
0 Ny Ny So1 Sao Wp Ny Ny, So1 Sao r'p

20 Zn 20 2

(5.2.61)

We want solve the system for the displacement at the surface (y(0)). Our un-
knowns are actually y(0) and the escaping waves wp. Solving for these vectors

we obtain:

y(0) = [N(1)1S7f2 + N(1)2832]WD - [N(l)ls(l)l + N(I)QSgl]rU + [N(1)1S(1)2 + N(1)2832]rD-
(5.2.62)
0= [Ng1s71l2+NgQSg2]WD_[Ngls(fl+N82831]I'U+[Ng1s(1)2+N22522]rD- (5.2.63)
Where we used the notation,
N3 = Nij(20)
S5 = Sij(20)

Now, calling Sy, and St the contributions of the source,

Sw = [N(1)1S(1)1 + N(I)QSgl]rU + [N(l)ls(l)Q + N(1)2582]1'D (5.2.64)
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Sr = [Ng1s(1)1 + Ng2sgl]rU + [Ngls(1)2 + NgQSgQ]rD (5.2.65)
We solve for wp from equation 5.2.63 and we obtain,
wp = [N, ST, + N2,S5,] 'S, (5.2.66)
replacing this expression of wp on equation 5.2.62 leads to,
y(0) = [N(I)IS?Q + N?QSQQ][N&S?Q + NgQng]ilsT — Sw. (5.2.67)
Now, we recall S

S S Ty —Rp T;' Ry Rp Ty
Sg _ 11 12 _ U D L p U D 1D (5268)
Sgl SQQ _TD RU TB )

replacing the wave propagators for their expressions in terms of reflection and
transmission coefficients in equation 5.2.67 and re-arranging terms we obtain the

solution at the surface in the (w,p) domain as:

y(0) = [N, Tp! + NYRp, T |IN3, Rp, Tp! + N, T5! 7'Sr — Sy (5.2.69)

Finally, introducing the free surface reflection matrix,the solution at the sur-

face is given by:

y(0) = (N1 + NjyRp )(I— RRp, ) 'N;!'Sr — S, (5.2.70)

R = —N3; Ny, free surface reflection matrix.
This solution is given in the (w,p) domain, to get the solution in the time-offset
(t,x) domain we have to apply the inverse Fourier-Hankel transform, as it will

be shown in next section.
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5.2.5 Inverse Transforms

In order to obtain the expression of equation 5.2.70 in the time-offset domain
a number of analytical and numerical techniques have been developed. We can
divide the existing methods according to the order of integration. If the p integral
is evaluated first, the intermediate result is a complex spectrum, and we call it
a spectral method. 1f the w integral is evaluated first, the intermediate result is
a time series for a given p. We call this a slowness method. The method I used
for the example shown follows the slowness method.

Each component of the vector y from equation 5.2.70 is a function of horizon-
tal wave-number and azimuthal order m and and can be recovered by inverting
the Fourier-Hankel transform. Here it is enough to consider only the term m = 0

so that the inverse Fourier-Hankel transform is given by:

y(z,w) = /000 w? p dp §(p,w) Jo(wpr), (5.2.71)

Jo is the Bessel function of order zero and ¥(p,w) is referred as the reflectivity
function. In this equation p is the horizontal slowness, w is radian temporal
frequency and z is the distance of the receiver from the source. There are several
techniques to solve equation 5.2.71 (Chapman and Orcutt, 1985; Mallick and
Frazer, 1987). In this case I used the standard trapezoidal method, for that the

integrand can be rewritten as:

yww) = [ < o §(p.) Hi(pa), (5.2.72)

where the Bessel function is approximate by the Hankel function of type 1 and

order zero . To simplify the integral to apply the trapezoidal rule, it can be

written,
/ f(p) e59®)dp, (5.2.73)
where, , !
£(p) = = pF(p,w) Hy(wpr)e ™", (5.2.74)
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S =iwx (5.2.75)

and

9(p) = p. (5.2.76)

Then, application of the standard trapezoidal rule to the integral in the equation

5.2.71, between the limits ¢ and b, gives the quadrature formula,

b
/ £(p) e59P dp = %[ F(@)e59 4 F(b)e590)5p. (5.2.77)

When the integral from equation 5.2.71 has been computed for a range of frequen-

cies, we recover the time domain version of y by and inverse Fourier transform,

1 o

— et : 2.
o dw e ™" y(z,w) (5.2.78)

y(z,t) =

—0oQ

Finally, expression 5.2.78 gives the wave field at the surface in the time-offset

domain?.

3The numerical implementation of equation 5.2.78 uses a fast Fourier transform (FFT)

(Strang, 1986)
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Chapter 6

Conclusions

Within this thesis, the problem of stratigraphic filtering due to the presence
of a cyclic reflectivity has been studied. An example of such an effect can be
found in areas with thin coal beds in the Western Canadian Sedimentary Basin.
The presence of coal seams can be identified with a cyclic impedance layering
responsible for notches in the frequency content of the transmitted signal. The
impulse response of such a cyclic reflectivity is contaminated by short-period
multiple impossible to isolate and eliminate. Destructive interference between
this multiple energy and the primary signal is the main reason for the loss of
frequency content in the transmitted signal. Therefore, seismic processing faces
a challenging task at the time of overcoming this problem.

As as secondary complication at the processing stage there is the concept of
non-white reflectivity associated with a cyclic impedance sequence. Conventional
deconvolution assumes a white reflectivity to compress the wavelet and recover
the Earth’s reflection response. However, in the presence of a cyclic impedance
layering the whiteness assumption is invalid and deconvolution should be some-
how corrected for this.

The effect of short-delay multiple reflections on primary reflection ampli-
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tude and spectra are critically dependent on the type of the impedance lay-
ering present. Chapter two, introduces the concepts of cyclic and transitional
impedance stratification. O’Doherty and Anstey (1971) clearly explained the
difference between these two types of reflectivity. The cyclic type is the one that
tends to alternate rapidly high and low values of impedance. In this context,
“rapidly” refers to a layer thickness less than about \/8, where )\ is the (pre-
dominant) wavelength computed using the velocity of the layer. In contrast, a
transitional reflectivity is characterized by a smooth (at least on the scale of a
wavelength) change in impedance with depth.

O’Doherty and Anstey (1971) found that there is an anti-correlation be-
tween the power spectrum of the reflection coefficient series and the amplitude
spectrum of the pulse transmitted through it. This approximation implies that
in the case of a cyclic reflectivity, characterized by a low frequency cut, the sig-
nal transmitted through it has an inverse high-frequency cut. Such an effect is
observed in the presence of coal seams in the Western Canadian Sedimentary
Basin. Therefore, it seems to be important to study the properties of this type
of reflectivity to be able to understand the associated impulse response.

In this sense, Walden and Hosken (1985; 1986) studied the statistical prop-
erties of the reflectivities from many wells all around the world. They found that
neither transitional or cyclic types have a white spectrum. It was found that
the reflection series are pseudo-white only above a corner frequency, below which
their power spectrum falls away according to a power law f?, where £ is between
0.5 and 1.5. They proposed that ARMA(1,1) models would be the best way to
model the amplitude spectrum observed on real log reflectivities.

Besides that, their work show that the probability distribution structure of
these types of reflectivity is not Gaussian. It was found that the distribution

is essentially symmetric but has a sharper central peak and larger tails than a
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Gaussian distribution. Walden and Hosken (1986) proposed that a mixture of
two Laplace distributions provides a good fit to the amplitude distribution of the
primary reflection coefficients.

It is interesting to point out that by trying to understand the nature of
stratigraphic filtering we come across to the concept of non-whiteness associated
to cyclic reflectivities. However, it is important to avoid confusion about this
subject. The non-whiteness characteristic of a cyclic reflectivity is not responsible
for the observed layering filtering. The idea of a non-white reflectivity deals with
its correlation structure, meaning that the sequence is not completely random but
presents certain order. Instead, layering filtering is associated with the distortions
that arise when a wave is traveling through such a profile. Nevertheless both
concepts complicate conventional processing and one should be aware of this
problem at the processing stage.

Once the idea of cyclic reflectivity was explained, chapter 3 focus on the
main factors responsible for stratigraphic layering. In the presence of a cyclic
impedance layering, stratigraphic filtering would arise from the combination of
two factors: transmission loss and the presence of short-period multiples. The
concept of short-period implies that the time difference between primary and
first multiple is less than the width of the propagating wavelet.

As it was mentioned, O'Doherty and Anstey (1971) proposed an approximate
relationship between the amplitude spectrum of the transmitted pulse and the
power spectrum of the reflection coefficients series associated with the transmis-
sion filter. Later on, many other papers appear for a more clear derivation of
such a relation. Banik (1985b; 1985a) derived the classic O’Doherty and Anstey
formula using traditional methods of statistical mechanics as it is shown in Ap-
pendix B. Others, like Schoenberger (1974), Spencer (1977), Mateeva (2001),

just accept the original derivation and study with more detail the attenuation
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effect. They found that the main factor on the frequency attenuation is based on
the interference between primary and short-path multiples. Such an interference
would be constructive for some frequencies and destructive for others causing
notches in the amplitude spectrum of the transmitted signal as it is observed in
the WCB. The idea behind this effect is that the impulse response is associated to
a cyclic impedance layering, characterized by high reflection coefficients. In this
case, transmission losses might be so severe that the primary signal is reduced
to negligible values. However, the short-period multiples immediately following
the primary have significant amplitudes and the same polarity. The cyclic sys-
tem acts like a low pass filter. The low frequencies see a almost homogeneous
system and pass through it with little attenuation. Higher frequencies begin to
see the velocity structure and are multiply reflected within it. Consequently,
higher frequencies are delayed and ultimately removed from the transmitted sig-
nal. Chapter 3 explicitly illustrate these effects with several examples.

Finally, after getting a sense of what is causing the stratigraphic filtering
observed in the WCB data, we analyzed possible approaches to overcome this
effect from the seismic processing point of view. As it was mentioned before, the
stratigraphic filtering is characterized by a correlation structure that deviates
from the common used whiteness assumption. Chapter four reviewed some of
the known techniques to face this weakness in the conventional seismic processing
(Saggaf and Robinson, 2000). The Spectral compensation filter seems to be the
easiest technique to implement and use.

As for the stratigraphic filtering effect itself it is proposed a way to com-
pensate for the lack of frequency content in the transmitted signal below the
transmission filter. This method consists of designing a minimum phase filter
by using the Hilbert transform of the spectral factorization (spectra above and

below the transmission filter). Results obtained by this technique seem to be
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reasonable when comparing the extracted wavelets above and below the trans-
mission filter after applying the minimum phase filter. However, the technique is
very sensitive to the selection of the window length for the spectral factorization.

In conclusion, a way to improve the seismic image affected by transmission
filtering could contemplate the following ideas. As it was mentioned within the
thesis, conventional deconvolution is based on a seismic model with two compo-
nents, wavelet and reflectivity. Processing data in the presence of stratigraphic
filtering requires extra steps to improve the incomplete seismic model it is usually
assumed.

In terms of the wavelet component, the spectral factorization technique pre-
sented here will help to compensate for the distortions experienced by the wavelet
through the transmission filter. As a result non-stationarity of the signal should
be reduced. The recommendation is to apply this technique after stack to mini-
mize the effects of multiple energy. As for the reflectivity component, we know
that the whiteness assumption is invalid specially in the presence of a cyclic re-
flectivity sequence. To compensate for this effect the application of a spectral
compensation filter seems to be the most practical solution.

The important point in these techniques is that they imply a generalization
of the conventional processing by just adding an extra step in the processing
flow.

Layering filtering is still a topic under study, since the interference between
multiples and primary is beyond seismic resolution. The success of the technique
recommended here is sensitive to the area under study and it has to be adjusted
for each case. For a better understanding of its performance, more tests with

different datasets should be conducted.
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Appendix A

The reflectivity method

A.1 Non-zero elements of the eigenvector ma-
trix

The elements of the eigenvectors N of the matrix A are given by (Chapman and

Orcutt, 1985):

Ny = =Ny = (2:;#, (A.1.1)
Noy = Noy = @ C]i)l/y (A.1.2)
Ny = Ny = (2p;$1 7 (A.1.3)

Nsi = —Niy = (22;’;%, (A.1.4)
N1z = Nis (2/)(:;)1/2 (A.1.5)

Nyy = —Nos = (zpiqqﬁ, (A.1.6)

Nip = — N = P25 (A.1.7)
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—Q

N5z = N35 = Wa (A-1-8)

1
N33 = N36 = W, (A]_g)

1
N63 = _N66 = ﬁ, (AllO)

where,

Q=p—2up® (A.1.11)

where p is the density, u is the Lamé elastic parameter. The eigenvalues ¢, and

gp are given by,

4a(p, 2) = [ *(2) — p*]'/%, (A.1.12)
45(p,2) = [B7°(2) — p°]'%, (A.1.13)
where p the ray parameter is given by p = f, with k£ as the wavenumber and w

the angular frequency.

The compressional wave velocity « is given by

a(z) = (“72“)1/2, (A.1.14)

and the shear wave velocity 3 is,

Bz = () (A.1.15)

with A\ and p as the Lamé elastic parameter.

The elements are scaled in such a way that,

Nt =iNT, (A.1.16)
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A.2 Reflection and transmission coefficients

The reflection and transmission coefficients are computed whenever the waves go
through a new interface. Here, one can select the type of waves to propagate, i.e.
if we have an incident p-wave, we can select either to propagate only p-waves or
include the sv-waves.

In the following formulas signs + and - are to indicate top and bottom of an

interface respectively (Chapman and Orcutt, 1985).

R = (Aa_Ags + Cy_Cys — D) | AP, (A.2.1)
R?” = (—A, Agy +Cy .Cy — D) | AP, (A.2.2)
RY = (Aas As_ + Cr2Cy — D) | AP, (A.2.3)
W (“Ags Ay +CyCo — D) | AP, (A.2.4)
Rl = =R = (42 g2 — i 1) / A, (A.2.5)
TP = TP = Fy Fao(qs1 Bs + qp2 By | A, (A.2.6)
Ty" =T = Fp1 Fpa(qa1 B> + a2 Er [ A, (A.2.7)
Toh = TH" = 22 qpo t gp1)'"* | A", (A.2.8)

RY = Ry = ipFa1 Fp1(2qa2 gp2B1 By + Ex(Ey — p1)) / (mAP?), (A.2.9)
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Ry = Rif = —ipFas F2(2qa1 qp1 E1 By + E1(E1 — p2)) [ (p2A™),  (A.2.10)

Ty =Ty = —ipFa1 Fp2(2Bs g1 gao + E1 — p2)) [ AP, (A.2.11)

T = TP = ipFay F51(2B; qs2 g1 + B2 — p1)) | AP, (A.2.12)
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where,

AM = (11 gs1 + 2 gs2); (A2.13)

AP = Ay, Agy — Cy4Coy + D, (A.2.14)
Aot = P2 4o1 + P1 o2, (A.2.15)

Ap— = p2 4p1 — p1 Gp2; (A.2.16)

By = p1 — pa, (A.2.17)

By = o — p, (A.2.18)

Cry = 2p[B1(ga1 g51 +1°) — p1l, (A.2.19)
Co— = 2p[Ba(—qa2 qp2 + P*) — pol, (A.2.20)
D = p*(p1 + p2)?, (A.2.21)

Ei = p, — 2p*B;, (A.2.22)

Ey = py — 2p* B, (A.2.23)

For = (2 p1 qa1)'?, (A.2.24)
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Fp1 = (2 pa qs2) "2 (A.2.25)

The subscripts 1 and 2 refer to the medium just above and below the interface,
i.e.

w1 = pu(zg +0), (A.2.26)

pe = p(zg — 0). (A.2.27)

[ (Chapman and Orcutt, 1985), pages 120,121]
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Appendix B

O’Doherty-Anstey formula

B.1 Derivation of the O’Doherty-Anstey formula

I follow the derivation given by Banik (1985b) where they treat the medium as
a continuum rather that as discrete layers, the advantage is that the result is
independent of sample interval.

Let’s start with the one-dimensional wave equation in the frequency domain:

0 .10p w?
—~ =z — =0 B.1.1
8z[paz]+pvgp (B.1.1)
Where p = is pressure, w = the angular frequency, z = is depth, p = density and
V = velocity.

Introducing the one way traveltime 7" as a new independent variable instead

of depth
%

T = B.1.2
V ? ( )

and expressing the impedance Z as,
Z(T) = pV. (B.1.3)

Replacing this in the wave equation becomes,
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2
0%p dp 0(InZ) Wp =0 (B.1.4)

o712 or orT
Then, they postulate that the impedance Z at each depth T is a random vari-

able. Assuming that InZ is a stationary process, then its expectation value is

independent of depth:

E[inZ(T)] = InZ, (B.1.5)
Denoting the fluctuations in InZ as,
dp=InZ — ElinZ] = In(Z]Z) (B.1.6)

then, the wave equation can be re-written as,

0”p 2 dp 0(dp)
o> P T ar Tor

Another consequence of assuming [nZ is stationary is that its autocorrelation

(B.L1.7)

only dependent on the lags:

E[u(T) 6u(T")] = M(T - T') (B.1.8)

Although equation B.1.5 and B.1.8 are not necessarily well honored by nature,
the two assumptions are commonly made to facilitate mathematical results com-
parable to field data. Both are also implicit in the derivation given by O’Doherty
and Anstey (1971).

The analogy between O’Doherty-Anstey formula, where they use a discrete
rc series, can be found in the continuous field with a valid discrete aproximatiom.
For that, the depth 7" can be divided into small, equals intervals and Z can be
considered constant at each interval. The discontinuity between intervals is given

by the reflection coefficients,
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_Zen —Z
Zy+ 2y
For small reflection coefficients (| r [« 1) which are related to the spatial change

in InZ

(B.L.9)

Te

1

r R EAan = A(inZ)

or

where 7 is the two way time for the sample interval. Now, using equation B.1.6,

(B.1.10)

1

becomes

O(op)
S (B.1.11)

O’Doherty and Anstey (1971) defined the spectrum R(w) of the series of reflec-

r )

PR

tion coefficients as,

1 .
R(w) = ; ;E_HWZTE[TTLTWI—Z]- (B112)

The analogy to this formula as a continuous quantity, replace equation B.1.11
into equation B.1.12 and let the sum approximate an integral.
1

+00 ) 82
——— —2w(r-1"y Y '
R(w) =3 /_ dT e 57 En(T)ou(T)] (B.1.13)

The autocorrelation in equation B.1.13 is written as M (7' —7") in equation B.1.8.

oo

Defining its Fourier transform M such that

1 [t T T o
M(T-T' = o / dretT-TI M (1) (B.1.14)
™

Substituting equations B.1.8 and B.1.14 into equation B.1.13 gives,

—0o0

R(w) = %MQM(zw) (B.1.15)

Equations B.1.13 or B.1.15 defines the continuous quantity that corresponds
to the spectrum employed by O’Doherty and Anstey (1971), essentially is the

spectrum of %.
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Banik (1985b) used the mean-field theory for waves in random media, obtain-
ing results identical to those of O’Doherty and Anstey. In this way, the pressure
p at each depth 7T is a random variable, connected to the impedance fluctuation
with equation B.1.14. Denoting the mean field E[p| as pp and the fluctuating
part dp, then

p=po+0p (B.1.16)

Following an standard procedure they obtain a Kramers-Kronig dispersion re-
lation for py. For temporal dependence e~ the spatial dependence is a damped
plane wave of the form e ¥ with spatial frequency 2. Then they obtain the
following results (details of their derivation can be found in the Appendix B of

their paper (Banik et al., 1985b))
Q= 4wl +F), (B.1.17)

where the signs correspond to upward and downward modes of propagation. The

real and imaginary parts of F' are given by,
1 -
Fr = §wM(2w), (B.1.18)

1 +°°d Fr(y)

Frp=— y . B.1.19
f P J (y - w) ( )
From equations B.1.15 and B.1.18 it also valid the expression,
JogiiC) (B.1.20)
w

The mean-field dispersion relation can be interpreted as stratigraphic filtering by
considering a downward propagating wavelet. For a case like a succession of fine
layers, when the waveform travels through it is contaminated by short-period

multiples. The waveform is then continuously modified by the superposition
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of these short-delay multiples. In a distance AT the component of temporal
frequency w is multiplied by,

e+iQAT — €+iU)ATA(w) (B1.21)

where,

A(w) = e FAT (B.1.22)

Finally, by replacing equation B.1.20 in equation B.1.22, it gives the formula of
O’Doherty and Anstey (1971)

| A(w) |= e ATEW), (B.1.23)



