
University of Alberta

The Singular Spectrum Analysis method and its application to seismic data
denoising and reconstruction

by

Vicente E. Oropeza

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science
in

Geophysics

Department of Physics

c©Vicente E. Oropeza
Fall 2010

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis
and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is

converted to, or otherwise made available in digital form, the University of Alberta will advise potential
users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and,
except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or

otherwise reproduced in any material form whatsoever without the author’s prior written permission.



Examining Committee

Dr. Mauricio D. Sacchi, Physics

Dr. Vadim Kravchinsky, Physics

Dr. Mirko Van Der Baan, Physics

Dr. Sergiy Vorobyov, Electrical and Computer Engineering



Abstract

Attenuating random and coherent noise is an important part of seismic data processing.

Successful removal results in an enhanced image of the subsurface geology, which facilitate

economical decisions in hydrocarbon exploration. This motivates the search for new and

more efficient techniques for noise removal. The main goal of this thesis is to present

an overview of the Singular Spectrum Analysis (SSA) technique, studying its potential

application to seismic data processing.

An overview of the application of SSA for time series analysis is presented. Subsequently, its

applications for random and coherenet noise attenuation, expansion to multiple dimensions,

and for the recovery of unrecorded seismograms are described. To improve the performance

of SSA, a faster implementation via a randomized singular value decomposition is proposed.

Results obtained in this work show that SSA is a versatile method for both random and

coherent noise attenuation, as well as for the recovery of missing traces.
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CHAPTER 1

Introduction

1.1 Background

The seismic method is an important geophysical tool for the study of subsurface geology.

It allows one to obtain geological information over an extensive area without having to

measure its properties directly. The seismic method consists of generating a wavefront

that propagates through the ground that is then recorded at the surface using an array of

receivers. Although most of the energy of this wave is absorbed by the earth, some energy is

reflected by subsurface structures and recorded at the surface by arrays of receivers. Ground

displacements produced by different waves, including these reflections, are recorded by the

receivers and saved into seismograms. In a typical land seismogram one can identify several

waveforms, such as a direct wave, refractions, reflections and ground roll (Figure 1.1). Since

the reflections travel deeper into the subsurface than other types of wave, they are generally

the main target in seismic surveys. Thus, seismograms are often processed and inverted to

enhance the signal from the reflections, producing a cleaner image of the subsurface.

A basic processing sequence starts with preprocessing and deconvolution techniques, fol-

lowed by common midpoint (CMP) sorting, velocity analysis, normal move-out (NMO)

correction and stacking. After a preliminary image is obtained it is improved by applying

a residual statics correction, poststack processing and migration. Preprocessing consists of

correcting the elevation statics and in filtering those elements of the records that interfere

with the reflections. Deconvolution aims to increase the frequency band of the signal. In

addition, CMP sorting consists of a reorganization of the traces, grouping together those

that have the same geographical midpoint between source and receiver. Velocity analysis

and NMO correction are steps that analyze the arrival times of the reflections and performs

1
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a correction that horizontalizes them. Then, the stacking step proceeds to average those

traces in each CMP. The next steps are the residual statics corrections and poststack pro-

cessing, which objectives are to filter the noise that was not removed in the process and to

improve the lateral continuity of the events. Finally, migration applies inversion techniques

to recover the true position of the events. The result of this entire process is an image of

the subsurface that can be used to create a model of the geological features in the area. It is

clear that each stage depends on the results of previous steps. Therefore, noise attenuation

methods applied in preprocessing steps of the sequence are fundamental to obtain results

of high quality. Failure in the aforementioned processes may result in a seismic image of

low quality. This ultimately leads to increased difficulties when making economical and

logistical decisions pertraining the development of an exploration play.

Figure 1.1: Features of a seismic record.

There are different types of noise that can be found in seismic data. According to their

behavior they can be classified into coherent and incoherent noise. Coherent noise is present

in adjacent traces, and is generally generated by the source or by the interaction of the main

wavefield with the ground. Some forms of coherent noise are multiple reflections, ghosts,
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ground roll, air wave, etc. The incoherent noise, also called random noise, is recorded by

each receiver independently, meaning it does not correlate between adjacent channels. The

latter can be produced by environmental factors, such as the wind moving vegetation in

the survey area. The vibrations produced by the external factors are recorded by nearby

receivers. Given that the energy of these waves is very small, they are only detected by

nearby channels, making this noise incoherent. Any other perturbation in the surroundings

of a receiver can also generate random noise.

The main objective of this thesis is to study the application of a rank reduction method,

called Singular Spectrum Analysis (SSA), for the attenuation of random noise and ground

roll. The results obtained from the application of this method show a significant improve-

ment in the noise reduction compared with traditional techniques. In the next section I will

review some of the traditional techniques for noise reduction, which leads to the motivation

of this work.

1.2 Noise attenuation methods

The attenuation of random and coherent noise in seismic records is an important subject in

seismic data processing. In general, random noise is attenuated in the CMP stacking step of

processing, but in many cases noise is not completely removed by stacking. Classical meth-

ods for random noise attenuation exploit the predictability of the seismic signal in small

spatio-temporal windows. An example of the aforementioned concepts is the f − x decon-

volution (Canales, 1984), which takes advantage of the properties of the signal in the f − x
domain. In this domain, the signal is predictable as a function of the space. Random noise is

attenuated by applying a complex Wiener prediction filter that exploits this predictability

(Gulunay, 1986). Variations of f − x deconvolution are focused in improving the design

of the filter. For example, Sacchi and Kuehl (2001) introduced an autoregressive/moving-

average (ARMA) model to represent the signal. Nevertheless, those methods take advantage

of the same properties of the signal in the f − x domain. Another example of a method

that exploit the predictability of the signal is the t − x prediction error filter (Abma and

Claerbout, 1995), which works in the time-space domain by applying a single prediction

filter using a conjugate gradient method. Although it is important for noise reduction tech-

niques to be able to significantly attenuate the noise, it is also important to produce outputs

with minimal signal distortion. This condition is only met in f − x deconvolution for low

and medium levels of noise. The signal distortion can be high in low signal-to-noise-ratio

situations (Harris and White, 1997; Gulunay, 2000).

Another category of methods rely on rank reduction techniques to decompose a window of

seismic data in coherent and incoherent components (Ulrych et al., 1999). Examples in this
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category are abundant in the geophysical literature. Freire and Ulrych (1988), for instance,

proposed to carry out rank reduction of seismic images in the t − x domain via the so-

called eigen-image decomposition. This approach takes advantage of the linear dependency

between traces, so it works well for horizontal events. Chiu and Howell (2008) and Cary

and Zhang (2009) extended this idea for the elimination of ground roll. For this purpose the

offending event (ground roll) is flattened via a linear moveout (LMO) correction, and then

modelled using the eigen-image method to be finally subtracted from the initial data. The

eigen-image method is also connected to the Karhunen-Loéve transform (KL) and principal

component analysis (PCA) methods (Freire and Ulrych, 1988). The KL transform has been

applied by Jones and Levy (1987), Marchisio et al. (1988) and Al-Yahya (1991) for signal-

to-noise ratio enhancement in seismic records. KL transform and PCA are similar methods

that use Singular Value Decomposition (SVD) for their applications and are sometimes used

as equivalent. The main differences between these two methods are compiled by Gerbrands

(1981). In general, rank reduction methods that are applied in the time-space domain, are

unsuccessful in identifying dipping events.

A rank reduction method that is independent of dip, and therefore, does not require flat-

tening, has been proposed by Mari and Glangeaud (1990). This method is called Spectral

Matrix Filtering; it was presented as an alternative to separate up-going and down-going

waves in VSP records. This method operates in the f − x domain and requires the eigen-

decomposition of the spectral matrix of the data. These techniques have been expanded

also to several dimensions of seismic data. Trickett (2003) proposed the application of an

eigen-image filter that works in the f − xy domain, reducing the rank of the spatial matrix

in each frequency. The latter is called f − xy eigenimage noise suppression. Although this

filter performs in multiple dimensions, the improvement of the signal-to-noise ratio of the

results is low compared to other techniques. Other rank reduction methods for noise filtering

apply a reorganization of the rows or columns of the data matrix to improve the coherency

of the signal. One of these methods is the truncated SVD, which works in time slices of a

stacked data cube by rearranging its columns into a Hankel matrix to suppress acquisition

footprints and random noise on stacked data (Al-Bannagi et al., 2005).

Although rank reduction methods have been used in seismic data processing for many years,

there is a method that has been recently attracting attention. This method is SSA (Vautard

et al., 1992), which is the main topic of this thesis. SSA arises from the decomposition of

time series in the study of dynamical systems (Broomhead and King, 1986). It has been

well studied in many fields, like climatic series analysis (Vautard and Ghil, 1989; Ghil

et al., 2002), astronomy (Auvergne, 1988; Varadi et al., 1999) and medicine (Mineva and

Popivanov, 1996; Aydin et al., 2009), but it is subjected to ongoing research in seismic data

processing. SSA works in the f − x domain and consists of reorganizing spatial data into

a Hankel matrix. Reducing the rank of this Hankel matrix can reduce the random noise in
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the record without distorting the signal. The latter provides a significant advantage over

traditional noise attenuation techniques like f −x deconvolution. The SSA method has also

been called Cadzow filtering (Trickett, 2008) or the Caterpillar method (Golyandina et al.,

2001). All this techniques are equivalent, but they arise from different fields. For instance,

the Cadzow method was proposed as a general framework for denoising images (Cadzow,

1988), and the Caterpillar method also arises from time series analysis (Nekrutkin, 1996).

Research in the application of this method for random noise attenuation has been published

by Trickett (2008), Sacchi (2009) and Trickett and Burroughs (2009).

This thesis presents an overview of SSA, beginning with an explanation of its origins for

time series analysis. The application of SSA for random noise attenuation is then explained

in detail, including its expansion to multiple dimensions. A main drawback of SSA is that

it can be significantly slow compared to other seismic attenuation methods. To solve this,

I propose the introduction of a randomized algorithm for rank reduction, developed by

Rokhlin et al. (2009), which decreases the amount of computations required by SSA. In

addition to random noise attenuation, I will also investigate two different applications for

SSA. In particular, an iterative algorithm to recover missing traces in an irregularly sampled

data set is proposed. Another application is the use of SSA to attenuate ground roll, which

takes advantage of the capacity of SSA to separate different events. With this work I aim

to generate a compilation of applications of SSA for seismic data processing, which can be

used as a base to more specialized seismic data processing studies.

1.3 Organization of the thesis

This thesis is organized as follows:

• Chapter 2 expands on the origins of SSA as a time series analysis technique. It

explains the steps for the application of SSA in the analysis of dynamical components

of a time series, signal detrending and noise attenuation. This chapter presents an

example of the application of SSA for noise attenuation, by recovering a sinusoidal

curve contaminated with noise. It also shows the application of SSA to decompose the

Wolf sunspots number curve into its singular spectrum, which can provide information

of the processes that control the data. The interpretation of these components in not

discussed here, limiting the explanation to the application of SSA.

• Chapter 3 shows the application of SSA for random noise attenuation of seismic

records. This chapter also introduces the expansion of SSA to multiple dimensions

called Multichannel Singular Spectrum Analysis (MSSA). This expansion is explained

for 2-D MSSA and N-D MSSA. Several examples of SSA are presented where random
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noise is attenuated. Examples include synthetic gathers with linear and hyperbolic

events, as well as real post-stack gathers. Examples of MSSA are limited to the 2-

Dimensional case, in which the random noise of a synthetic cube with linear events is

attenuated.

• Chapter 4 presents the application of a new rank reduction algorithm to the SSA tech-

nique. This algorithm is a randomized SVD (R-SVD) that generates an approximation

to the rank reduced matrix required by SSA. The randomized algorithm requires a

significantly lower amount of calculations compared with the traditional SVD algo-

rithm. Examples in this chapter show the results from the application of MSSA using

SVD and R-SVD in the rank reduction step. The amount of time required by each

process is also shown. The results of this test show that the application of the R-SVD

algorithm in MSSA decreases by 50% the running time of the method.

• Chapter 5 explores the use of SSA for seismic data interpolation. The algorithm of

MSSA is changed to work recursively, performing several iterations. In each iteration

the missing traces of the input data are replaced by the traces recovered by MSSA. Af-

ter a limited number of iterations the signal is reconstructed. This iterative algorithm

is similar to an algorithm called Projection onto convex sets (POCS). The example in

this chapter consists on a real Common Depth point (CDP) gather which offsets are

not regular. The data are regularized into a desired grid and the cells with missing

traces are recovered using the iterative MSSA algorithm. Although this is the only

example of MSSA applied to real data, it shows how the application of MSSA can

recover missing data and, at the same time, can attenuate random noise.

• Chapter 6 presents a different approach for the application of SSA. It expands on the

use of SSA for ground roll attenuation. The principles of this technique are based on

the property of SSA to identify different linear events when one of the first singular

values is recovered independently. This separation can only take place under certain

conditions, which are explained in detail. A synthetic example shows the separation of

two events, one of which presents a significantly lower frequency and different velocity

than the other. The difference in frequency and velocity simulates ground roll and

reflections. A second example applies this technique to a real shot gather that presents

a strong ground roll. The results show that signal separation using SSA is successful

in attenuating ground roll having low effect on the reflections.

• Chapter 7 presents the conclusions and recommendations for further work.



CHAPTER 2

Singular Spectrum Analysis in the study

of time series

2.1 Background

SSA is a model free technique that arises from the research of alternative tools for 1-D time

series analysis. It results from the analysis of the singular spectrum of a trajectory matrix

constructed from the time series of interest. Early applications of SSA are focused on the

analysis of dynamical systems. It is used to identify degrees of freedom in time series, and

this way, find the main physical processes present in the data. An important contribution to

the development of SSA was made by Broomhead and King (1986), who used the method of

delays proposed by Takens (1981) to study dynamical systems using multivariate statistical

analysis. Independently, Fraedrich (1986) also applied SSA to the dimensional analysis of

paleoclimatic marine records. SSA is studied more in depth by Vautard et al. (1992), who

presents it as a tool for the analysis of short, noisy and chaotic signals. They investigate four

major problems that arise from the application of SSA. These problems are: how parameters

like the embedding dimension influences the analysis, what is the level of robustness and

statistical confidence of the results, the possible applications in the identification of noise

and how to interpret the information given by each singular component. The basic aspects

of SSA are compiled and explained in books from Elsner and Tsonis (1996) and Golyandina

et al. (2001), which complement the information with different examples and applications.

SSA is a common tool in climatic series analysis. Vautard and Ghil (1989) and Yiou et al.

(1996) used this technique to study the main oscillations in paleoclimatic records, identi-

fying the amount of degrees of freedom in the data. It was also used to study baroclinic

7
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processes (Read, 1992). Even though SSA has been mostly applied in meteorological stud-

ies, other disciplines have found it useful. In astronomy, for example, it have been applied

for phase space reconstruction of pulsating stars (Auvergne, 1988) and for the detection of

low-amplitude solar oscillations (Varadi et al., 1999). In medicine, it has proven useful in

decomposing data from electroencephalograms, to analyze the preparation time before a

voluntary movement (Mineva and Popivanov, 1996) or to support clinical findings in insom-

nia (Aydin et al., 2009). It has even been used for time series forecast by Danilov (1997) and

Golyandina et al. (2001). In economy, it has been used for the analysis and forecasting of

time series like daily exchange rate (Hassani et al., 2010) or the agricultural crop yield, milk

production and purchase, number of road traffic accidents, etc (Polukoshko and Hofmanis,

2009).

The application of SSA can be expanded to multiple time series simultaneously. This is called

multivariate or multichannel singular spectrum analysis (MSSA) which was first applied by

Read (1993). The difference with SSA is that the trajectory matrix includes information

from all the time series analyzed. In his study, Read (1993) applies MSSA to phase analysis

of time dependent experimental temperature measurements taken simultaneously. Again,

the main application for this technique is to study climatic records. Plaut and Vautard

(1994) uses this technique to study climatic low frequency oscillations in mid latitudes on

the northern hemisphere. It is applied to study the variations in the tropical Pacific climate

(Hsieh and Wu, 2002) and is included in a review of the application of spectral methods to

climatic data presented by Ghil et al. (2002). In a different approach, MSSA is also applied

to signal reconstruction and forecasting of time series (Golyandina and Stepanov, 2005) and

for the filtering of digital terrain models (Golyandina et al., 2007).

Together with the application of SSA in the study of dynamical systems, it is found useful

for noise attenuation in time series. This is carried on by recovering an inferior number

of singular values after the decomposition of the data. This property was observed by

Broomhead and King (1986) and is implemented in many studies. It has been said that

SSA is more powerful as a denoising technique than as a tool for dynamical analysis (Mees

et al., 1987; Paluš and Dvořák, 1987). The main challenge in the use of SSA for noise

attenuation arises from the selection of the number of singular values that recover the data.

The answer to this depends on how correlated are the signal and the noise. In general, the

signal is believed to be represented by the largest singular values (Elsner and Tsonis, 1996),

but this can change when the noise is not white or the signal-to-noise ratio is too low. Most

of the papers that treat the application of SSA to dynamical systems also expand on its

application for noise removal. Works that investigate less subjective ways to use SSA for

the attenuation of noise in time series are carried on by Hansen and Jensen (1987); Allen

and Smith (1997) and Varadi et al. (1999).
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The application of SSA consists of four main steps. The first step is the embedding of the

time series, which consists of organizing its entries in a trajectory matrix. The second step

is the decomposition of this matrix in its singular spectrum by using SVD. The third step

consists of the application of a rank reduction to the trajectory matrix by recovering fewer

amounts of singular values from the decomposition. Finally, the time series is recovered from

the rank reduced trajectory matrix. This chapter presents the basic theory behind SSA,

emphasizing in its application for decomposing and denoising time series. Further details

on the four main steps for the application of SSA are presented, together with examples

that demonstrate its effectiveness in extracting main oscillations and increasing the signal-

to-noise ratio of the data. A particular approach to MSSA will be done in Chapter 3, where

it will be used for the attenuation of random noise in seismic records.

2.2 Preliminaries

Many rank reduction methods rely on the application of the SVD technique to calculate the

rank reduced matrix. Before explaining the application of SSA to time series and seismic

record denoising it is necessary to understand the rank reduction process. In this section

the process of rank reduction using SVD will be expanded.

A group of data measurements can be viewed as a matrix X. For example, 1-D time series

can be represented as a matrix X by computing its autocorrelation matrix or by embedding

its components. In seismic surveys, the columns of a seismic section may represent traces and

the rows time samples of each trace. Seismic data in other domains can also be represented

as a matrix. For example, in the f − x domain the columns of the matrix X represent each

trace, but the rows represent frequency samples. Methods for noise attenuation rely on the

rank reduction of the data matrix by applying a SVD. Reducing the rank of this matrices

allows to identify coherent and incoherent components in the data. SVD consists basically

of the decomposition of the matrix X into a weighted sum of orthogonal rank one matrices,

called eigenimages of X (Ulrych et al., 1999). I will first introduce the SVD decomposition

method, followed by its application for rank reduction of a matrix.

Singular Value Decomposition (SVD)

The SVD arises from the problem in linear algebra of finding the eigenvalues and eigenvectors

of a matrix. Assuming a matrix C that is Hermitian of size m ×m, and a vector x which

elements are not all zero, then the eigenvalues of C are the ones that satisfy :

Cx = λx , (2.1)
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and the vectors x are the eigenvectors of C. The number of non-zero eigenvalues of C

represents its rank. Now, expanding this operation to matrix decomposition, the Hermitian

matrix C can be represented by an arrangement of it eigenvalues and eigenvectors as:

C = UΛUH , (2.2)

where the columns of U are the eigenvectors of C, Λ is a diagonal matrix containing the

eigenvalues of C organized in descending order, and [ ]H denotes the Hermitian or conjugate

transpose of the matrix (Manning et al., 2009). Now, given that the previous decomposition

is restrained for squared matrices, a different approach has to be made to decompose a

rectangular matrix.

Let X be an m × n matrix, with m ≥ n and rank r ≤ n. The rank of a matrix is the

number of linearly independent rows or columns, therefore, the maximum rank of a matrix

is equivalent to rank(X) ≤ min{m,n} (Manning et al., 2009). The application of SVD

consists of decomposing this matrix as:

X = UΣVH , (2.3)

where U is the matrix whose columns are the eigenvectors of XXH , V is the matrix whose

columns are the eigenvectors of XHX and Σ is a diagonal matrix containing the singular

values of X. The singular values of X are obtained from the eigenvalues of XXH as Σ =
√

Λ.

We can relate equations 2.2 and 2.3 by assuming C = XXH , which leads to:

C = XXH = UΣVH VΣUH = UΣ2UH = UΛUH . (2.4)

The same operation can be applied by assuming C = XHX. This leads to XHX = VΣ2VH .

With these operations it is clear how the singular values and singular vectors of X are related

to the eigenvalues and eigenvectors of XXH and XHX.

Rank reduction

The main characteristic of a low-rank matrix is that its elements are not independent from

each other. Because of this, the problem of approximating one matrix by another, with

lower rank, cannot be formulated in a straightforward manner, as a least-squares problem

(Eckart and Young, 1936). Instead of a least-square inversion, one can use SVD to calculate

the low rank approximation of a matrix.
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Let X be a m× n matrix, subject to m ≥ n and with rank r ≤ n. Let k be a real number

such as k < r. The low rank approximation problem consist of finding a m× n matrix Xk,

whose rank is at most k, which minimizes the Frobenius norm of the difference X − Xk

(Manning et al., 2009). This is equivalent to:

‖X−Xk‖F =

√√√√ m∑
i=1

n∑
j=1

|xij − x̃ij |2 . (2.5)

Eckart and Young (1936) found that this problem has a unique solution and that it can be

solved by using SVD. The following steps lead to the solution of the rank approximation

problem:

1. Decompose the initial matrix X by using equation 2.3, meaning X = UΣVH .

2. Replace by zero all but the first k elements of the diagonal matrix Σ to obtain the

matrix Σk .

3. The resulting rank reduced matrix is obtain by Xk = UΣkV
H

This process is equivalent to replacing by zero all but the first k columns of U and V and

all but the first k elements of Σk and then to apply Xk = UkΣkV
H
k . The computation

of the rank reduced matrix Xk can also be calculated in a more efficient way by using the

principal eigenvectors of XXH , maintaining m ≥ n, as (Freire and Ulrych, 1988):

Xk = UkU
H
k X . (2.6)

The latter allow to define the operator UkU
H
k to apply the rank reduction process. The

recovered matrix Xk is at most rank k, and it leads to the lowest possible Frobenius norm

of X−Xk.

We have seen how the process of rank reduction can be completed by the use of SVD. With

this information it is possible to understand the principles that lay behind the rank reduction

techniques for noise attenuation. These concepts are fundamental in the application of SSA.

2.3 Singular Spectrum Analysis in 1-D time series

Let s(t) = (s1, s2, ..., sN ) be a time dependent signal, where N is the number of samples

of the data. This signal is the product of a series of dynamic processes that controls the

measured quantity plus noise. The application of SSA to the time series s(t) is performed

as follows:
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Embedding

SSA consists of the decomposition of the time series in its singular spectrum. This decom-

position is applied to multidimensional series. It is possible to go from a one-dimensional

space to a multidimensional space by using the process of embedding. This consists of de-

composing the time series in a sequence of lagged vectors, which arises from the method

of delays (Broomhead and King, 1986). Now, let L be the length for these lagged vectors

having 1 < L < N , which is also called the embedding dimension (Elsner and Tsonis, 1996).

The number of lagged vectors will depend on the embedding dimension as K = N − L+ 1.

Each lagged vector will have the form:

li = (si, si+1, ..., si+L−1)T 1 ≤ i ≤ K , (2.7)

where [ ]T denotes the transpose of a matrix. The matrix that is built from the organization

of the lagged vectors as M = (l1, l2, ..., lK) is called the trajectory matrix. The resulting

trajectory matrix M is:

M =


s1 s2 · · · sK

s2 s3 · · · sK+1

...
...

. . .
...

sL sL+1 · · · sN

 . (2.8)

The main characteristics of this matrix is Mij = si+j+1, where 1 ≤ i ≤ K and 1 ≤ j ≤
L . This means that the anti-diagonals of the matrix present the same values, and are

symmetrical around the main diagonal. The behavior of this trajectory matrix is that of

a Hankel matrix. The process of embedding can be summarized as M = M s(t), where

M is the Hankelization operator. The embedding dimension L is the main parameter to

select during the embedding step. Elsner and Tsonis (1996) suggests that the results from

the application of SSA are not significantly sensitive to the value of L as long as N is

considerably larger than L, recommending the use of L = N/4. The selection of small

values of L has the advantage of increasing the confidence in the results when the objective

of the analysis present high frequencies. Other authors have said that L has to be sufficiently

large so that the main behavior of the time series to analyze is content in each lagged vector

(Golyandina et al., 2001). These statements show that selecting the embedding parameter

involves a tradeoff between the amount of information in each vector and the confidence of

the results. In the end, it is clear that this parameter can be adjusted depending on the

objective of the study.
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Singular Value Decomposition

This step consists in the decomposition of the trajectory matrix by using SVD. As explained

in the previous section, SVD is a decomposition of the form:

M =

r∑
i=1

√
λiuivi , (2.9)

where λi is the ith eigenvalue of MMH , r is the rank of M and ui and vi are the ith

eigenvectors of MMH and MHM. In general, σi =
√
λi is called the singular value of the

matrix M. Expression 2.9 can be converted to matrix notation as:

M = UΣVH , (2.10)

where Σ is the diagonal matrix containing all the singular values in descending order and

U and V are the matrices containing the set of orthonormal vectors ui and vi respectively.

Given that the eigenvectors of M arise from the autocorrelation matrix MMH , the com-

ponents that present the most coherency in the data will be weighted by singular values

with higher values. This way, the decomposition of the trajectory matrix in its singular

spectrum is very useful to identify trends in the data. Also, given that the signal in the

time series is correlated between time lagged windows, it will be represented by the largest

singular values. Because of this, singular values with less weight can be identified as noise,

making possible the use of this tool in denoising the time series. It is useful to present the

singular spectrum of the data as a graphical representation of the singular values of the

matrix M. To easily visualize the contribution of each singular value, it is convenient to

graph the percentage of each value compared to the sum of all the singular values.

Rank Reduction

Whatever the objective of the application of SSA is, the rank reduction of the trajectory

matrix has to be applied. The rank reduction process was explained in the previous section.

When analyzing the dynamical components of the time series, different singular values can be

grouped to recover physical behaviors identified in the decomposition. For noise reduction,

the rank that represents most of the signal has to be identified before the rank reduction

step. In general, the process consists in recovering a small subset of singular values compared

to the full rank of the trajectory matrix. Let k be the desired rank for the trajectory matrix,

this can be obtained by doing:

Mk = UkΣkV
T
k , (2.11)
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where Mk is the recovered rank-reduced trajectory matrix. The recovered matrix is rank =

k and presents the lowest possible Frobenius norm.

Diagonal averaging

If the recovered matrix Mk is a Hankel form, then the recovery of the time series can be

done by just selecting the values in the anti-diagonals of Mk . In other words, being sk the

desired recovered time series after the rank reduction of the trajectory matrix, the element

n of this time series will be recovered by all the elements Mk(i, j) along the secondary

diagonal, being (i, j) such that i+ j − 1 = n.

Regretfully, this situation rarely happens in practice. In case that the Hankel form is not

preserved in the rank-reduced result, the process of recovering the time signal sk is by

averaging in the anti-diagonals of Mk. Golyandina et al. (2001) introduces an operator

that is helpful to describe the diagonal averaging of the recovered matrix. To simplify the

explanation let’s assume that L ≤ K. The case where K ≤ L is similar, but applying the

operator to MT
k . Now, the operator works as follows: let i+ j − 1 = n and N = L+K − 1,

then the element n of sk is

sk(n) =



1

n

n∑
l=1

Mk(l, n− l − 1) for 1 ≤ n ≤ L

1

L

L∑
l=1

Mk(l, n− l − 1) for L+ 1 ≤ n ≤ K

1

K + L− n

L∑
l=n−K+1

Mk(l, n− l − 1) for K + 1 ≤ n ≤ N

. (2.12)

The latter can be summarized as sk = AMk, where A is the averaging over the anti-diagonals

operator described by equation 2.12. This operation retrieves the component of the initial

time series s that was recovered after the rank reduction of the trajectory matrix.

We have seen the main four steps to compute SSA on time series signals. The interpretation

of the reconstructed components using different singular values is a topic that has been object

of extensive research. For further information in the use of SSA in time series the books

from Elsner and Tsonis (1996) and Golyandina et al. (2001) are recommended, which gives

more details on the use of this technique. However, some examples will be presented at

the end of this chapter, where the use of SSA for decomposition and noise attenuation are

tested.
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2.4 Examples

To test the SSA algorithm for time series analysis I will present first the decomposition of a

simple cosine function s(t) = cos(2πωt+φ), being the temporal frequency ω = 0.1 rad/s and

the phase φ = 0.2 rad. This function was contaminated with random noise with a variance

of 0.5 and zero mean. Given that a cosine function can be represented by the sum of two

exponentials as cos(θ) = 1
2 (e+iθ+e−iθ), this function is expected to have two representations

with high correlation in the singular spectrum. The reason for this is explained in chapter

3.2. SSA was applied by following the four steps previously presented. The embedding

dimension used to form the trajectory matrix was L = N/4, mostly because we know that

there are enough cycles in this time window to perform a successful analysis. This test was

repeated for L = N/3 and L = N/2, with very similar results.
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Figure 2.1: Singular Spectrum for a) cosine function with no noise and b) cosine
function in presence of noise.

The step of decomposing the signal using SVD is applied to the initial cosine function and

to the one contaminated with noise. Figure 2.1a) shows the singular spectrum for the initial

case with no noise and figure 2.1b) shows the singular spectrum for the noisy one. Notice that

the initial cosine function is represented by two singular values, confirming the assumption

previously made. In the presence of noise, the number of singular values different from zero

increases. It is possible to observe that the first two singular values are the ones with higher

energy. In general, it is possible to differentiate between the singular values that represent

the signal by looking for an abrupt change on the contribution of each of them. Even if we

do not have a priori information about these data, it is possible to conclude that the first

two singular values represent the main oscillatory components of the signal, and the rest of

them represent the noise.

Figure 2.2 shows the resulting time series after the recovery using each of the first 10 singular
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Figure 2.2: Decomposition of a noisy cosine function in its singular-spetrum.

values separately. The first two columns present the original signal and the noisy one, to

which SSA was applied. The amplitudes of each curve are normalized, but its contribution

to the curve is proportional to the amplitude of its associate singular value, showed in the

bar diagram. The graphic at the bottom shows the Fourier amplitude spectrum of each

curve. In this exercise one observes the behaviour of the individual data components. The

interpretation of the singular spectrum is not always easy. Sometimes there is no abrupt

change in the amplitude of the singular values. In this case the selection of the final rank of

the matrix will be subjected to the objectives of the study. Figure 2.3a) shows the original

cosine function before the addition of noise and figure 2.3b) shows the same cosine function

in the presence of random noise. Figure 2.3c) is the result of the application of SSA to

the noisy data, performing the rank reduction with the first two singular values. It can be
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observed that the process was successful in removing the noise, also attenuating slightly the

amplitudes of the result, compared to the original one. This example shows how SSA can

be a powerful tool for noise removal in time series analysis.
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Figure 2.3: Result from filtering the noisy cosine function using SSA. a) Cosine
function with no noise, represents the expected solution. b) Cosine function con-
taminated with random noise. c) Result of filtering using SSA. The decrease in
amplitude in the solution is due to the large amount of noise in the data.

SSA is now applied to the Wolf sunspot number curve from 1700 to 1998. In this case, there

is no previous knowledge of the trends or behavior of this time series. The goal is not to

use SSA to denoise the curve, but to analyze the components of the data. Anyways, some

comparison can be done with the previous example. In this test, the embedding dimension

is set to L = N/2. Given that the amount of data for this series is higher; the amount of

time lagged windows will be larger, which will maintain the confidence in the result. The

selection of this embedding dimension makes the trajectory matrix square. In time series

analysis it is common to subtract the mean of the curve to each value of the record. This

has been the objective of standardizing the observations when the singular spectrum from

different records are compared. Elsner and Tsonis (1996) proved that after subtracting the

mean to the elements of the curve, the singular values of the time series remain unchanged.

For the analysis of the Wolf sunspot number curve, the mean was subtracted from the record

to avoid including a very low frequency spectrum. These low frequencies tend to overwhelm

the higher frequencies of interest in the Fourier domain.

Figure 2.4 shows the singular spectrum for the sunspot number series. One observes that the

decrease in the contribution of each singular value is smooth. Unlike the singular spectrum
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Figure 2.4: Singular Spectrum for the Wolf sunspot number time series.

for the noisy cosine function, it is hard to differentiate the main components of signal from

the ones of the noise. Despite this, it is possible to use SSA to identify components with

high coherency in the data. Figure 2.5 shows the results of the decomposition of the Wolf

number series, presenting the contribution of the first 15 singular values. The first column

is the original record after subtracting the mean. The Fourier amplitude spectrum is also

shown in the bottom of the figure for each of the components. The amplitudes for each curve

are normalized, and the contribution of each component is proportional to the weight of the

singular value, which is shown in the top bar graph. We can see that the original record

presents a dominant frequency between 0.08 and 0.1 cycles/year. This frequency content

is recovered by the first four singular values, showing that those are the components with

higher energy in the data. The periodicity shown by the first two components correspond to,

approximately, 11 years/cycle, which is known as the solar cycle (Wilson, 1994). The next

singular values show components with lower and higher frequency contents. The analysis

and forecasting of the Wolf numbers series using SSA has been presented by Loskutov et al.

(2001), who expands on the advantages and disadvantages of SSA for the analysis of solar

activity data. The interpretation of the physical processes that influence these components

will not be discussed given that they are out of the scope of this thesis. From this example

we can extract that the decomposition of a time series can provide information about the

processes that influence time records. We can also see how the singular spectrum of some

time series is smooth, in which case the selection of the final rank to filter the data is not a

simple task.
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Figure 2.5: Decomposition of the sunspots number curve in its singular-spectrum.



CHAPTER 3

Singular Spectrum Analysis for noise

attenuation in seismic records

3.1 Backgound

This chapter presents the use of SSA for random noise filtering in pre-stack and post-stack

seismic data. Although the application of SSA in time series analysis has been studied for a

long time, its use in seismic data processing is rather recent. Trickett (2002) introduced the

use of a rank reduction method called f − x eigenimage filter, which is based in the work

of Cadzow (1988). Trickett (2008) suggested that the method should be called Cadzow

filtering, in honor to the author from whom they based the technique. The application of

the Cadzow method is documented in Trickett and Burroughs (2009). The Cadzow method

and SSA are equivalent, but they arise from different fields of study. We have seen that

SSA was developed for the analysis of time series, while the Cadzow method was proposed

as a technique for the denoising of images (Cadzow, 1988). The relationship between the

Cadzow method and SSA is presented by Sacchi (2009), who denominated the technique as

f − x SSA.

Filtering random noise in seismic records involve the application of SSA in the f−x domain

(Trickett, 2008; Sacchi, 2009). In the first part of this chapter, SSA is applied to one single

frequency at the time, assuming it as a vector that varies in space. The methodology applied

here is analogous to the time series examples shown in chapter 2. The results from the noise

attenuation achieved by SSA are compared with those from using f −x deconvolution. The

latter is the standard technique for random noise attenuation. Although the results show

20
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no evidence of a significant improvement on the amount of noise attenuated by SSA over

the f − x deconvolution, it does a better task in preserving the signal.

A significant improvement on the application of SSA for random noise attenuation arises

from its expansion to multiple dimensions, which is called MSSA. This chapter describes the

process of expanding SSA for the analysis of a 3-D seismic data set, which involves the appli-

cation of MSSA in two dimensions (2-D MSSA). MSSA is also applied in the f −x domain.

The main difference between SSA and 2-D MSSA is that the two spatial dimensions of a

3-D seismic record are used simultaneously for the analysis. An example of the application

of 2-D MSSA is presented. The latter shows that this expansion improves significantly the

attenuation of random noise. The results from 2-D MSSA are compared with those from

applying f − x deconvolution and SSA. The expansion to MSSA is then generalized to N

dimensions (N-D MSSA). Although the theory behind N-D MSSA is explained here, it was

not tested with synthetic or real examples. The design of an example applying MSSA to

more than two dimensions is beyond the scope of this thesis, and it is strongly recommended

for future research.

3.2 Singular Spectrum Analysis in seismic data process-

ing

The application of SSA in seismic data processing is similar to the one applied for the

analysis of time series. The main difference is that SSA is applied in the f − x domain of

the seismic records. Instead of using a temporal vector as input for the analysis, it uses a

spatial vector. Therefore, two extra steps have to be added to the SSA application sequence

described in chapter 2. These steps consist of converting the input data from the t − x

domain to the f − x domain and back. The application of SSA for the attenuation of

random noise in seismic records is performed as follows:

Application of a Fourier transform to each channel:

We start our discussion by considering a 2-D waveform with constant dip. The latter is

analogous to a single event in a seismic section. For simplicity, one can imagine a portion of

a seismic waveform seen in a small window of analysis. This waveform can be represented

as:

s(x, t) = w(t− px) , (3.1)
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where x denotes space, t time, p dip and w(t) is a pulse or wavelet. Figure 3.1 shows a

graphic representation of this 2-D waveform.
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Figure 3.1: Example of a 2-D waveform with constant dip.

This signal can be converted to the f − x domain by applying a Fourier transform to each

channel of the 2-D waveform. The data in the f−x domain are represented by the following

expression:

S(x, ω) = A(ω)e−iωpx , (3.2)

where ω denotes temporal frequency. Let’s consider in addition that the spatial variable x

is replaced by its discrete counterpart x = n∆x, with n representing the channel number.

Also, without losing generality, S(xn, ω) = Sn. It is clear that the following analysis is

valid for one monochromatic temporal frequency ω. It is easy to demonstrate that adjacent

channels (at a given frequency) must obey a linear recursion. Let us first rewrite equation

3.2 using the previous assumptions:

Sn = Ae−iωpn∆x . (3.3)

Similarly, it is possible to use the same notation for the previous channel n− 1 as:

Sn−1 = Ae−iωp(n−1)∆x = Ae−iωpn∆xe−iωp∆x . (3.4)

Substituting equation 3.3 in 3.4 we obtain that channel Sn is related to the previous channel

Sn−1 as:
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Sn = PSn−1 , (3.5)

where P = eiωp∆x.

It is possible to demonstrate that multiple 2-D waveforms also obey a linear recursion at

a given frequency. For example, a record presenting two 2-D waveforms with different dips

can be represented in the f − x domain as:

Sn = A1e
−iξ1n +A2e

−iξ2n = S(1)
n + S(2)

n , (3.6)

where Ak are the amplitudes for each event k, and ξk = ωpk∆x, being pk the dip of each

event. It is clear that if the dips of each event are different, then ξ1 6= ξ2. In a similar way

as in equation 3.4, one can represent the two previous channels n− 1 and n− 2 as:

Sn−1 = A1e
−iξ1(n−1) +A2e

−iξ2(n−1)

Sn−2 = A1e
−iξ1(n−2) +A2e

−iξ2(n−2) .
(3.7)

Using equation 3.5 one can form the following system of equations:

a)

b)

c)


Sn = S

(1)
n + S

(2)
n

Sn−1 = a1S
(1)
n + a2S

(2)
n

Sn−2 = a2
1S

(1)
n + a2

2S
(2)
n

. (3.8)

where ak = e−iωpk∆x. The solution to this system of equations can be obtained by organizing

equations 3.8a) and 3.8b) in their matrix form:

[
Sn−1

Sn−2

]
=

[
a1 a2

a2
1 a2

2

] [
S

(1)
n

S
(2)
n

]
. (3.9)

Since ξ1 6= ξ2 the matrix

[
a1 a2

a2
1 a2

2

]
is invertible, so the solution for this system is

S
(1)
n = αSn−1 + βSn−2

S
(2)
n = γSn−1 + νSn−2 .

(3.10)

Finally, substituting equation 3.10 in equation 3.8a) we obtain the linear relationship be-

tween Sn, Sn−1 and Sn−2, which is

Sn = P1Sn−1 + P2Sn−2 . (3.11)
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This relationship shows the linear recursion between adjacent channels in the presence of

two events. It is possible to expand this relation for k events. It is also important to mention

that this recursion is the basis for f − x deconvolution and represents the predictability of

the signal in the f − x domain (Sacchi and Kuehl, 2001; Ulrych and Sacchi, 2005). This

predictability is the key element in the success of SSA for random noise attenuation.

Embedding of each frequency into a Hankel matrix:

Let Sω = [S1, S2, S3, ..., SNx ]T be a spatial vector of a given frequency ω from the f − x
domain. Here Nx represents the number of space samples of the data. This spatial vector

Sω is analogous to the time series analyzed in chapter 2, but in this case it components are

complex numbers. We apply SSA using four steps similar to the ones described in chapter

2. The spatial vector Sω is embedded into a Hankel matrix of the form:

M =


S1 S2 · · · SKx

S2 S3 · · · SKx+1

...
...

. . .
...

SLx
SLx+1 · · · SNx

 , (3.12)

where the length of the lagged vectors Lx is the parameter that controls the matrix dimen-

sions. Building a square Hankel matrix is a common strategy when SSA is applied to seismic

records (Trickett, 2008). The latter can be achieved by setting the lagged vectors length as

Lx = floor(Nx/2) + 1. By doing this, the number of columns in the Hankel matrix would

be Kx = Nx −Lx + 1. Expression 3.5 imposes a linear relationship between the columns of

the Hankel matrix M as:

M =


S1 PS1 · · · PKx−1S1

S2 PS2 · · · PKx−1S2

...
...

. . .
...

SLx PSLx · · · PKx−1SLx

 . (3.13)

It is easy to observe that for a simple f − x signal, the Hankel matrix reduces to a matrix

with rank = 1. It is clear that in the presence of uncorrelated noise the rank of the matrix

will increase. If the record contains two events, equation 3.11 shows that all the columns of

the matrix M are linear combinations of the first two columns
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M =


S1 S2 P1S2 + P2S1 · · · P1Sn−1 + P2Sn−2

S2 S3 P1S3 + P2S2 · · · P1Sn−1 + P2Sn−2

...
...

...
. . .

...

SLx
SLx+1 P1SLx+1 + P2SLx

· · · P1Sn−1 + P2Sn−2

 . (3.14)

For the superposition of k events with constant dip, one can show that the Hankel matrix

is rank = k. This means that, by knowing the number of events contained in the initial

data set, one can know the minimum rank of the matrix that represents all the events. As

a consequence, the selection of the final rank of the matrix is not subjective, representing

an advantage over the application of SSA in time series analysis, and over many other rank

reduction methods for noise attenuation in seismic records. Rank reduction via the Singular

Value Decomposition (SVD) of M can be used to capture the singular-vectors that model

the signal.

Decomposition of the Hankel matrix using Singular Value Decomposition (SVD):

The singular value decomposition of M is given by:

M = UΣVH , (3.15)

where:

U = eigenvectors of MMH

V = eigenvectors of MHM

Σ = singular values of M in descending order.

This process has been developed in chapters 2, so no further explanation is needed.

Rank Reduction of the Hankel matrix:

The noise in the data (Sω) can be removed by using a low-rank reconstruction of the matrix

M. As seen in chapter 2, the rank reduction of the Hankel matrix can be obtained by

recovering a subset of its singular values as:

Mk = UkΣkV
H
k , (3.16)

where Σk indicates the diagonal matrix containing the first k largest singular values of M.
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Averaging on the anti-diagonals of the recovered Hankel matrix:

To recover the filtered data we average along the anti-diagonals of the matrix M (Sacchi,

2009). This process is achieved by using equation 2.12, from chapter 2. Equation 3.17

provides a visual example of the averaging along the anti-diagonals of a Hankel matrix built

from a vector with seven entries.

Mk =



S1 S2 S3 S4

S2

>>|||
S3

>>|||
S4

>>|||
S5

S3

|||
S4

|||
S5

>>|||
S6

S4

|||
S5

|||
S6

>>|||
S7


. (3.17)

Using equation 2.12 is equivalent to Ŝω = AMk, where Ŝω is the filtered version of Sω.

The averaging step recovers a filtered version of a single frequency of the f − x domain.

One can easily implement SSA denoising by applying the rank reduction technique for each

individual frequency components ω.

Application of an inverse Fourier transform to each channel:

After the rank reduction process is applied to each individual frequency ω, the resulting data

in the f − x domain is taken to the t− x domain by applying an inverse Fourier transform

to each channel. With the application of this step, the filtered image is recovered.

These six steps summarize the application of SSA for random noise attenuation in seismic

records. Its application is simple compared to other methods and it presents the advantage

of allowing us to select the final rank of the Hankel matrix objectively. This algorithm can

be extended to work in multiple domains, which will be studied in the next section.

3.3 2-Dimensional Multichannel Singular Spectrum Anal-

ysis (2-D MSSA)

Previously I discussed the application of SSA to attenuate random noise in a two dimensional

seismic record. In this section I will study the expansion of SSA to multiple dimensions. This

expansion is called MSSA. It was presented by Read (1993) in the context of time series

analysis and by Trickett (2008) for noise attenuation in seismic records. In this section,

MSSA technique is studied for random noise attenuation of a 3-D seismic record. Given
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that SSA works on each frequency at the time, this would involve the application of a

two dimensional MSSA (2-D MSSA). The application of MSSA follows the same six steps

presented previously for SSA, but the construction of the Hankel matrix is expanded in

order to add all the dimensions. For this reason, this section is not divided into the MSSA

steps. Instead, it focuses on describing the construction of this new Hankel matrix.

 

Figure 3.2: Example of one frequency slice organized as a matrix from a 3-D record
to perform 2-D MSSA.

Let’s consider a 3-D waveform with constant dip, where the z axis represents time and x

and y axis represents space dimensions. These data are transformed to the f −x domain by

applying a Fourier transform to each channel of the cube. This way, the 3D data depends

on x, y and a temporal frequency ω. For one frequency slice the data can be organized in a

matrix as follows:

Sω =


S(1, 1) S(1, 2) · · · S(1, Ny)

S(2, 1) S(2, 2) · · · S(2, Ny)
...

...
. . .

...

S(Nx, 1) S(Nx, 2) · · · S(Nx, Ny)

 . (3.18)

The number of traces in the x and y dimensions are given by Nx and Ny, respectively. The

extraction of Sω from the 3-D seismic record in the f − x domain is shown schematically

in figure 3.2. 2-D MSSA first construct one Hankel matrix for each inline (x) component of

Sω. In other words,

Mj =


S(1, j) S(2, j) · · · S(Kx, j)

S(2, j) S(3, j) · · · S(Kx + 1, j)
...

...
. . .

...

S(Lx, j) S(Lx + 1, j) · · · S(Nx, j)

 . (3.19)
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Again, a good strategy is to build a square Hankel matrix, by setting the length of the lagged

vector in x as Lx = floor(Nx/2) + 1 and Kx = Nx−Lx + 1. Next, to add the cross-line (y)

dimension to the analysis, we construct a Hankel of Hankel matrix, which consists of the

inline Hankel matrices organized on a block Hankel matrix as:

M =


M1 M2 · · · MKy

M2 M3 · · · MKy+1

...
...

. . .
...

MLy
MLy+1

· · · MNy

 . (3.20)

Equation 3.20 is equivalent to equation 3.12 but now expanded to the y dimension. This

size of the block Hankel matrix M is (Ly × Lx) × (Ky × Kx). Figure 3.3 presents an

example of the construction of a block Hankel matrix. In here we can appreciate how the

size of the resulting Hankel matrix is much larger than the size of the input matrix. It is

evident that the size of the block Hankel matrix depends on the number of channels in each

dimension of the data.

−→−→−→

Figure 3.3: Construction of a Block Hankel matrix.

In the previous section we observed that there exists a linear relation between the columns

of each Hankel matrix Mj . It is possible to expand this analysis for a 3-D waveform in

the frequency domain and, this way, find a relationship between the columns of the block

Hankel matrix. A 3-D waveform with constant dip can be represented in time as:
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s(x, y, t) = w(t− pxx− pyy) , (3.21)

which preserves the nomenclature of equation 3.1 and includes y as the second dimension in

space. The dip of the event in the x and y dimensions are represented by px and py. This

waveform is represented in the f − x domain by the following expression:

S(x, y, ω) = A(ω)e−iω(pxx+pyy) . (3.22)

In a similar way as in equation 3.3, it is possible to replace the spatial variables x and y by its

discrete counterpart x = n∆x and y = m∆y, with n and m representing the channel number

in x and y respectively. Also, without losing generality, S(xn, ym, ω) = Snm. Applying the

analysis from equations 3.3 and 3.4 it is possible to find a linear relationship between adjacent

channels in dimension y as:

Sn(m−1) = Ae−iωpxn∆xe−iωpy(m−1)∆y = Ae−iωpxn∆xe−iωpym∆ye−iωpy∆y . (3.23)

It is clear from equation 3.23 that there is a linear relationship between channel m and the

previous channel m− 1 in the dimension y, for all the elements n in the dimension x as:

Snm = QSn(m−1) , (3.24)

where Q = eiωpy∆y. Equation 3.24 presents the relationship between each component of the

Hankel matrix Mj with those from the previous Hankel matrix Mj−1, which finally produce

a linear relation between the columns of the block Hankel matrix (equation 3.20) as:

M =


M1 QM1 · · · QKy−1M1

M2 QM2 · · · QKy−1M2

...
...

. . .
...

MLy
QMLy

· · · QKy−1MLy

 . (3.25)

The rank of a block Hankel matrix has been studied in detail by (Hua, 1992) and (Yang and

Hua, 1996). From here on, the procedure ends with the last four steps for the application

of SSA on seismic records, presented in the previous section. The block Hankel matrix is

decomposed via SVD, using equation 3.15. Then, the rank of the Hankel matrix is reduced

using equation 3.16. Next, the filtered data are retrieved by properly averaging along the

anti-diagonals of each individual Hankel matrix composing the low-rank approximation of
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the block Hankel matrix. The latter is important since, if the average is calculated for all the

anti-diagonals of the block Hankel matrix, different entries would be mixed in the operation,

resulting on a poor recovery of the solution. Finally, the 2-D MSSA technique is applied to

all the frequencies of the data and an inverse Fourier transform is calculated to convert the

solution from the f − x domain to the t− x domain.

The results from the application of the 2-D MSSA are significantly better than those of

SSA, as it is shown in section 3.5. This is a consequence of the addition of more information

to the analysis. The improvement in noise attenuation makes 2-D MSSA a very useful tool

in seismic data processing. The main problem found in the application of 2-D MSSA is the

large amount of computational time required for it to work. This happens while applying the

SVD decomposition of the block Hankel matrix for the rank reduction step. SVD is a very

expensive algorithm when it is applied to large matrices. The latter could be a problem in

2-D MSSA given that the rank reduction process has to be repeated for all the frequencies.

Although 2-D MSSA can be significantly slower than other noise attenuation techniques,

the improvement in the results obtained for random noise filtering justifies further research

on this technique.

3.4 N-Dimensional Multichannel Singular Spectrum Anal-

ysis (N-D MSSA)

Previously, the application of SSA and 2-D MSSA was presented. This two applications

work in dimensions that are easy to imagine, and that can be easily identified in a data

set. But in seismic data processing it is possible to analyze more than 3 dimensions of

information. To clarify this, let us review the different dimensions that can be found in a

seismic data set. A 1-Dimension record would be a single trace in time. The application of

SSA to this type of record is carried on in the time domain, and was analyzed in chapter 2. A

2-Dimension data set can be a shot gather, which presents the information of several traces

versus one spatial dimension. It varies with time and records the information generated by

one source. Another example of a 2-D record is a post-processing stacked gather, which

also present several traces in one spatial dimension, depending on time. The random noise

attenuation of 2-D seismic data is performed by applying SSA in the f − x domain. The

seismic data in 3-Dimensions comes, for example, from gathering several shots, producing a

cube which dimensions are shot number, offset and time. In other words, it has two spatial

dimensions plus time. Another example of a 3-D seismic data is a post-processing stacked

data, which dimensions are x and y axis, plus time. The attenuation of random noise in

3-D seismic data can be achieved via 2-D MSSA in the f − x domain, as described in the

previous section.
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Although the addition of more than three simultaneous dimensions in seismic data analysis

is not necessarily intuitive, it is possible. These dimensions are the result of the geometry of

a 3-D seismic survey. A 3-D seismic data set is commonly represented as a 5-Dimensional

volume, which requires two spatial dimensions to identify the source location, two more

to identify the receiver location and a fifth dimension, which is time. Another way of

representing the data in 5-D is by identifying the two dimensions of the source-receiver

midpoint location, the source-receiver distance (offset) and the azimuth of arrival as the

third and fourth dimension, and finally the time, as the fifth dimension (Trad, 2009). The

information contained by each of this dimensions can be utilized simultaneously in the N-D

MSSA analysis. The process is exactly the same as for 2-D MSSA, with the only difference

that with the addition of each new dimension, a larger block Hankel matrix is constructed.

The process can be summarized as follows:

1. Apply a Fourier transform to all traces of the N-Dimensions to convert the data to

the frequency domain.

2. For a single frequency, the process of embedding is applied by building a block Hankel

matrix using the N-Dimensions. This means building Hankel of Hankel of Hankel

matrix N times for the N-Dimensions. This step is an expansion to N-D of equation

3.20 and figure 3.3. Trickett and Burroughs (2009) show that when SSA is applied

for N-Dimensions, the block Hankel matrix keeps presenting rank = k when there is

a presence of k independent linear events in the data.

3. The block Hankel matrix is decomposed using SVD from equation 3.15.

4. The rank of the block Hankel matrix is reduced by applying equation 3.16.

5. The N-Dimensions are recovered by averaging in the anti-diagonals of the individual

Hankel matrices that construct the block Hankel matrix. Similarly to 2-D MSSA, if

all the items in the anti-diagonals of the block Hankel matrix are averaged, it would

result in a poor solution.

6. This process is repeated for all the frequencies of the data, followed by the application

of an inverse Fourier transform to convert the data from the frequency domain to the

time domain.

The addition of more information may improve significantly the results of N-D MSSA for

random noise attenuation. Also, its implementation is simple compared to the expansion of

other techniques to multiple dimensions. Despite of this, its application can be expensive in

computational time. The construction of examples to test the use of N-D MSSA is beyond

the objectives of this thesis, so no results are displayed here. The information presented in

this section may be used as the initial step for further work in this topic.
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3.5 Results and Discussion

Several tests are presented in this section in order to evaluate the SSA algorithms. First,

SSA is tested on synthetic gathers, which present 3 linear events with different dips, and

3 hyperbolic events with different curvatures. Then, it is applied to a real stacked gather

contaminated with random noise. In these examples, the results from SSA are compared to

those obtained from applying an f − x deconvolution filter. Finally, the 2-D MSSA method

is applied to a 3-D synthetic gather which present 4 events with different dips. This example

is compared with the results from using f − x deconvolution and 1-D SSA as random noise

attenuation techniques in each slice of the seismic cube.

3.5.1 SSA

Synthetic data

If the seismic record to analyze contains k different linear events, it is only necessary to

recover k singular values to represent the data when SSA is applied. An example of this

is showed in figure 3.4, where f − x deconvolution and SSA are applied to a noiseless data

set, presenting 3 events with different dips and amplitudes. In this example, figure 3.4a) is

the result of the f − x deconvolution filter, figure 3.4b) is the result from the application

of SSA, figure 3.4c) is the original data prior to noise contamination and figures 3.4d) and

3.4e) are the noise estimators resulting from subtracting the filtered data from the noise-

less data. The noise estimators in figures 3.4d) and 3.4e) present mostly zero values in its

traces, meaning that neither f − x deconvolution nor SSA distort the events when it is

applied to pure signal. In this example, only the first 3 singular values where recovered in

the application of SSA. The contribution of each singular value for each frequency of the

data in showed in figure 3.5. We can see that there are only 3 singular values larger than

zero.

The next example shows the same data used in the previous test, but contaminated with

random noise (figure 3.6). In the presence of noise, the number of non-zero singular values

increases. This difference can be observed by comparing the number of singular values that

represent the noiseless data (figure 3.5) with the ones that represent the data plus noise

(figure 3.7). It is clear that the rank of the Hankel matrix increased with the addition of

noise. In this example, f − x deconvolution and SSA are applied to attenuate this random

noise. The results of this example are shown in figure 3.6, where figure 3.6a) shows the

result from the application of f − x deconvolution, figure 3.6b) shows the result from the

use of SSA and figure 3.6c) presents the noisy input data. Figures 3.6d) and 3.6e) are the
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Figure 3.4: Application of SSA on a noiseless record. a) f−x deconvolution filtering.
b) SSA filtering using one frequency at a time. c) Original data prior to noise
contamination. d), e) Difference between the filtered data and the noise-free data.

Figure 3.5: Singular Values for the noiseless data.

noise estimators resulting from subtracting the initial data (3.6c)) to each of the filter results

3.6a) and 3.6b) respectively. Figure 3.6f) is the original data prior to noise contamination

and figures 3.6g)and 3.6h) are the difference between the noiseless data 3.6f) and the results

from each filter 3.6a) and 3.6b).
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Figure 3.6: Application of SSA on a record contaminated with random noise. a)
f − x deconvolution filtering. b) SSA filtering using one frequency at a time. c)
Noisy input data. d), e) Noise estimators for a) and b). f) Original data prior to
noise contamination. g), h) Difference between the filtered data and the noise-free
data.

Noise reduction via f − x deconvolution is achieved by setting the number of frequencies

used in the analysis to Nf = 8, the pre-whitening parameter is µ = 0.1, and the initial and

final frequencies for the analysis are finit = 1 Hz and ffinal = 80 Hz respectively. For the

application of SSA, the final rank of the Hankel matrix is k = 3 and the initial and final

frequencies are finit = 1 Hz and ffinal = 80 Hz, respectively. The selection of the f − x
deconvolution parameters is achieved by keeping the amount of filtered signal minimum in

the noise estimators. The only parameter to select for SSA is the final rank of the matrix.

In this case this parameter is k = 3, giving that the data present 3 events with different

dips.
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Figure 3.7: Singular Values for the data contaminated by random noise.

We can observe in figure 3.6 that SSA yields to very similar results than f − x deconvolu-

tion. It is important to notice, however, that SSA preserves the entire signal, while f − x
deconvolution seems to attenuate slightly the amplitude of the seismic events.

An example of the application of f−x deconvolution and SSA for random noise attenuation

in a record presenting hyperbolic events is also presented. Given that f − x deconvolution

and SSA work under the assumption of linear events, they must be applied using windows

in space when the events are curved. In short windows it is possible to consider a curved

event as linear. Figure 3.8 shows the results for this test. As in figure 3.6, figure 3.8a)

shows the result from the f − x deconvolution filter using spatial windows and figure 3.8b)

shows the result from the 1-D SSA filter using windows. Next, figure 3.8c) shows the noisy

input data, followed by figures 3.8d) and 3.8e) which present the noise estimators resulting

from the subtraction of the initial data in figure 3.8c) and the filter results from figures

3.8a) and 3.8b) respectively. Finally, figure 3.8f) represents the original data prior to noise

contamination and figures 3.8g)and 3.8h) are the difference between the noiseless data (figure

3.8f)) and the results from the application of the filters, figures 3.8a) and 3.8b), respectively.

The initial data had 120 traces and 1 second in time. The windows are selected to cover

the entire data in time, with 1 second height and 14 traces width, overlapping every 4

traces. We observe in figure 3.8 that both filters succeed in attenuating some random noise

from the data. The amount of noise filtered by applying SSA (figure 3.8b)) appears to be

similar to the amount of noise attenuated by applying f − x deconvolution (figure 3.8a)).

It is important to notice that the difference between the noiseless data and the result of

SSA (figure 3.8h)) reflect a complete preservation in the amplitudes of the signal, while

the application of f − x deconvolution presents the attenuation of part of the signal. The

result of this example shows that, although SSA does not present a significant advantage
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Figure 3.8: Results using windows in space on hyperbolic events: a) f − x de-
convolution filtering. b) SSA filtering using one frequency at the time. c) Noisy
input data. d), e) Noise estimators for a) and b). f) Original data prior to noise
contamination. g), h) Difference between the filtered data and the noise-free data.

on the amount of random noise removed compared to f − x deconvolution, it displays the

advantage of maintaining intact the amplitudes of the events.

Field data

One of the main steps during seismic data processing is the stacking of traces of a common

mid-point (CMP) to obtain a seismic section. Even if the process of stacking is, by itself, a

very powerful filter, it still presents important components of random noise. In figure 3.9 we

can observe the result of the application of f − x deconvolution and SSA filters for random
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noise attenuation of an stacked gather, constructed from real data. In here, figure 3.9 a)

shows the initial noisy gather, while figure 3.9 b) presents the result after f−x deconvolution

and figure 3.9 c) shows the result after applying SSA. If the events of the stacked data are

linear, SSA and f − x deconvolution can be applied in the whole record. However, if the

events present some curvature, or the stacked record is large, it is recommended to apply

the filters using windows in space. This is the case for this example, where the size of the

record demanded the use of spatial intervals of analysis.

Both methods are applied on overlaying windows of data. The latter aims to denoise sections

that present similar characteristics. The record presents 500 traces and 2.2 seconds in total.

The window size is 8 traces, overlapping 10 traces, for a total of 28 traces in space by

0.260 seconds with an overlapping of 0.08 seconds, for a total of 0.420 seconds in time. The

parameters for the application of f − x deconvolution are selected in order to minimize

the amount of signal attenuated by it. The best filtering using f − x deconvolution for this

example requires a number of frequencies of Nf = 4, a pre-whitening parameter of µ = 0.001

and an initial and final frequencies of finit = 1Hz and ffinal = 100Hz respectively. All the

events in each overlapping window have very similar dips, so they are recovered by the same

singular value. Because of this, the final rank of the Hankel matrices in the application

of SSA was set to k = 1. The analysis of SSA was carried on between the frequencies

finit = 1Hz and ffinal = 80Hz.

The results of this test show that SSA attenuates a similar amount of noise than f − x

deconvolution. This is consistent with the results from the linear synthetic results. To

better appreciate the behavior of these filters, figure 3.10 shows a zoom in the black box of

figure 3.9. We can observe that both filters attenuate part of the noise, being the results

very similar. We can also see that the noise estimator does not present coherent events

attenuated by the filters.

3.5.2 2-D MSSA

Synthetic data

The next example shows the expansion of SSA to 2-D MSSA, which involves the analysis

of two spatial dimensions simultaneously. The input data is a synthetic 3-D seismic cube,

presenting 4 linear events in the x and y dimensions and which is contaminated with random

noise. The objective of this test is to compare the advantages in noise attenuation of 2-D

MSSA over one dimensional noise attenuation methods, such as f − x deconvolution and

SSA.

The results from the application of the noise attenuation techniques to the input record are

presented in figure 3.11. We can observe the initial data contaminated with noise (figure
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Figure 3.9: Results of the application of f − x deconvolution and SSA to a stacked
section with random noise. a) Initial data. b) Random noise attenuation using f−x
deconvolution. c) Noise attenuation via SSA.

Figure 3.10: Data in the Black box of Figure 3.9.
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Figure 3.11: Noise attenuation using 2-D MSSA. a) Input data. b) Noiseless data
representing the expected solution. c) Noise attenuation applying f − x decon-
volution. d) Noise attenuation applying SSA. e) Noise attenuation applying 2-D
MSSA.

3.11a)) and an image of the same input data with no noise, which is the expected result of the

filtering (figure 3.11b)). Figure 3.11c) presents the result of applying f−x deconvolution for

random noise attenuation on the 3-D data. To achieve better results, the technique is first
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applied to each slice of the x dimension, then it is applied to each slice in the y dimension

and finally the two results are averaged. This way, the technique takes advantage of the

predictability of the signal in both dimensions. Random noise attenuation using SSA follows

the same procedure and it is applied in both dimensions independently. The results obtain

by applying SSA are presented in figure 3.11d). It is clear that the final signal-to-noise

ratio achieved by using f − x deconvolution and SSA are very similar, which supports the

results from the tests on 2-D seismic data. Figure 3.11e) shows the result obtained from the

application of 2-D MSSA for random noise attenuation to the 3-D seismic cube. As we know,

this method uses the information of both dimensions simultaneously by constructing a block

Hankel matrix in the SSA analysis. It is clear that 2-D MSSA removed significantly more

noise than f −x deconvolution or SSA. Furthermore, the signal to noise ratio has improved

considerably and the events remain intact if this result is compared to the expected answer

in figure 3.11b).
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Figure 3.12: Slice in the y = 50 m of figure 3.11. a) Input data. b) Noise attenuation
by using f −x deconvolution. c) Noise attenuation using SSA. d) Noise attenuation
using 2-D MSSA. e) Noiseless data representing the expected solution. f), g) and
h) are the result of the subtraction of filter results (b), c) and d)) from the noiseless
data (e)), respectively.

To perform a better analysis of the results of this test, figures 3.12 and 3.13 show a slice

on y = 50 m and x = 30 m respectively. The location of these slices is shown on each

cube of figure 3.11, identified with a solid line. Figures 3.12 and 3.13 present the same
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Figure 3.13: Slice in the x = 30 m of figure 3.11. a) Input data. b) Noise attenuation
by using f −x deconvolution. c) Noise attenuation using SSA. d) Noise attenuation
using 2-D MSSA. e) Noiseless data representing the expected solution. f), g) and
h) are the result of the subtraction of filter results (b), c) and d)) from the noiseless
data (e)), respectively.

results from two different perspectives, but their characteristics are similar and can be

interpreted together. The slice a) in both figures shows the noisy input data and the slice

e) presents the noiseless data. The slices b), c) and d) show the results from the application

of f − x deconvolution, SSA and 2-D MSSA respectively. Finally, slices f), g) and h) are

the difference of the results shown in b), c) and d) with the noiseless data from e). This

difference allows identifying the amount of noise remaining in the results, as well as if

some signal was attenuated. As seen before, the amount of noise attenuated by the f − x
deconvolution and SSA are very similar, but we can see that the f−x deconvolution distorts

the amplitudes of the signal. Nevertheless, the result from applying 2-D MSSA shows a much

better attenuation of the random noise, leaving the signal intact. These results evidence the

benefits of including several dimensions simultaneously in the 2-D MSSA technique.
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3.6 Summary

In this chapter, SSA was expanded for the attenuation of random noise in seismic records.

For this, it was necessary to apply SSA to each frequency, requiring two extra steps in its

application to convert the data. The six steps to apply SSA in the f − x domain were

described, together with an explanation of the selection of the final rank of the Hankel

matrices. SSA was tested in two synthetic records contaminated with random noise and

presenting linear and hyperbolic events. Its results were compared to the one from applying

f − x deconvolution, which is a traditional technique for random noise attenuation. The

amount of noise attenuated by SSA showed to be similar to results obtained from applying

f − x deconvolution. Nevertheless, f − x deconvolution appeared to distort slightly the

amplitudes of the events, while SSA maintained the signal untouched.

The expansion of SSA to multiple dimensions was also covered, which was called MSSA.

The application of this expansion was explained by adding two dimensions simultaneously

(2-D MSSA) and then generalized to N dimensions (N-D MSSA). An example was presented

testing the application of 2-D MSSA for random noise attenuation. This example compared

the results of 2-D MSSA with the ones of applying f − x deconvolution and SSA. Noise

attenuation using 2-D MSSA showed to improve significantly the signal-to-noise ratio of a

3-D seismic record contaminated with noise, outperforming f−x deconvolution or SSA. The

expansion to N-D MSSA was not tested giving that it is beyond the scope of this thesis.

For the rest of this thesis MSSA will refer to 2-D MSSA.



CHAPTER 4

Fast application of Multichannel Singular

Spectrum Analysis by randomization

4.1 Motivation and Background

The application of MSSA yield to very promising results for random noise attenuation. Its

simplicity when extended to several dimensions also gives a large advantage over traditional

noise attenuation techniques. What makes the method less attractive is the amount of

computations and running time necessary for its application. It is very slow when applied

to large matrices. This increase on time happens in the rank reduction step (during the

application of the SVD). The running time of the SVD algorithm increases very fast for

large matrices. When MSSA is applied, the number of elements in the Hankel matrix of

one frequency increases rapidly with the addition of channels in each dimension. Giving

that SSA is applied to one frequency at the time, the running time will be multiplied by the

amount of frequencies in the analysis, adding substantially to the total cost of the method.

This limits the amount of information that can be included in the analysis and motivates

the research of faster and accurate algorithms for rank reduction.

Rank reduction techniques are used in multiple disciplines, giving that large matrices with

low rank appear in many scientific fields. Aiming to solve some of these problems, many

authors have proposed different mathematical methods which present fewer amounts of

operation and preserves accuracy over the traditional SVD algorithm. These algorithms

are general, since they are designed to work in many different problems, no matter the

scientific area. One of these techniques is the pivoted QR factorization, which consists

43
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in the decomposition of the initial matrix M in a orthonormal matrix Q and an upper

triangular matrix R (Gu and Eisenstat, 1996). This decomposition was introduced by Golub

(1965) and some of its algorithms have been compiled by Golub and Van Loan (1996). This

technique is fast compared to the traditional SVD algorithm, but its accuracy depends on

how quickly the singular spectrum decays (Rokhlin et al., 2009). However, we have seen

that in the presence of noise the singular spectrum has a smooth decay, which can make

the QR factorization not suitable for MSSA. Another technique for rank reduction is the

Lanczos Method, which involves a partial tridiagonalization of the initial matrix (Golub and

Van Loan, 1996). This method has been applied by Trickett (2003) to accelerate the rank

reduction of an eigenimage noise attenuation technique. Although the Lanczos algorithm is

effective in reducing the computational time of the SVD, it can be delicate to implement and,

like the QR factorization, its accuracy is subjected to how smooth the singular spectrum of

the matrix is (Halko et al., 2009).

A relatively new approach to the rank reduction problem is the application of randomized

algorithms. The goal of these techniques is to use a subset of the initial matrix to calculate

the SVD on a smaller number of elements than if the whole matrix was used (Drinea et al.,

2001). In general, all randomized algorithms follow the same basic steps (Halko et al., 2009):

1. Apply a preprocessing to the initial matrix.

2. Use random techniques to take random samples from the data.

3. Apply a post-processing to the random samples to obtain the final low rank approxi-

mation.

It is believed that the initial steps on randomized algorithms where presented by Papadim-

itriou et al. (1998), with its application to latent semantic indexing (LSI) (Halko et al.,

2009). Works on structured dimension reduction of matrices, presented by Martinsson et al.

(2006), Sarlos (2006) and Rudelson and Vershynin (2007), among others, set the foundations

for low-rank approximation algorithms. These algorithms have been developed by Woolfe

et al. (2008), Liberty et al. (2007) and Rokhlin et al. (2009). A recent review and expansion

of these techniques have been presented by Halko et al. (2009), where they explain in simple

terms the process of rank reduction via randomization.

In this chapter we propose the use of an algorithm based on the work of Rokhlin et al. (2009).

Overall, this process entails computing the SVD of randomly compressed data matrices. The

advantage of this algorithm arises from adding a power iteration to the dimension reduction

step, which improves its performance. In essence, the algorithm replaces performing the

SVD of large matrices by the application of the SVD on two reduced matrices. The latter

leads to an algorithm that is well suited for denosing problems where one makes extensive
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use of the SVD. This is often used when noise attenuation is applied to a large number

of overlapping spatio-temporal windows. Bear in mind that the acceleration strategies for

computing the SVD that are proposed here are applicable to any rank reduction filtering

method. I show here how this novel technique on rank reduction improves the efficiency of

MSSA by preserving the quality of the results.

4.2 Five step algorithm for Random SVD

The randomized algorithm studied by Rokhlin et al. (2009) is summarized as follows. Let

M be a complex m× n block Hankel matrix, where m ≤ n. Let M̃k be the rank k desired

approximation to the original matrix M . In addition, l is an oversampling integer where

l > k and l ≤ m − k. Rokhlin et al. (2009) recommend l ≥ 2k. It can be shown that the

first k singular values and singular vectors of M can be approximated from the SVD of the

smaller matrix P = R [M MH ]iM, where R(l×m) is a matrix of independent and identically

distributed (i.i.d) Gaussian numbers with zero mean and unitary variance. The process

requires the following algorithm (Liberty et al., 2007; Rokhlin et al., 2009)

1. Compute P(l×n) = R(l×m)[M(m×n) MH
(n×m)]

i M(m×n) .

2. Use the SVD of the reduced matrix PH
(n×l) to obtain

PH
(n×l) = Q(n×n)ρ(n×l)L

H
(l×l) .

3. Use the first k columns of Q to compute

S(m×k) = M(m×n)Q(n×k) .

4. Form the SVD of the matrix S

S(m×k) = U(m×m)Σ(m×k)T(k×k) .

5. Compute the product

V(n×k) = Q(n×k)T(k×k) .

Then,

M̃k (m×n) = U(m×m)ΣΣΣ(m×k)V
H
(k×n) . (4.1)

The rank-k matrix M̃k satisfy the condition,

∥∥∥M− M̃k

∥∥∥
2
≤ Cm1/(4i+2)σk+1 , (4.2)
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where σk+1 is the k + 1st singular value of M and i is a power iteration of the algorithm.

This expression shows the accuracy of the method. Rokhlin et al. (2009) states that C is a

constant independent of M that depends on the parameters of the algorithm, and is at the

very least C < 10. The error of the algorithm is reduced for smaller matrices and larger

values of the power iteration variable i.

The algorithm requires O(nmki) floating point operations, which makes it faster than the

traditional SVD algorithm, which requires O(nm2) floating point operations (Rokhlin et al.,

2009). For large Block Hankel matrices, i has to be large to maintain accuracy. Given that

the number of computations will increase for higher values of i, the selection of this variable

will require a tradeoff between accuracy and computational expense.

4.3 Methodology

The previous randomized algorithm for rank reduction is tested for MSSA. Eleven 3D win-

dows of different sizes contaminated with random noise are used to evaluate the changes in

running time for each algorithm. Each window consists of 3 linear events with different dips

and amplitudes. The number of channels in each window increase as Nx = 21 + 4j = Ny,

with j = 0, 1, 2, ..., 10. The algorithms are written in Matlab 7.3. SVD is computed us-

ing the Matlab function svd which uses the ZGESVD driver from Anderson et al. (1999).

For this test, a workstation with 2GB of RAM and an AMD Athlon(tm) 64 X2 Dual Core

Processor 3800+ was used.

Rank reduction in MSSA is computed using the traditional SVD algorithm and the ran-

domized algorithm proposed by Rokhlin et al. (2009), setting the power iteration variable

to i = 1, 2 and 3. The latter is to test the differences in accuracy and computational time

when using different values of i. For every test the parameters are set to k = 3 and l = 6,

giving that there are 3 events with different velocities and amplitudes in the synthetic. The

computational time of the algorithm is measured by starting when the data is converted

to the f − x domain (beginning of the MSSA process) and finishing after the result is re-

turned to the t − x domain (output of MSSA). The measured time takes into account the

rank reduction of the Block Hankel matrix for each temporal frequency. In this example the

analysis is done on 328 frequencies, from 0.24 Hz to 80 Hz. Together with the computational

time the signal-to-noise ratio (S/N) of the results is calculated by using the expression:

S/N = 10 log10

(
‖d0‖22

‖df − d0‖22

)
, (4.3)

where d0 is the noiseless data and df is the result after applying MSSA. These allow testing
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how fast the algorithms are and the accuracy of the results.

4.4 Results and Discussion

Table 4.1 shows the results for the 11 windows. We can see how the number of entries in the

Block Hankel matrix becomes very large when the size of the window increases. For better

visualization, the results for computational time and S/N ratio are presented in figures 4.1

and 4.2.

Number of traces
Size of Block
Hankel Matrix

SVD R-SVD i = 1 R-SVD i = 2 R-SVD i = 3

Nx ×Ny m× n time (s) S/N (dB) time (s) S/N (dB) time (s) S/N (dB) time (s) S/N (dB)

21× 21 121× 121 48.85 4.48 16.18 5.14 21.14 5.27 22.45 5.05
25× 25 169× 169 143.87 5.94 34.38 6.44 43.85 6.79 52.67 6.66
29× 29 225× 225 359.22 7.28 86.18 7.43 107.14 7.99 128.93 7.95
33× 33 289× 289 848.3 8.22 245.12 8.53 292.43 9.11 375.45 8.94
37× 37 361× 361 1777.54 9.34 623.74 9.37 613.94 10.25 805.63 10.17
41× 41 441× 441 3282.82 10.01 1192.91 10.01 1343.81 10.91 1534.48 10.85
45× 45 529× 529 5809.06 10.78 2126.43 10.73 2395.07 11.6 2684.21 11.58
49× 49 625× 625 9246.18 11.4 3418.46 11.26 3886.72 12.13 4336.99 12.13
53× 53 729× 729 14679.52 11.91 5379.91 11.69 6414.98 12.75 7224.39 12.75
57× 57 841× 841 23898.37 12.59 8425.84 12.19 9553.47 13.35 10560.69 13.38
61× 61 961× 961 34955.46 12.01 12459.66 11.49 13715.46 12.91 15003.76 12.99

Table 4.1: Computing times and S/N ratio for noise attenuation of different sizes
of data windows (Nx ×Ny). SVD means the application of multichannel Singular
Spectrum Analysis (MSSA) denoising using the standard Singular Value Decom-
position. R-SVD are results for the randomized SVD algorithm described in the
text.

Figure 4.1 presents the computational time for the traditional SVD and the randomized

algorithm with i = 1, 2 and 3. It is evident that the randomized SVD algorithm is faster

than the traditional SVD algorithm. This improvement represents an approximate reduction

of 50% over the traditional SVD computational time. For high values of i in the randomized

SVD, the computational time increases.

Figure 4.2 presents the S/N ratio in dB of the results for MSSA using the different algorithms.

The S/N ratio of the traditional SVD is assumed to be the ideal result for MSSA. The

randomized algorithm using i = 1 shows a decrease in the S/N ratio compared to the

traditional SVD when the number of rows m in the Block Hankel matrix is high. The other

two curves, representing the random SVD with i = 2 and i = 3, maintain a S/N ratio very

similar to the traditional SVD, showing that the results are consistent.

Figures 4.3 and 4.4 show the application of MSSA for the window with Nx = 61. They

present a slice in x = 31 and y = 31 respectively. We can see that the randomized algorithm

with i = 1 removes part of the signal, supporting the results from Figure 4.2.
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Figure 4.3: Slice in x = 31 for the data with size 61 × 61. a) Initial noisy data.
b) Result using the traditional SVD. c), d) and e) Results using the random SVD
algorithm with i = 1, i = 2 and i = 3 respectively. f) Noiseless data (d0). g), h) i)
and j) are the subtraction of f) from b), c), d) and e) respectively.

4.5 Summary

The application of rank-reduction denoising is limited by the computational cost of tradi-

tional SVD algorithms. The application of a randomized SVD algorithm to improve the

computational time of MSSA was presented. The results show that the randomized SVD

yields an approximately 50% gain in efficiency over the traditional SVD. The accuracy of

the randomized algorithm depends on the size of the block Hankel matrix (m) and on the

selection of the parameter i. The use of larger values of i improves the accuracy of the

randomized SVD but increases the number of calculations. Because of this, the selection of

the parameter i is a tradeoff between accuracy and speed. Alternatively, one can increase

the final rank of MSSA leaving i = 1. By doing this some amount of noise will be recovered,

but no signal will be filtered. In this case, we can achieve good accuracy for the MSSA

result maintaining a lower amount of calculations.

Overall, this algorithm has proved successful in accelerating MSSA. It is clear that the use

of the randomized SVD can be applicable to any rank reduction filtering method. Impor-
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Figure 4.4: Slice in y = 31 for the 61 × 61 data. a) Initial noisy data. b) Result
using the traditional SVD. c), d) and e) Results using the random SVD algorithm
with i = 1, i = 2 and i = 3 respectively. f) Noiseless data (d0). g), h) i) and j) are
the subtraction of f) from b), c), d) and e) respectively.

tant computing time savings are attainable when the problem requires constructing Hankel

matrices from data that depends on three or four spatial dimensions. In this case we will

need to form Hankel matrices of sizes that are unmanageable by standard SVD algorithms.



CHAPTER 5

Interpolation Using Multichannel

Singular Spectrum Analysis

5.1 Background

Seismic data acquisition consists in generating a wave field in the surface of a survey area

and then in extracting the information that is reflected from the subsurface geology. The

information is recorded by receivers placed at the land surface. This means that the infor-

mation coming from the reflections will be recorded at discrete points in the space. Although

seismic surveys are designed to maintain a regular grid of sources and receivers, this will

rarely happen due to logistic or economical constrains. Because of this, seismic data may

be irregularly sampled in space or presenting gaps where no traces are recorded. Many seis-

mic processing tools for noise attenuation or imaging require the input data to be sampled

regularly in space to work properly. Different techniques have been developed to regularize

data and to recover missing traces. These techniques commonly require the conversion of

the data into different domains by using methods like the Fourier transform (Liu and Sac-

chi, 2004), Radon transform (Trad et al., 2002) or the Curvelet transform (Herrmann and

Hennenfent, 2008). One of the methods that interpolate traces in the Fourier domain is the

one developed by Spitz (1991) and expanded by Porsani (1999) and Naghizadeh and Sacchi

(2010), which applies a prediction error filter in the f −x domain of the data. This method

is very powerful when interpolating undersampled and aliased data in a regular grid; but

interpolating traces in an irregular pattern can be more difficult (Abma and Kabir, 2006).

An application that aims to solve the interpolation of missing traces in an irregular pattern

was developed by Abma and Kabir (2006). They apply an iterative method that consists

51
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in thresholding the frequency spectrum after a 2D Fourier transform. Subsequently, they

replace the recovered traces in the original gather to perform the analysis again. After some

iterations, the traces would be recovered. The amount of missing traces and the differences

in amplitudes of the events control the number of iterations to recover the events with the

correct amplitude. This algorithm is called Projection onto convex sets (POCS) and was

developed by Youla and Webb (1982) for image restoration problems.

The objective of this chapter is to study the application of MSSA to interpolate missing

traces in an irregular pattern. Just like the interpolation method developed by Spitz (1991),

MSSA works in the f − x domain of the data, but instead of performing a prediction

error filter, it relies in the rank reduction of Hankel matrices. The process is improved by

using the POCS algorithm applied by Abma and Kabir (2006), and instead of thresholding

the frequency spectrum we apply MSSA. This chapter aims mainly in understanding the

processes that allow MSSA to interpolate seismic data and looks to be a guideline on how to

apply it. Our results are not compared with results of other interpolators. This comparison

is strongly recommended for future research in SSA.

5.2 Application

The process of interpolating and recovering missing traces in seismic record using MSSA is

the same as filtering random noise. In fact, both processes can be carried out simultaneously.

As discussed in chapter 3, the application of SSA to filter random noise in seismic records

consists in six steps that are:

1. Fourier transform to take the data to the f − x domain

2. Embedding of each frequency into a Hankel matrix

3. Decomposition in its singular spectrum via SVD

4. Rank reduction of the Hankel matrix

5. Averaging in the Hankel matrix anti-diagonals

6. Inverse Fourier transform to return to the time domain.

A noise free record with a single linear event will lead to a Hankel matrix with rank one.

Similarly, a number of k linear events with different apparent velocities will result in a

Hankel matrix with rank k (see equation 3.13). In the presence of noise the rank of the

Hankel matrix will increase. The rank reduction step of SSA aims to filter random noise
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by recovering a Hankel matrix with the rank that represents the events contained in the

record. This procedure is still valid in the presence of missing traces, as long as they are in

a regular grid. The missing samples will be treated as noise by SSA, and the rank reduction

step will recover some of the amplitudes expected on these missing traces. This allows SSA

to be a powerful interpolator that can be easily extended to several dimensions.

Missing traces in a seismic record are characterized by presenting zeros in all its samples.

When transformed to the f−x domain, these missing traces still present zero values in each

frequency. These samples become part of the Hankel matrix after the embedding step. In

the presence of missing samples, the rank of the Hankel matrix increases. This is analogous

with the case where random noise contaminates the record. The rank reduction process will

approximate the Hankel matrix to the expected low-rank matrix that represents the signal

with no gaps. With this, the missing samples are replaced by the value that generates the

best low-rank approximation to the Hankel matrix. Given that this process is repeated for

a range of frequencies, the missing traces will recover part of its amplitude spectrum. After

one iteration, linear events are interpolated through the missing traces, but they will present

lower amplitudes compared to the original events.

To recover the right amplitude for the interpolated traces, it is possible to apply the POCS

algorithm utilized by Abma and Kabir (2006). This iterative algorithm is applied in the f−x
domain and works using SSA or MSSA. For SSA the input data is a vector and for MSSA

the input data is a matrix of a single frequency. The following description of the algorithm

assumes a 2-D input data S. Initially, an operator T is created to identify the presence of

traces on the spatial position (i, j) of the data, being T (i , j ) = 1 in the cells that present

a trace and T (i , j ) = 0 in the cell where there are missing traces. The application of the

operator T to the data S produces the observed data Sobs. In other words, T � S = Sobs.

It is evident that T � Sobs = Sobs. The difference between an operator I with ones in every

cell (i, j), meaning I = ones(dimT ), and T result in an operator that identify the spatial

position of the missing traces. This operator is used to extract the recovered traces after

one iteration, and to place them in the original input data. Then MSSA is applied again.

The POCS algorithm used to interpolate data using MSSA can be summarized as follows:

for p = 1 : Niter

for f = finit : ffinal

Sp(f) = Sobs(f) + (I − T ) � A[UkU
T
k H (Sp−1(f))]

end

end ,

(5.1)

where finit and ffinal are the initial and final frequencies to analyze in the MSSA process, H

is the Hankelization operator, UkU
T
k is the rank reduction operator and A is the averaging
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in the anti-diagonals operator, all defined in chapter 2. Sp is the solution after each iteration.

The operator � represents the Hadamard product of two matrices, which is the elementwise

matrix product (Kolda and Bader, 2009). After some iterations, the algorithm will converge

and the amplitudes recovered for the missing traces will be consistent with the ones present

in the original traces.

An important drawback of this method is the amount of calculations that takes part in

the application of MSSA for each iteration. This obstacle can be sorted by including the

randomized SVD (R-SVD) described in chapter 4 to speed up the rank reduction step. By

doing this the running time of the algorithm is reduced considerably, which allows increasing

the number of iterations or the amount of traces to be analyzed at one time. All the examples

presented here are calculated using R-SVD.

5.3 Results and Discussion

5.3.1 Synthetic data Example

The iterative interpolation algorithm using MSSA is first tested in a 3D synthetic data set.

It presents three linear events with different dips and amplitudes. The dimension of this

data set is 24 by 29 traces in the x and y spatial dimensions respectively, and 0.5 seconds

in time. This is a reasonable size for a window analysis of a larger data set. The initial

synthetic data is shown in figure 5.1a). The operator T was then applied to the seismic cube

to decimate the data, randomly extracting 58% of the total amount of traces (figure 5.1b)).

This is the input to the MSSA process. A total of 6 iterations was necessary to recover the

amplitudes of the missing traces. The MSSA algorithm reduced the Hankel matrix of each

frequency to a matrix of rank k = 3 giving that the data present 3 events with different

apparent velocities. As explained before, the rank reduction step in MSSA is applied using

the R-SVD function described in chapter 4. The result of the interpolation is presented in

figure 5.1c). It is clear that the missing traces are recovered completely. Figure 5.1d) shows

the difference between the expected result (figure 5.1a)) and the result of the interpolation

(figure 5.1c)), that may show events that are not successfully interpolated. In figure 5.1d)

we can observe that there are almost no differences between the interpolation results and

the initial data, so we can conclude that the method recovered almost perfectly the missing

traces.

Figure 5.2 presents the same results for this example, but from a slice in channel y = 10.

In here figure 5.2a) shows a slice in the original data, figure 5.2b) is the data with traces 2,

5-8, 13, 15, 17-19, 21 and 24 missing, figure 5.2c) is the result of the interpolation and figure

5.2d) is the noise estimator. The amplitudes of the interpolated traces are consistent with
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Figure 5.1: Interpolation of a noiseless synthetic example cube presenting 3 events.
x and y are the two spatial dimensions. a) Initial data. b) Data decimated by the
operator T . It presents 58% of random missing traces. c) Result of the interpolation
using MSSA. d) Difference between the result (c) and the initial data (a).
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Figure 5.2: Slice in y = 10 of the noiseless synthetic example for data interpolation.
a) Initial data. b) Data decimated by the operator T . c) Result of the interpolation
using MSSA. d) Difference between (a) and (c).

the amplitudes of the initial traces, and the correlation of the event is maintained. These

results show that the interpolation using MSSA yields to good results in recovering missing

traces in linear events with different dips.

The second example shows the same synthetic data as before, but contaminated with random

noise (figure 5.3a)). This test allows examining the interpolation using MSSA, as well as the

noise attenuation capabilities of the method. Like in the previous example, the operator T is

applied to decimate the data, extracting the same 58% of the total amount of traces (figure
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5.3b)), which becomes the input to the algorithm. This example also required 6 iterations

to recover the traces, by reducing the rank of each Hankel matrix to k = 3. The result of the

interpolation is shown in figure 5.3c), and its difference with the original data is presented in

figure 5.3d). We can see how the interpolation algorithm using MSSA successfully recovers

the missing traces. In addition, it also attenuates the random noise present in the original

data. In figure 5.3d) we can see how all the difference is related to the random noise. This

means that all the events where recovered and filtered satisfactorily.
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Figure 5.3: Interpolation of a synthetic example cube presenting 3 events and con-
taminated with random noise. x and y are the two spatial dimensions. a) Initial
data. b) Data decimated by the operator T . It presents 58% of random missing
traces. c) Result of the interpolation using MSSA. d) Difference between the result
(c) and the initial data (a).

Like in the first example, the results from the interpolation on a noisy record are showed

on a slice in channel y = 10 (figure 5.4). This image supports the results obtained pre-

viously, displaying a good interpolation of the events while attenuating the random noise

significantly.

5.3.2 Real Data Example

The following example tests the MSSA interpolation algorithm in 15 common depth points

(CDP) gathers, with variable number of channels. A CDP gather presents the traces that

are reflected in the same point in space. This means that each trace comes from different

combinations of sources and receivers and, in this case, it is equivalent to the common

midpoint (CMP). The distance between source and receiver that generates each trace can

vary, as long as the mid-point between them is the CDP. This means that the offset of

each trace does not always follow a regular pattern. This increases with logistic constrains,
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Figure 5.4: Slice in y = 10 of the synthetic example contaminated with random
noise for data interpolation. a) initial data. b) Data decimated by the operator T .
c) Result of the interpolation using MSSA. d) Difference between (a) and (c).

during the seismic survey, that requires a change in the location of sources or receivers. Some

applications, like pre-stack migration, requires the traces to be regularly spaced in all CDP’s

(Naghizadeh and Sacchi, 2010). This example examines the interpolation/reconstruction of

the traces missing in a group of CDP gathers after organizing their traces in a regular grid.

To improve the lateral correlation of the events the CDP gather are corrected by normal

move out (NMO), which horizontalize the hyperbolic events.

150 2350

0
Initial distribution of traces

Offset (m)

CD
P

Figure 5.5: Initial distribution of offsets in each CDP.

Plotting each CDP versus the offset of each of its traces reveals an irregular distribution

(figure 5.5). The process of regularizing these traces start with the selection of a desired

grid in which we want to organize them. In this example the traces are arranged in a grid
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Figure 5.6: Offsets regularized on a desired grid. Cells showing a star contain a
trace, while the empty ones present missing traces.

with a cell size of 50 meters, starting in 0 meters of offset and finishing in 2350 meters. It

is evident from figure 5.5 that, after dividing the area in a grid, some present several traces

while some other will remain empty. When a cell contains several traces, these are averaged

to obtain only one trace. The result of organizing the traces in a regular grid is shown in

figure 5.6, where the cells with a star contain live traces and the empty ones contain traces

which samples are all zeros. The ratio of missing traces is approximately 51%. The resulting

regular data are the input to the interpolation algorithm. In this case, the iterative MSSA

algorithm is designed to reduce the rank of the Hankel matrix of each frequency to k = 2.

This example requires 3 iterations to converge to a solution in which the amplitudes of the

missing traces are preserved.
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Figure 5.7: Computational times for the use of SVD and R-SVD in the rank-
reduction step of the MSSA algorithm

Given that this is a real data set, the CDP gathers present random noise that that should

be attenuated. All this characteristics in the data makes possible to apply all the techniques
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studied in the previous chapters. The MSSA algorithm is capable to attenuate the random

noise in a multi-dimensional data set as well as to interpolate missing traces after several

iterations. This test compares also the use of SVD and R-SVD algorithms in the rank reduc-

tion step to analyze the validity in the use of the randomized algorithm for the interpolation

process. Figure 5.8 shows the results after the iterative interpolation algorithm is applied

to the CDP gathers organized in a regular grid. Figure 5.8a) shows the initial noisy cube of

data, which presents missing traces. Figure 5.8b) shows the result of the interpolation using

the SVD algorithm in the rank reduction step and figure 5.8c) shows the result after using

the R-SVD algorithm. Both results are very similar, but R-SVD works in approximately

40% of the SVD time (Figure 5.7). These results show that the algorithm is successful in in-

terpolating the missing traces, giving continuity to the strongest reflectors. The amplitudes

of these recovered traces are consistent with those of the initial traces. The results show a

dipping event on the farther offsets, which amplitudes are lower than the main events. It

is possible that this event represents ground roll that is also interpolated by the algorithm.

Figure 5.9 shows a slice on CDP= 11 for the initial data (a), the SVD result (b) and the

R-SVD result (c). Here the recovery of the missing traces is more obvious. We can see that

the interpolated events present good continuity.
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Figure 5.8: Interpolation of a real cube of 15 CDP gathers regularized on a desired
grid. a) Initial data after regularization. b) Interpolated data using the iterative
MSSA algorithm applying the traditional SVD algorithm for the rank reduction
step. c) Interpolated data using the iterative MSSA algorithm with the R-SVD
technique.
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Figure 5.9: Slice on CDP= 11 of the real cube interpolation example. a) initial
data after regularization. b) Interpolated data using the iterative MSSA algorithm
applying the traditional SVD algorithm for the rank reduction step. c) Interpolated
data using the iterative MSSA algorithm with the R-SVD technique.

5.4 Summary

Several seismic processing techniques require the data to have a regular spatial distribu-

tion to work properly. This condition is not always met due to economical and logistical

constrains. In dimensions where the data are regularly organized many traces are missing.

In other dimensions where traces are not regularly distributed the binning (gridding) step

can leave spaces with missing traces. The regularization and interpolation of this traces is

an important topic in seismic data processing and many algorithms have been proposed to

solve this problem. The use of MSSA as a technique to interpolate traces was studied in this

chapter. The algorithm proposed here is iterative and is based in the POCS algorithm used

by Abma and Kabir (2006). Interpolating via MSSA was tested in a 3D synthetic data set

presenting linear events. It was also tested in a 3D real data set sorted in the CDP-offset

dimension.

The field data example also shows that MSSA is capable of attenuating random noise during

the interpolation process. Finally, the results show that using the R-SVD algorithm in the

rank reduction step improves the computational time of the interpolation and denoising

process without affecting the final results. In the examples showed in this chapter we

applied the 2-D MSSA algorithm, but future research efforts will focus on the design of an

N-D interpolator.



CHAPTER 6

Singular Spectrum Analysis applied to

ground roll attenuation

6.1 Introduction

Previous chapters expand on how rank reduction methods are successful in attenuating ran-

dom noise. These methods take advantage on the lateral uncorrelated nature of random

noise. On the other hand, coherent noise correlates laterally, meaning that different denois-

ing techniques have to be applied to filter them. Coherent noise arises from secondary wave

fields generated by the source or from the ground response. Among coherent noises we can

identify linear noise, reverberations and multiples. One of the linear coherent noises is the

ground roll (GR), which is the vertical component of Rayleigh waves (Karsli and Bayrak,

2004). In general, surface waves are those which travel through a free surface, being confined

to a layer which thickness is comparable to its wavelength (Rayleigh, 1885). In seismic data

processing there is a great interest in attenuating the GR. This arises from the effect that

the GR has in contaminating the seismic reflectors, decreasing significantly the quality of

the data.

GR is clearly visible in seismic records as a dispersive linear noise with high amplitudes, low

frequencies and low phase and group velocities. These high amplitudes and low frequencies

are the reasons why the GR masks the reflections. Research has been made in the use

of source and receiver patterns during data acquisition. The use of geophone patterns is

a common practice to attenuate GR in land seismic surveys (McKay, 1954). This method

takes advantage of the propagation direction of the GR. It consists in placing equally spaced

61
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receivers, aligned with the source, in a distance related to the wave length of the GR. The

reflections are expected to arrive vertically to each array, registering the same arrival time

for each of the receivers. Since the GR travels along the surface, each geophone will record

different amplitudes. The information from each receiver is then averaged. Giving that the

total length of the array is a multiple of the wave length of the GR, the latter is attenuated

after the averaging of the data recorded by each geophone. Unfortunately, this method only

filters specific wave numbers, depending on the length of the geophone array. Early studies

also expand on the use of source patterns to cancel the amplitudes of the ground roll, either

by using pattern of shot holes (McKay, 1954) or by designing different sweeps and cross-

correlation methods when using Vibroseis (Coruh and Constain, 1983). Application of GR

attenuation techniques during data acquisition is limited. It may decrease the resolution

of the signal when the source and receiver arrays overlap (Coruh and Constain, 1983) or

attenuate shallow reflectors that do not arrive vertically to the receiver arrays (Knapp, 1986).

This makes necessary the application of different techniques during the data processing.

Classical methods exploit the spatial and frequency differences between the GR and the

reflections. Filtering the data in the f − k domain is of common use to attenuate the

ground roll (March and Bailey, 1983; Duncan and Beresford, 1994). This method consists

in applying a 2-D Fourier transformation in time and space to map linear events in the f−k
domain. The low frequency and low wavenumber characteristics of the GR can be identified

in this domain. Thus a rejecting window can be designed to filter the GR (Yilmaz, 2001).

The use of an f −k filter has the drawback of distorting the signal wavelets and introducing

artifacts to the record. Another common way to filter GR, mostly during fast track data

processing, is by the use of a low pass filter. The method starts with the application of

the Fourier transform to each trace of the data to obtain its amplitude spectrum. A filter

window is then applied to the low frequencies that represent the GR. The low frequency noise

is recovered by applying the inverse Fourier transform. The recovered low frequency gather

containing the GR is then subtracted from the original data. This method is successful

when the main frequencies of the ground roll are very different from those of the signal.

When the frequencies of the ground roll and the reflections overlap, the use of a low pass

filter also eliminates low frequencies from the reflections. In this case the method becomes

less effective.

This chapter expands on the use of SSA to improve the results from the application of a

low pass filter during the GR attenuation process. The low frequency data recovered from

the application of a low pass filter is decomposed into its singular spectrum by using SSA

in the f − x domain. The same methodology used in chapter 3 is applied to build a Hankel

matrix for each frequency. We then recover the signal using the subset of singular values that

model only the GR. By doing this, the final low frequency gather that is subtracted from the

original data will contain only the GR, solving the problem of eliminating low frequencies



CHAPTER 6. SSA APPLIED TO GROUND ROLL ATTENUATION 63

in the reflections. A similar method has been applied with the name of Spectral Matrix

Decomposition. This technique differentiate events by decomposing the covariance matrix

of a single frequency of the f − x domain, while SSA does it on a Hankel matrix of each

frequency. Mari and Glangeaud (1990) used Spectral Matrix Decomposition to differentiate

arrivals in Vertical Seismic Profiles (VSP).

6.2 Theory

Previous chapters showed that linear events in a seismic section could be recovered by the

retrieval of a subset of its singular values after SSA. When dealing with random noise, this

operation takes advantage of the incoherency of the noise between traces. In general, the

first singular values will represent the signal and the amount of noise removed will depend

on how many singular values are recovered. The minimum singular values to ensure that

all the linear events are recovered are the same as the number of events with different

dips present in the record. In the case of coherent noise attenuation the situation is more

complex. In this case, the event that we wish to retain and the event that is considered noise

are recovered by the first few singular values. The problem is to know if different singular

values recover different events. If they do so, it is also important to find out which singular

value represents each event. Analyzing how the events are projected over the orthonormal

basis generated by the singular vectors holds the answer to this query.

In chapter 3 we showed that SSA is applied in the frequency domain of the data, which is

shown in equation 3.2 for a single event. When more than one event is present, the data in

the frequency domain can be written as

S(x) =
k∑
i=1

Wi(x) + N(x) , (6.1)

where S(x) = [S1, S2, ..., SNx
]T is the data, Wi(x) = [W1,W2, ...,WNx

]T is the waveform

that represents each event i and N(x) = [N1, N2, ..., NNx
]T is the noise. k is the number of

events present in the data and x = 1, 2, 3, ..., Nx, being Nx the number of channels in the

space dimension. This expression is valid for each frequency ω. The next step is to build a

trajectory matrix from S(x). Up to here, SSA follows the same methodology as the Spectral

Matrix filtering proposed by Mari and Glangeaud (1990). The main difference between the

two methods is that SSA performs a SVD over a trajectory matrix built from Sω(x) and

Spectral Matrix Filtering decomposes the covariance matrix SSH , where H denotes the

conjugate transpose. Mari and Glangeaud (1990) uses the inner product of two events given

by:
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< W1,W2 >= WH
1 W2 , (6.2)

to determine when two events are orthogonal. Two vectors can only be represented by

two different singular values if they are orthogonal. Mari and Glangeaud (1990) explain

the separation performed by the Spectral Matrix Filtering by analyzing the inner product

between each S(x) vector of each event. Since SSA decomposes a Hankel matrix, the internal

product has to be calculated between the lagged vectors of each event. It is possible to show

that when two S(x) vectors from two different events are orthogonal, the lagged vectors for

the same two events are orthogonal too. This is explained because, as shown in equation

3.5, in the presence of a single event the rank of the Hankel matrix is 1, and its column

vectors are parallel to each other, and therefore, they are parallel to the S(x) of such

event. We can understand from this that all the lagged vectors from a single event will

be projected over the same singular vectors. Given that the SVD decomposes the Hankel

matrix into its orthonormal basis, it is clear that for each event to be reconstructed by a

different singular values, these events have to be orthogonal between each other. It is evident

that the number of events to reconstruct has to be lower than the embedding dimension

L, named in chapter 2, given that this is the maximum number of singular vectors that

represent the data. By computing the inner product between two lagged vectors from the

Hankel matrix of two different events, it is possible to know if they are orthonormal. To do

so, it is necessary to normalize each vector and perform equation 6.2. If the inner product

is near one (< l1, l2 >≈ 1) the lagged vectors are almost parallel, if the inner product is

near zero (< l1, l2 >≈ 0) then the lagged vectors are close to be orthogonal. Given that all

the lagged vectors for each event are parallel, if this condition applies to one pair of lagged

vectors; it will apply for all the combinations between them. It is important to remember

that the orthogonality between the two events is related to its dip and consequently to its

velocity, so if the velocities of the events are similar, the lagged vectors are parallel, and if

they are different the lagged vectors will be close to orthogonal. Also the amplitude of each

event controls if the events can be separated or not in a different way than its orthogonality.

Taking as a reference the results from Mari and Glangeaud (1990), we can summarize the

conditions in which the amplitude of the events and their orthogonality allows them to be

separated:

1. Same Amplitude and Different Velocities (< l1, l2 >= 0) :

The first possible condition is when the events present the same amplitudes for all the

frequencies, and when their velocities are different, making the lagged vectors between

both events at every frequency orthogonal. This means that the inner product between

two lagged vectors must be close to zero (< l1, l2 >= 0). Giving that none of the
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amplitudes has a preference, the projections over the singular vectors is random at all

the frequencies. This means that both waves have the same projection over the first

two singular vectors. Figure 6.1 shows a graphic explanation of the situation. In here

we present the projection of two lagged vectors over the two singular vectors V1 and

V2, but the same representation can be done using U1 and U2. In this situation, it

is impossible to separate the two events, and the recoveries from the first and second

singular values will present contributions of both events. This was tested in a synthetic

record presenting two events with the same frequency content, the same amplitudes

and different velocities. The results are shown in figure 6.2. It is evident that the

recovered section using the first and second singular values (figures 6.2(b) and 6.2(c))

present components of both events.
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Figure 6.1: Same amplitude and different velocities.
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Figure 6.2: Result for case 1. a) Input data. b) Event recovered by the first singular
value. c) Event recovered by the second singular value. Both waves have the same
projection over the first two singular vectors, so they cannot be separated.

2. Same Amplitude and Similar Velocities (< l1, l2 >= 1):

In this case, the amplitudes are still the same, but now the velocities are similar,
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meaning that their inner product is close to one (< l1, l2 >= 1). The events are

almost parallel, meaning that both of them will be projected in the same singular

vector. Because of this, the events will be impossible to separate. This situation is

shown in figure 6.3, where we can see how the largest component of both events will

be projected over the first singular vector and a smaller component will be projected

in the second eigenvector. The example for this case is shown in figure 6.4. Again,

figure 6.4(b) is the recovered section by using the first singular value and figure 6.4(c)

is the recovered section using only the second singular values. We can see how most

of the amplitudes from both events are recovered by the largest singular value while

some amplitudes are recovered by the second largest singular value. In case that the

events are completely parallel, they will only be recovered by the first singular value.
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Figure 6.3: Same amplitudes and similar velocities.
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Figure 6.4: Result for case 2. a) Input data. b) Event recovered by the first singular
value. c) Event recovered by the second singular value. Both events are partially
recovered by the largest singular vector while some amplitudes are recovered by the
second largest singular vector. The two events cannot be separated.

3. Different Amplitude and Different Velocities (< l1, l2 >= 0):
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The third case is when the events present different amplitudes in every frequency and

different apparent velocities, meaning that they are orthogonal ((< l1, l2 >= 0). In

this case the singular vector weighted by the largest singular value will be aligned

with the event with the larger amplitude and the other events will be aligned with the

singular vector weighted by the second largest singular value. Given that the events

are orthogonal, they will be projected into only one singular vector, which makes

possible to separate each of them by recovering only one singular value. In figure 6.5

we can see a schematic representation of this. It is evident that both events are fully

projected in each singular vector. An example of this case is shown in figure 6.6. We

can see how the section recovered by using the first singular value in each frequency

(figure 6.6(b)) contains only the event with the largest amplitude, and the section

recovered with the second singular value (figure 6.6(c)) presents only the event with

the smaller amplitude.
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Figure 6.5: Different amplitudes and different velocities.
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Figure 6.6: Result for case 3. a) Input data. b) Event recovered by the first
singular value. c) Event recovered by the second singular value. Each singular
vector represent each event, meaning that the events can be separated.
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4. Different Amplitude and Similar Velocities (< l1, l2 >= 1):

The final case is when the events present different amplitudes, but a similar ap-

parent velocity, meaning that the lagged vectors of both events are almost parallel

(< l1, l2 >= 1). In here, the singular vector weighted by the largest singular value will

get aligned with the event presenting the largest amplitude. Given that the events are

not orthogonal, the second event will not be aligned with the second singular vector,

resulting in a projection of this event into both singular vectors. In the presence of

events with these characteristics, the event with largest amplitude will be fully recov-

ered by the first singular value, but this result will also contain part of the second

event. Figure 6.7 presents the graphic representation of this case. It is evident that

while the event with the largest amplitudes is fully projected in the first singular

vectors, the second event will be projected over the two largest singular vectors.
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Figure 6.7: Different amplitudes and similar velocities.
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Figure 6.8: Result for case 4. a) Input data. b) Event recovered by the first singular
value. c) Event recovered by the second singular value. One event is completely
recovered by the first singular vector while the second event is recovered by both
singular vectors. In this case the events cannot be separated.
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Case Amplitude Velocity Can be separated?
1 = = No
2 = 6= No
3 6= 6= Yes
4 6= = No

Table 6.1: Table summarizing the conditions to separate two events using SSA

The results for these four cases are summarized in table 6.1. From the results of the study

of the conditions that allow SSA to separate two linear events we can conclude that this

will only be possible when the amplitudes of the events are different and their apparent

velocities are also different.

6.3 Methodology

The main objective in these sections is to study the use of SSA to separate GR from

reflections in seismic records. It was previously mentioned that the main characteristics

of the GR are that it has a low velocity, higher amplitudes and presents lower frequency

content than the reflections. Although we can see that both events fulfill the conditions

that allow SSA to separate them, regarding amplitudes and velocities, it also presents the

problem of these conditions not applying for all the frequencies. These conditions will only

apply in the frequency interval where the amplitudes of the GR are larger than the ones

from the reflections. If SSA is applied to a frequency band that contains all the frequencies

of the GR and the reflections, then the largest singular value will recover the GR in the

lower frequencies and the reflections in the higher frequencies. This happens because in the

low frequencies, the amplitudes of the GR are higher while in the high frequencies there are

only contributions of the reflections. Although the use of SSA separation is not effective

to separate GR and reflections from a seismic record with a complete frequency band, it

opens promising possibilities when combined with well known processing methods in GR

attenuation.

We mentioned before that a common technique to attenuate GR is to use a low-pass filter

to model the noise. This method takes advantage of the low frequency nature of the GR.

We also mentioned that a drawback of this method is that it also filters low frequency

components of the reflections. The use of SSA for separating events arises as a suitable

solution to the main problems of using a low-pass filter for GR attenuation. The reason

for this comes from the fact that the modelled GR resulting from the filter presents, in

general, higher amplitudes than the low frequency components of the reflections that were

also recovered by it. If the GR and the low frequency reflections are separated after applying
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a low-pass filter, the modelled noise will be free of any component of the reflections. This

modelled GR resulting from the use of SSA will then be subtracted from the original data.

When SSA is applied to the result of the low-pass filter, the objective is to model the GR as

accurate as possible using the first few singular values. Since SSA assumes linear events, the

result can be improved if the GR is horizontalized and its lateral correlation is improved.

This can be achieved by applying a linear move-out (LMO) to the record and by applying

trim statics determined by cross-correlation (Cary and Zhang, 2009). The methodology to

use SSA separation to attenuate GR can be summarized in the following five steps:

1. Apply a low-pass filter to the data.

2. Apply an LMO and static corrections to horizontalize the GR.

3. Compute SSA and synthesize the data with the first k singular value. This is an

estimate of the GR.

4. Remove LMO and static corrections

5. Subtract the result from the original data.

6.4 Results and Discussion

6.4.1 Synthetic Data

The methodology proposed in this section was applied to a synthetic gather with two events

of different velocity, amplitude and frequency content. Both events were produced using

Ricker wavelets with frequencies of 10 Hz and 30 Hz to simulate GR and reflections, respec-

tively.

Figure 6.9 illustrates the application of a low-pass filter, with a trapezoidal window of 0-

3-19-22 Hz. This figure displays a) the section with both signals summed, b) and c) each

signal independently, d) the result of the filter and e) the subtraction of the recovered signal

from the original data. The normalized amplitude spectrum (to the maximum amplitude of

the GR spectrum) is also shown. It is evident that the low-pass filter contains low frequency

components of the reflection. The amplitude spectrum of the recovered signal (6.9h) shows

how the low-pass filter truncates the curve.

Figure 6.10 shows the result of the application of SSA signal separation to the low-pass

filtered section. In this frequency band the GR has higher amplitude than the reflections.

This allows SSA to recover only the GR using the first singular value and this way separate
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Figure 6.9: Application of a low-pass filter, with a trapezoidal window of 0-3-19-22
Hz to a synthetic record. (a) Initial data with two events. (b) Low frequency event
representing the GR. (c) High frequency event representing the reflection. (d) GR
recovered using a low-pass filter. (e) Filtered data from the subtraction of (d) from
(a). (f) Amplitude spectrum of (a). (g) Amplitude spectrum of (b) and (c). (h)
Amplitude spectrum of (d) and (e). It is evident that low frequency content from
the high frequency signal was recovered in (d) and filtered in (e). It is also evident
in (h) that the signal (e) loses frequency content.

the low frequencies of the reflections that were attenuated by the filter. After subtracting

the recovered GR to the original record we can see that the amplitude spectrum of the high

frequency reflection was almost completely recovered.

6.4.2 Real Data

The method was also applied to a real shot gather with strong GR (figure 6.11), correspond-

ing to shot number 25 from Yilmaz (2001). First, the data was filtered with a low-pass filter

in a trapezoidal window of 0-3-15-20 Hz. After applying the low-pass filter, the section

contains mostly GR and some low frequency signal from the reflections. A LMO and static

correction is applied to this low frequency section to ensure that the method is applied

where the GR is present and to improve the linearity of the events. The SSA method is

then applied. The first 4 singular values of the Hankel matrix of data were used to recover

the GR. We can see that the recovered GR has few components of low frequency reflections.

When the modelled GR is subtracted from the original data the low frequency part of the

reflections is preserved. The result of the SSA filter is also compared to the application of
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Figure 6.10: Application of SSA to the result of the low-pass filter. Same notation
as figure 6.9. In here (d) is the GR recovered from the first eigenimage of SSA and
(e) is the filtered data which results from the subtraction of (d) from (a). We can
see here that there are no components of the signal in the recovered section (d). It
is also evident in (h) that the signal (e) maintains its frequency content.

an f −k filter (Yilmaz, 2001) to attenuate the GR (figure 6.11d)). One can observe that the

SSA result yield to a better signal-to-noise ratio than the f − k filter result. This difference

arise from the difficulty of the f − k filter to identify the aliased GR in early times.

6.5 Summary

When a low-pass filter is applied to a seismic section the result contains all the amplitudes

from the GR and amplitudes from the low frequency components of the reflections. By using

SSA it is possible to differentiate two signals if they have different velocities and amplitudes

in the frequency band of analysis. Given that the GR has a different velocity and amplitude

than the reflections in a low frequency band, these events can be separated by recovering a

low rank signal reconstruction via SSA. The GR, reconstructed after applying SSA over the

low-pass filtered section, is then subtracted from the original data to attenuate the coherent

noise without affecting the reflections.

The SSA signal separation was tested on synthetic and real data. Results show an improve-

ment in preserving low frequency amplitudes from the reflections compared to standard low

pass filtering.



CHAPTER 6. SSA APPLIED TO GROUND ROLL ATTENUATION 73

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ti
m

e
(s

)

10 20 30 40 50 60 70 80
Offset (m)

(a)

10 20 30 40 50 60 70 80
Offset (m)

(b)

10 20 30 40 50 60 70 80
Offset (m)

(c)

10 20 30 40 50 60 70 80
Offset (m)

(d)

 0

 0.5

 1

 0  10  20  30  40  50

N
o

rm
a

liz
e

d
 A

m
p

lit
u

d
e

frequency (Hz)

Amplitude Spectrum 
 Original data

 0  10  20  30  40  50

frequency (Hz)

Amplitude Spectrum 
 Recovered Ground Roll

 0  10  20  30  40  50

frequency (Hz)

Amplitude Spectrum 
 Filtered data

 0  10  20  30  40  50

frequency (Hz)

Amplitude Spectrum 
 f - k Filtered data

Figure 6.11: Application of SSA for GR filtering on a real record. (a) Original Data
(b) Recovered GR. (c) Filtered Data resulting from subtracting (b) from (a). d)
GR attenuation using an f − k filter for comparison. This figure presents the result
of the application SSA to a real section. We can observe that the amount of signal
present in (b) is very small. (c) Represents an improvement in its signal to noise
ratio, while most of the low frequencies of the signal have been retained. Also, the
amount of GR attenuated by SSA is larger that the one attenuated by the f − k
filter.



CHAPTER 7

Conclusions and Recommendations

The importance of attenuating different types of noise in seismic processing is of constant

interest in the field of geophysics. This thesis has studied the applications of a rank reduc-

tion technique called Singular Spectrum Analysis (SSA) for coherent and incoherent noise

attenuation. The main goal was to present an overview of this technique, studying its origins

and its further applications for seismic data processing, to finally evaluate the possibility of

using SSA as an alternative method in seismic noise attenuation. In addition, this thesis

has presented an acceleration method for computing the SSA and M-SSA filter based on the

randomized SVD. Another novel contribution is the iterative algorithm proposed for data

regularization/interpolation and the application of SSA to the coherent noise suppression

(ground roll elimination).

SSA has its origins in the field of time series analysis for the study dynamical systems. An

overview of these applications was shown in chapter 2. In this chapter, SSA was shown to

work in four steps:

1. Embedding of the input data. This step consisted of dividing the time series into a

series of lagged windows. These vectors were then organized to form a Hankel matrix.

2. Decomposition of the Hankel matrix into its singular spectrum using Singular Value

Decomposition (SVD).

3. Application of a rank reduction of the Hankel matrix. This was achieved by recovering

a subset of its singular values.

4. Retrieval of the resulting time series by averaging on the anti-diagonals of the rank

reduced Hankel matrix.

74
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Although the intention of this chapter was to introduce the early stages of SSA, it can ulti-

mately be used as a reference by different science fields. Emphasis was placed on the use of

SSA for time series decomposition and noise attenuation. Despite the decomposition of time

series using SSA is an important field of study, the interpretation of the data components

depends on the objectives of the study. For this reason, this decomposition was only de-

scribed, without examining its meaning. Despite this, the examples and references provided

can indeed orient an interested reader to the application of SSA for the decomposition of

time series. Noise attenuation using SSA was also reviewed and an example was presented,

demonstrating its function. In fact, the noise attenuation property of SSA was the main

topic of interest in this thesis and was then applied for seismic data processing.

Chapters 3, 4, 5 studied different applications of SSA related to noise suppression and signal

reconstruction in seismic processing. In chapter 3 the application of SSA for random noise

attenuation was introduced. This technique was applied in the f − x domain and took

advantage of the same signal predictability as f − x deconvolution. The application of SSA

in this case was similar to the one applied in the analysis of time series, but it required

two extra steps to transform the method to the f − x domain and then back into the t− x
domain. The basic steps for the application of SSA for random noise attenuation on 2-D

seismic records were summarized as follows:

1. Application of a Fourier transform to each channel. This converted the data from the

t− x domain to the f − x domain.

2. Given that the reflections could be predicted in each frequency, the process of em-

bedding was applied for each frequency unit. This process was analogous to SSA in

time series analysis, but in this case the data consisted of each frequency depending

on space. For each frequency one Hankel matrix was built.

3. The Hankel matrix obtained from the embedding of each frequency was decomposed

using SVD.

4. The rank of the Hankel matrix was reduced by recovering only a subset of the singular

values.

5. The data were recovered by applying an averaging on the anti-diagonals of each Hankel

matrix.

6. After all the frequencies went through the rank reduction process; they were converted

back to the t− x domain, where the filtered image was obtained.

In general, rank reduction methods present the problem of selecting the appropriate final

rank that would lead to satisfactory results. Chapter 3 showed that the selection of the
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final rank for the Hankel matrix, in each frequency, depended on the amount of events

with different apparent velocities and amplitudes. This represents a significant advantage

of SSA over other rank reduction methods. The use of SSA for random noise attenuation

was tested on 2-D synthetic and real seismic data. Furthermore, pre-stack and post-stack

data was included. These examples compared the results of SSA with the results of f − x
deconvolution. The first example applied SSA and f−x deconvolution on a synthetic gather

with linear events and no random noise. Results from this example showed that no signal is

affected under these conditions. In addition , chapter 3 presented two examples that applied

SSA and f − x deconvolution to synthetic data contaminated by random noise, in addition

to, linear and hyperbolic events respectively. Giving that SSA assumes linear events in

the data, the example presenting hyperbolic events had to be applied using overlapping

windows. Although none of these examples showed a significant difference in the amount of

noise attenuated by either of the methods, it was observed that f −x deconvolution filtered

also part of the signal while SSA was successful in preserving it untouched.

An advantage of SSA over other noise attenuation methods is that it can be easily expanded

to allow for the use of information from several dimensions of a seismic record. This expan-

sion is called Multichannel Singular Spectrum Analysis (MSSA). MSSA was described in

chapter 3, and subjected to further research in chapters 4 and 5. The extension of SSA into

MSSA is carried out by building a Hankel matrix of each column vector in one dimension.

Next, these Hankel matrices were organized as a block Hankel matrix. In other words, SSA

was expanded by building a Hankel matrix of Hankel matrices in the embedding step. If

the initial data had two spatial dimensions plus time, the technique was considered to be

a 2-D MSSA. If the initial data had more than three spatial dimensions plus time, it was

considered an N-D MSSA. Chapter 3 expanded on the application of 2-D MSSA, which

was tested with a synthetic example. The theory behind N-D MSSA was also treated in

chapter 3, but its practical applications and examples were beyond the objective of this

work. The synthetic example showed in chapter 3 demonstrating random noise attenuation

using MSSA showed a significant improvement over SSA and f − x deconvolution. The

amount of noise filtered by MSSA was larger than the other two methods, while the signal

remained untouched. The simplicity of this expansion to multiple dimensions and the great

improvement produced by it for noise attenuation makes MSSA an important alternative

for the attenuation of random noise in seismic records.

MSSA presented a disadvantage compared to other methods of noise attenuation, like f −x
deconvolution, which was the large amount of computations required for its applications.

This occurred because the block Hankel matrix built in the embedding step increased its

size significantly when very few channels were added to the initial data. Given that the

SVD was very slow while decomposing large matrices, the rank reduction of a block Hankel

matrix took a significant time to run. A solution to this problem was showed in chapter
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4 by proposing the application of a randomized algorithm to perform the rank reduction

step. This algorithm was proposed by Rokhlin et al. (2009) and consisted of reducing the

size of the matrix by means of a randomization process and then of applying two SVD op-

erations. Given that the two SVD operations were applied to smaller matrices the amount

of computations decreased significantly. This new algorithm for MSSA using randomized

SVD (R-SVD) was tested in several 3-D synthetic records with different sizes and contam-

inated with random noise. The results showed that the use of R-SVD in MSSA improved

its running time by 50%. It was also seen that the outcome of the randomized algorithm

lead to results that correctly approximated those obtained by utilizing the traditional SVD

algorithm. With this reduction in its running time, MSSA becomes a more useful tool in

seismic data processing.

The main challenge of testing MSSA for random noise attenuation in real 3-D seismic records

was that it required the data to be regularly sampled in space. This rarely happens in pre-

stack data given that economical and logistical constrains require the displacement of sources

and receivers. If the data was organized into a regular grid, some cells did not contain traces.

When MSSA was applied over a regularly sampled record, which presented missing traces,

it was seen that it could recover part of the amplitudes of the lost signal. Therefore, chapter

5 studied the use of MSSA for the interpolation of missing traces in seismic records. Given

that MSSA only recovered a portion of the missing amplitudes when it was applied once,

an iterative algorithm was proposed. The latter worked by extracting the recovered traces

from one iteration of MSSA and then placing them into the input data of the next iteration.

The interpolation using MSSA was tested in a synthetic cube with random missing traces

and no added noise, resulting in a very accurate recovery of the missing traces. A second

example showed the same synthetic data, but this time contaminated with random noise.

The technique was successful to recover the missing traces and to reduce the amount of

random noise. Finally, MSSA was applied to a set of 15 CDP gathers whose offsets where

irregularly spread. This offsets where regularized into a desired grid, leaving some missing

traces. The interpolation using MSSA recovered successfully the missing traces of each CDP.

It also attenuated random noise present in the record. In addition, MSSA was applied using

the SVD and R-SVD algorithms, providing new evidence of the improvement in running

time given by the randomized method.

Chapter 6 introduced a different approach for SSA application. The goal was to attenuate

ground roll by separating it from the reflections. For this, a property of SSA that allowed,

under certain conditions, to represent different events by recovering individual singular

values was studied. This separation was shown to be only possible when the apparent

velocity and the amplitudes of the events where different. The separation of ground roll

from signal was carried on in a low frequency band, given that in this interval the ground

roll presents larger amplitudes than the reflections. The method was tested in a synthetic
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example, showing that two signals with different frequency content can be separated. It was

then applied to a real shot gather, proving to be successful in attenuating the ground roll

without affecting the reflections in a significant way. This results shows that SSA can be a

very flexible method that can be used for different applications in seismic data processing.

This thesis provided a complete summary of the applications of SSA and MSSA for noise

attenuation and data interpolation of seismic records. SSA was shown to be a valid alterna-

tive over the use of f − x deconvolution for random noise attenuation. Also, the simplicity

of the expansion of SSA into MSSA made the method easy to apply in several dimensions,

improving the quality of the results. Problems of large computational times where solved by

applying an R-SVD algorithm, which made possible the use of MSSA on larger sets of data.

Furthermore, it was shown that applying MSSA in real data made possible the attenuation

of random noise, together with the recovery of missing traces. Finally, SSA was applied to

attenuate ground roll in seismic shot gather. After analyzing all the applications of SSA

for seismic data processing, it is possible to conclude that this method has the potential

to become a tool of common use in traditional processing sequences, presenting a good

alternative to conventional methods of noise attenuation.

In this thesis I have presented the following:

• A review of the application of SSA for time series analysis, that is helpful to understand

SSA and as a reference for future work.

• The connection of Cadzow method with SSA and the relationship between both tech-

niques. The latter is useful to understand the background of both techniques and their

equivalency.

• The predictability of the signal in the f − x domain and why the Hankel matrix is

rank k in the presence of k events. This helps to understand why SSA is successful in

attenuating noise, as well as its advantages and disadvantages.

• The application of a randomized algorithm for rank reduction, which decreases the

computational time of SSA.

• The application of a method similar to Projection onto convex sets (POCS) that

applies SSA iteratively to recover missing traces in seismic records.

• The use of SSA as a technique to separate individual events, which can be applied for

ground roll attenuation.
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7.1 Future Work

Although this thesis introduced most of the applications of SSA to seismic data processing,

some of them can be expanded and improved. For instance, the decomposition of time

series using SSA can help to understand the processes that influenced the data. Paleocli-

matic records, for example, can be analyzed using this technique (Vautard and Ghil, 1989).

Chapter 2 can be used as a starting point for someone interested in applying SSA for the

analysis of time series.

It is reasonable to think that if MSSA is extended to more than two dimensions the results

would improve. Given that this expansion to N-D MSSA was not tested in this thesis, it can

be an interesting topic of further research. This includes its application for random noise

attenuation and seismic data interpolation.

Finally, it is evident that the Hankel matrix and the block Hankel matrix present very

obvious symmetries. These symmetries can be used to design a rank reduction algorithm

that does not need to go over all the elements of the matrix. Such algorithm would require

a smaller amount of computations than the traditional SVD algorithm or R-SVD. This

would ultimately make MSSA significantly faster to apply, allowing it to work on very large

records.
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APPENDIX A

Singular Spectrum Analysis Library in

Matlab

The codes for the different applications of SSA showed in this thesis were compiled on a

Matlab library. Table A.1 shows the different functions of the library. This table indicates

the input data supported by each function. 1D data means time series, while 2D and 3D

means the dimensions of the seismic input. These codes can be found in www.saig.ca

Function 1D 2D 3D Description

SSA X Yes No No
Function for the application of SSA for time series
analysis.

SSA FXY No Yes Yes
Function to apply SSA on seismic records using the
traditional algorithm for SVD for the rank reduction
step.

SSA FXY INTERP No Yes Yes

Function that applies the iterative algorithm to re-
cover missing traces on seismic records. It uses the
traditional algorithm for SVD for the rank reduction
step.

RAND SVD No Yes No
Function that applies the randomized SVD function
described in chapter 4 to perform the rank reduction
step.

SSA FXY FAST No Yes Yes
Function to apply SSA on seismic records using the
RAND SVD function in the rank reduction step.

SSA FXY FAST INTERP No Yes Yes
Function that applies the iterative algorithm to re-
cover missing traces. It uses RAND SVD function in
the rank reduction step.

Table A.1: Table presenting the codes developed in this thesis for the application
of SSA.
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