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Abstract

With the fast development of high-performance computing resources, imaging and inversion

techniques in the exploration geophysics community are moving from simplified methods to

more complex methods that honour as far as possible the physics of wave propagation. Mul-

tiparameter imaging and inversion based on two-way wave equation operators are becoming

viable for estimating subsurface structures and media properties.

In this thesis, I present new time-domain methods for linearized and nonlinear inversion

of elastic wavefields. First, I derive the elastic Born and reverse time migration (RTM)

operators for the first-order velocity-stress isotropic elastic wave-equation system. I develop

an elastic least-squares reverse-time migration (LSRTM) method with the elastic Born and

RTM as forward and adjoint operators. I adopt the conjugate gradient least-squares (CGLS)

algorithm to solve the least-squares optimization problem that only requires the action of

forward (elastic Born) and adjoint operator (elastic RTM) applied “on the fly” to vectors.

In this case, the Hessian operator of the problem is implicitly inverted via a matrix-free algo-

rithm. The proposed elastic LSRTM can suppress the ubiquitous multiparameter crosstalk

artifacts that arise in seismic elastic inversion.

I then draw connections between waveform linearized imaging and full-waveform inversion

techniques. I point out that the elastic LSRTM can be viewed as one iteration of the elastic

Gauss-Newton full-waveform inversion (FWI) algorithm. This framework offers considerable

freedom to design and apply Gauss-Newton FWI algorithms to elastic wavefields. I develop a

matrix-free elastic Gauss-Newton FWI method based on the elastic LSRTM code. It consists

of two loops of iterations: outer Gauss-Newton nonlinear iterations and inner CGLS linear
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iterations. The Hessian in each Gauss-Newton iteration is inverted in a matrix-free form

that only requires the forward (elastic Born), and adjoint Fréchet derivative operator (elastic

RTM) applied to vectors.

Numerical tests are utilized to demonstrate the ability of the proposed inversion techniques

to effectively perform multiparameter seismic inversion in both the linear and non-linear

regimes.
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Preface

Chapter 3 of this thesis has been published as K. Chen and M. D. Sacchi, 2017, Elastic least-

squares reverse time migration via linearized elastic full-waveform inversion with pseudo-

Hessian preconditioning: Geophysics, 82, no. 5, S341-S358. I was responsible for designing
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CHAPTER 1

Introduction

Seismic imaging and inversion methods infer subsurface information from observed seismic

data on the surface of the earth. Due to the rapid advancement of computational power,

seismic imaging and inversion techniques for resource exploration have seen a fast develop-

ment from migration to least-squares migration (LSM) and full-waveform inversion (FWI).

Two-way wave equation operators are more and more widely used for the development

of imaging and inversion techniques. Researchers are also using more complex physical

principles to approximate seismic wave propagation in realistic earth models. The latter

entails, for instance, including elastic, viscoelastic and anisotropic modelling techniques. In

this chapter, I will review the development of LSM and FWI techniques and introduce the

language often utilized in seismic imaging.

1.1 Review of least-squares migration

Least-squares migration refers to methods that image the subsurface by solving a linear

inverse problem. The Born approximation is adopted to derive forward and adjoint operators

that are utilized by least-squares migration techniques. A numerical procedure for the

inversion of a large linear system of equations is then used to retrieve subsurface images

that honour preprocessed seismic data. The long-wavelength content of the subsurface

model is assumed known. Least-squares migration methods are designed for estimating the

short-wavelength content of the subsurface model.

Initial efforts in the area of least-squares migration adopted Kirchhoff operators to de-

velop a family of methods referred as least-squares Kirchhoff migration (LSKM) (Keys and

Weglein, 1983; Tarantola, 1984b). If the background medium is assumed to be homoge-

nous, analytical Green’s functions can be computed to design the forward operator and

1
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the adjoint operator required by least-squares migration (Keys and Weglein, 1983; Taran-

tola, 1984b). Lambare et al. (1992), Schuster (1993) and Nemeth et al. (1999) utilize ray

tracing techniques to numerically compute Green’s functions that allows the application

of LSKM to heterogeneous media. One-way wave equation propagators (Claerbout, 1970,

1971) lead to the development of least-squares one-way wave-equation migration (LSWEM)

(Rickett, 2003). In Rickett (2003), the one-way wave-equation is solved using a Fourier finite-

difference method (Tang, 2009). Recently, Lu et al. (2017) apply LSWEM on broadband

data for high-resolution imaging. Also based on one-way wave-equation, but in the frequency

domain, Kuehl and Sacchi (2003) propose a double-square-root least-squares split-step mi-

gration (LS-SSM). The latter is extended to 3D and applied to field data (Wang et al., 2005;

Wang and Sacchi, 2007). Least-squares migration methods that adopt the two-way wave

equation has lead to the so called least-squares reverse time migration (LSRTM) method.

This technique has been initially proposed under the name “linearized inversion” by Bour-

geois et al. (1989). In Bourgeois et al. (1989), the two-way wave-equation is solved using a

time-domain finite-difference (FD) method and the P-wave impedance perturbation is the

unknown of the problem. Ostmo et al. (2002) implement a LSRTM in frequency domain

under the name of “linearized waveform inversion”. In recent years, LSRTM has been re-

visited, and it has attracted considerable interest in both industrial and academic research

circles (Ji, 2009; Dai et al., 2012; Duan et al., 2014; Wong et al., 2015; Chen et al., 2017;

Xu and Sacchi, 2018). The fast development of computer hardware provides opportunities

for computational-demanding techniques such as LSRTM. The advantage of LSRTM over

other LSM methods is that it can handle complex geological structures. The drawback of

LSRTM is its high computational cost.

A limited number of LSM studies have considered the elastic nature of seismic wave prop-

agation in the subsurface. Beydoun and Mendes (1989) and Jin et al. (1992) implement

an elastic least-squares Kirchhoff migration for multicomponent seismic data. Tura and

Johnson (1993) propose an elastic least-squares migration in f -k domain for simple homo-

geneous background medium. Anikiev et al. (2013) investigate the decoupling of parameters

for frequency-domain elastic LSRTM in a homogeneous model. Stanton and Sacchi (2015)

utilize Helmholtz decomposition for elastic least-squares split-step migration. In Chapter 3

and 4 of this thesis, I propose elastic least-squares reverse time migration algorithms based

on elastic Gauss-Newton full-waveform inversion kernels.
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1.2 Review of full-waveform inversion

Full-waveform inversion consists of estimating subsurface Earth’s parameters from observed

seismic data on the surface of the earth (seismic reflection data) or in the borehole (VSP1

data). The goal of FWI is ambitious because it does not assume a scale separation of the

subsurface model. It aims at retrieving both the long wavelengths and short wavelengths of

the model. FWI is a nonlinear inverse problem because observed waveforms are nonlinear

functions of the earth model. Global stochastic optimization methods are far too expensive

to solve practical imaging problems. Then, the nonlinear inverse problem is often solved by

iterative methods. A smooth background model is needed to initiate the inversion (Virieux

and Operto, 2009).

The mathematical basis of FWI can be traced back to the adjoint-state theory developed in

the book “Optimal control of systems governed by partial differential equations” by French

mathematician Jacques-Louis Lions (Lions, 1971). The development of FWI initiates at the

beginning of the 1980s. Bamberger et al. (1979, 1982) apply the adjoint-state method to

invert for the coefficients of the 1D acoustic wave equation from only boundary measure-

ments. Essentially, it is a 1D full-waveform inversion problem. Tarantola and Valette (1982)

define the generalized nonlinear inverse problem using the least-squares criterion. The lat-

ter is an extension of the linear inverse theory of Backus and Gilbert (1970) and Jackson

(1979). Lailly (1983) and Tarantola (1984a) provide general formulations of time-domain

acoustic FWI. The nonlinear inversion resembles an iterative prestack migration algorithm.

Tarantola (1986) extends the FWI theory to an isotropic elastic earth model.

Gauthier et al. (1986) and Mora (1987b, 1988) numerically study the 2D acoustic FWI and

isotropic elastic FWI using synthetic data. Pica et al. (1990) apply a 2D acoustic FWI on real

data. The medium is simplified as a 1D layered model. Crase et al. (1990, 1992) apply 2D

elastic FWI to real marine and land seismic reflection data. Time-domain FWI utilizes time-

domain forward modelling to simulate the wavefield in each nonlinear waveform inversion

iteration. The time-domain modelling technique often uses the explicit time-stepping scheme

to solve the wave equation iteratively. FWI is computationally intensive. Even though using

a CRAY supercomputer, the early studies of FWI utilize only a few numbers of shot gathers

or a few numbers of iterations for the nonlinear inversion.

In the 1990s, the FWI is reformulated in frequency domain (Pratt et al., 1996). These

techniques use frequency-domain forward modelling as an engine for nonlinear inversion.

Instead of an explicit time-stepping scheme, the frequency-domain modelling formulates the

Green’s function in a matrix form and inverts the matrix using a direct method such as the

1Vertical Seismic Profile
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LU decomposition. The frequency-domain modelling belongs to an implicit method for solv-

ing the wave equation. The frequency-domain FWI has some advantages over time-domain

methods. First, in the frequency-domain forward solver, the LU decomposed matrices can

be saved and reused for simulating different shot gathers. While, the time-domain forward

solver never saves the Green’s function in memory. The time-domain wave equation needs

to be repeatedly solved for each shot. Second, only a few discrete frequencies of the source

and data are needed to perform full-waveform inversion in the frequency domain. The lat-

ter is feasible given the wavenumber illumination redundancy that exists in wide-aperture

seismic data (Sirgue and Pratt, 2004). Frequency-domain methods greatly reduce the com-

putational cost of FWI. For these reasons, the 2D frequency-domain FWI has seen a fast

development in the last 20 years (Pratt, 1999; Pratt and Shipp, 1999; Ravaut et al., 2004;

Operto et al., 2006; Brenders and Pratt, 2007). 2D Frequency-domain isotropic elastic FWI

has also been investigated (Gelis et al., 2007; Brossier et al., 2009b). With the development

of high-speed computer hardware, 3D frequency-domain acoustic FWI is becoming an area

of fast development as well (Ben-Hadj-Ali et al., 2008; Operto et al., 2015). However, the

frequency-domain direct solver for Helmholtz equation becomes the principal bottleneck for

frequency-domain 3D inversion because of its memory requirements.

At the same time, time-domain acoustic FWI has been extended to three-dimension (Vigh

and Starr, 2008; Schiemenz and Igel, 2013). Recent years, 3D time-domain elastic FWI has

been implemented on modern supercomputers, and they appear to be the method of choice

for the development of practical algorithms for FWI (Epanomeritakis et al., 2008; Guasch

et al., 2012; Vigh et al., 2014; Borisov and Singh, 2015; Albertin et al., 2016; Borisov et al.,

2018; Oh et al., 2018). Besides the advantage with respect to memory, the time-domain

method allows easier incorporation of elastic or anisotropic parameters in the inversion

than frequency-domain method. Time-domain methods are becoming the trend for future

development of FWI.

Because of its ability to estimate subsurface model, FWI has also been applied for time-

lapse reservoir monitoring (Routh et al., 2012; Raknes and Arntsen, 2014; Yang et al., 2016a;

Alemie and Sacchi, 2016; Kotsi and Malcolm, 2017; Kamei and Lumley, 2017).

When it was first proposed, FWI was viewed as an optimal control problem of a system

governed by partial differential equations (PDEs) (Bamberger et al., 1979; Lions, 1971). In

FWI problem, the PDEs are the elastic wave equations. In other words, FWI is a PDE-

constrained optimization problem (Borzi and Schulz, 2012). Another example of PDE-

constrained optimization problem is the optimal control of Navier-Stokes equations in fluid

dynamics.
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1.3 Full-waveform inversion: Challenges

In this section I enumerate the main challenges of FWI and current research that aims to

combat them.

• Computational cost: FWI is a computationally demanding technique. It requires

solving the numerical solution of the wave equation multiple times in each nonlinear

iteration. The forward solver can be implemented via the finite-difference method, the

finite-element method or via the spectral-element method. The forward simulation of

the wave equation itself is expensive. FWI is normally performed on high-performance

computing infrastructures. The computational cost can be partially reduced by data

contraction strategies such as simultaneous source encoding (Mora, 1987b; Krebs et al.,

2009; Ben-Hadj-Ali et al., 2011; Anagaw and Sacchi, 2014; Matharu and Sacchi, 2017),

plane-wave synthesis (Vigh and Starr, 2008; Kwon et al., 2015) and stochastic source

subsampling (van Leeuwen and Herrmann, 2013).

• Convergence to local minima: The cost function adopted in FWI suffers from

spurious local minima. Optimization techniques used to solve the FWI problem could

converge to a local minimum solution. The latter may happen when the modelled and

observed seismograms have a time delay greater than half a period of the dominant

frequency of the seismic source. In FWI, this phenomenon is called “cycle-skipping”.

The initial model of the iterative algorithm should be good enough to avoid the cycle-

skipping problem. Several techniques can alleviate the problem above:

– Multiscale frequency continuation methods (Kolb et al., 1986; Bunks et al., 1995).

The nonlinearity of the cost function is more evident for high temporal frequen-

cies than for low frequencies. In other words, the FWI objective function behaves

like a quadratic function at lower frequencies. The frequency continuation en-

tails solving the FWI from low to high frequencies to avoid convergence to local

minima. The technique works only when the observed data contain sufficient

low-frequency content to initialize the continuation process.

– FWI with a modified measure of data fit. In this case, rather than using the

classical least-squares misfit function to measure the difference between observed

and modelled seismograms, one can adopt other measures of similarity such as

the crosscorrelation (Luo and Schuster, 1991; Dahlen et al., 2000; Tromp et al.,

2005; Luo et al., 2016), deltaness of a matching filter (Luo and Sava, 2011; Warner

and Guasch, 2016), difference of envelopes (Mora, 1987b; Fichtner et al., 2008;

Bozdag et al., 2011; Wu et al., 2014), and cost measures inspired on the optimal

transport distance (Metivier et al., 2016; Yang et al., 2018).
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– Reflection waveform inversion (RWI). FWI updates the long and short wave-

length components of the model simultaneously in the nonlinear iterations. The

RWI approach assumes scale separation between a smooth velocity macromodel

and a localized reflectivity model. RWI updates long and short wavelength

components of the model alternatively in the nonlinear iterations (Mora, 1989;

Chavent et al., 1994; Clement et al., 2001; Xu et al., 2012; Brossier et al., 2015;

Zhou et al., 2015). The RWI uses imaged reflectors that act as secondary sources

to produce transmission responses (“rabbit ears”) which are used to update the

macromodel.

– Extended waveform inversion (EWI). In EWI, the model space is extended by a

non-physical axis to obtain an objective function that approximate a quadratic

cost. The model extension axis can be subsurface offset (Symes, 2008; Fu and

Symes, 2017) or a time lag (Biondi and Almomin, 2014).

• Multiparameter coupling: Resolving more than one parameter such as compres-

sional and shear-wave velocities and density is a major problem in FWI. Parameters

are coupled and therefore, the data can be fitted by models where final multiparameter

images are contaminated by parameter cross-talk artifacts. Besides, different classes

of parameters have different magnitude orders or physical units. They have different

strength of responses in the seismic wavefield that makes the inversion ill-conditioned.

Through diffraction pattern analysis of different parameterizations, hierarchical inver-

sion strategies were proposed to mitigate parameter cross-talk contamination (Taran-

tola, 1986; Sears et al., 2008). Alternatively, preconditioning operators can be applied

in the multiparameter inversion to reduce parameter cross-talk. In this thesis, I inves-

tigate the role of the Hessian operator in decoupling the elastic parameters.

1.4 Isotropic elastic parameter sensitivity analysis

The diffraction pattern or radiation pattern indicates the distribution of amplitude of scat-

tered energy as a function of diffraction angle (scattering angle). It is essentially the deriva-

tive of the wave equation with respect to model parameters. The diffraction patterns for

different parameters provide an insight on the cause of the multiparameter crosstalk problem.

Under the ray + Born approximation, the analytical expressions for the elastic diffraction

patterns of the Lamé parameters, and density perturbations [δλ/λ, δµ/µ, δρ/ρ] are given by
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(Wu and Aki, 1985; Beylkin and Burridge, 1990; Forgues and Lambare, 1997)

Wλ,µ,ρ =


WP -P
λ WP -P

µ WP -P
ρ

WP -SV
λ WP -SV

µ WP -SV
ρ

WSV -P
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 ,

(1.1)

where WP -P
λ represents the P- to P-wave diffraction pattern due to Lamé parameter per-

turbation (δλ/λ), θP -P is the diffraction angle between the incident P-wave and scattered

P-wave, Vp and Vs are the background P- and S-wave velocities. The analytical expressions

for the diffraction patterns of the P- and S-wave impedances, and density perturbations

[δIp/Ip, δIs/Is, δρ/ρ] are given by (Wu and Aki, 1985; Beylkin and Burridge, 1990; Forgues

and Lambare, 1997)
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WP -P
Ip

WP -P
Is
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ρ
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ρ
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0 2 cos 2θSV -SV − cos 2θSV -SV + cos θSV -SV

 .

(1.2)

The analytical expressions for the diffraction patterns of the P- and S-wave velocities, and

density perturbations [δVp/Vp, δVs/Vs, δρ/ρ] are given by (Wu and Aki, 1985; Beylkin and
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Burridge, 1990; Forgues and Lambare, 1997)

WVp,Vs,ρ =
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 .

(1.3)

In Figures 1.1 - 1.3, I plot the theoretical amplitude diffraction patterns (equations 1.1 -

1.3) of model perturbations in homogenous media under the ray + Born approximation

(Wu and Aki, 1985; Tarantola, 1986; Forgues and Lambare, 1997). The diffraction pattern

for different parameterizations of perturbations is plotted in polar coordinates as a function

of the diffraction angle. Diffraction patterns for different elastic parameters overlap. This

overlap causes the so-called crosstalk artifacts in the inversion. In other words, the inability

of the inversion algorithm to differentiate responses caused by different elastic parameters.

If one adopts density and Lamé parameters to parameterize the inversion problem, the

diffraction patterns become alike for moderate offsets (Figure 1.1). The P-P wave responses

of the three perturbations are almost identical for small offsets. It indicates a strong cou-

pling of the three parameters. Parameterization adopting density and Lamé parameters

is not a good choice for both linear and nonlinear waveform inversion methods. If one

adopts density, P- and S-wave impedances for parameterization, the diffraction patterns for

a P-wave impedance perturbation and an S-wave impedance perturbation are very different

(Figure 1.2). The density diffractor scatters waves forward. Therefore, it may be hard to

resolve density using moderate-offset surface reflection data (Tarantola, 1986). Under den-

sity, P-and S-wave velocities parameterization, the diffraction patterns for P-wave velocity

perturbation and S-wave velocity perturbation are also very different (Figure 1.3). While,

the diffraction pattern of density diffractor shows ambiguity with the diffraction patterns of

P- and S-wave velocity diffractors. The density may be difficult to resolve using only small

offset P-P wave data (Tarantola, 1986). The diffraction pattern of P-wave velocity diffractor

for P-P wave mode is homogenous at all angles. The P-wave velocity diffractor does not

involve with other wave modes. Both short and long wavelengths of P-wave velocity can be

reconstructed from wide-offset data. The diffraction pattern of S-wave velocity diffractor

for P-P wave mode spans a range of intermediate scattering angles. The combination of

the radiation patterns of the S-wave velocity diffractor for different wave modes spans a full

range of scattering angles (Pageot et al., 2013). It indicates that both short and long wave-
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lengths of S-wave velocity are able to be reconstructed using all the wave modes. However,

the diffraction pattern of density diffractor has large amplitude at small scattering angle

and small amplitude at large scattering angle. Only short-to-intermediate wavelengths of

density can be retrieved from seismic data (Operto et al., 2013). From a physical point of

view, the P- and S-wave velocity has influence on not only traveltimes but also amplitudes

of waves, while the density mainly influences the amplitude of waves.
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Figure 6:Chen & Sacchi – GEO-Example

10

Figure 1.1: Elastic amplitude diffraction patterns for density and Lamé parameters pa-
rameterization. (a) P-P (Blue: |WP -P

λ |, red: |WP -P
µ |, yellow: |WP -P

ρ |). (b) P-SV (Red:

|WP -SV
µ |, yellow: |WP -SV

ρ |). (c) SV-P (Red: |WSV -P
µ |, yellow: |WSV -P

ρ |). (d) SV-SV (Red:

|WSV -SV
µ |, yellow: |WSV -SV

ρ |). The diffraction pattern is plotted in polar coordinates as a
function of diffraction angle.
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Figure 1.2: Elastic amplitude diffraction patterns for density, P- and S-wave impedances
parameterization. (a) P-P (Blue: |WP -P

Ip
|, red: |WP -P

Is
|, yellow: |WP -P

ρ |). (b) P-SV (Red:

|WP -SV
Is

|, yellow: |WP -SV
ρ |). (c) SV-P (Red: |WSV -P

Is
|, yellow: |WSV -P

ρ |). (d) SV-SV (Red:

|WSV -SV
Is

|, yellow: |WSV -SV
ρ |). The diffraction pattern is plotted in polar coordinates as a

function of diffraction angle.
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Figure 1.3: Elastic amplitude diffraction patterns for density, P- and S-wave velocities
parameterization. (a) P-P (Blue: |WP -P

Vp
|, red: |WP -P

Vs
|, yellow: |WP -P

ρ |). (b) P-SV (Red:

|WP -SV
Vs

|, yellow: |WP -SV
ρ |). (c) SV-P (Red: |WSV -P

Vs
|, yellow: |WSV -P

ρ |). (d) SV-SV (Red:

|WSV -SV
Vs

|, yellow: |WSV -SV
ρ |). The diffraction pattern is plotted in polar coordinates as a

function of diffraction angle.
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1.5 Contributions of this thesis

This thesis investigates the role of the Hessian operator in both linearized and nonlinear

elastic waveform inversion. In particular, I have examined theoretical aspects associated

to the development of exact forward and adjoint operators for linearized elastic imaging

and developed numerical solutions to solve both the linear and nonlinear elastic imaging

problems. More specifically:

• I introduce a time domain elastic least-squares reverse time migration (LSRTM) algo-

rithm. I formulate the elastic LSRTM as a linearized elastic full-waveform inversion

problem. The proposed elastic LSRTM is able to reduce multiparameter cross-talk.

Special attention was paid in deriving exact forward adjoint operators using the Born

elastic approximation.

• I investigate the influence of density on crosstalk artifact and in the convergence of

elastic LSRTM. For this purpose, I develop a three-parameter elastic LSRTM.

• I introduce a time-domain matrix-free elastic Gauss-Newton full-waveform inversion

(FWI) algorithm. I point out that the elastic LSRTM can be viewed as one iteration of

the elastic Gauss-Newton full-waveform inversion (FWI) algorithm. This framework

offers great freedom to design and apply Gauss-Newton FWI algorithms to elastic

wavefields. The proposed algorithm consists of two loops of iterations: the outer

Gauss-Newton nonlinear iterations and the inner conjugate gradient least-squares

(CGLS) linear iterations. The Hessian is implicitly inverted in a matrix-free fashion

that only requires the forward and adjoint operators applied “on the fly” to vectors.

1.6 Organization of this thesis

• In Chapter 2, I draw connections between seismic wave forward modelling, Born

approximation modelling, migration, least-squares migration and full-waveform inver-

sion. I point out that the least-squares migration problem is equivalent to one iteration

of Gauss-Newton full-waveform inversion problem.

• In Chapter 3, I propose a time-domain elastic LSRTM method. I derive the elastic

Born approximation and elastic reverse time migration (RTM) operators using the

time-domain continuous adjoint-state method. The state equation system used is the

first-order velocity-stress isotropic elastic wave-equation system. I adopt the optimize-

before-discretize (OBD) approach in which the operators and algorithms are derived
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in continuous form and are discretized at the final stage. My discretized numerical

versions of the elastic Born operator and its adjoint (elastic RTM operator) pass the

dot-product test. I use the CGLS algorithm to solve the least-squares optimization

problem. In other words, the Hessian operator for elastic LSRTM is implicitly in-

verted via a matrix-free algorithm that only requires the action of forward and adjoint

operators on vectors. Numerical experiments show that the elastic LSRTM provides

higher resolution images with fewer artifacts and a superior balance of amplitudes

when compared to elastic RTM. The elastic LSRTM can reduce cross-talk artefacts

between the P-wave and S-wave images.

• In Chapter 4, I investigate the influence of density on the generation of crosstalk

and on the convergence of elastic LSRTM. I propose a time-domain three-parameter

elastic LSRTM algorithm to simultaneously invert for density, P- and S-wave images.

I then evaluate the proposed algorithm on two synthetic examples. The proposed

three-parameter elastic LSRTM can suppress the multiparameter crosstalk among

density, P- and S-wave images and it can correctly estimate the density perturbation

image. Including the density image in the elastic LSRTM inversion also improves the

convergence of least-squares inversion.

• In Chapter 5, I propose a time-domain matrix-free elastic Gauss-Newton FWI al-

gorithm. I consider the elastic Gauss-Newton FWI as an iterative elastic LSRTM

problem. The proposed algorithm consists of two loops of iterations: the outer Gauss-

Newton nonlinear iterations and the inner CGLS linear iterations. The Gauss-Newton

search direction in each outer FWI iteration is computed using the CGLS method.

This step is equivalent to apply an elastic LSRTM on data residuals. The proposed al-

gorithm is a matrix-free technique that only requires the forward and adjoint Fréchet

derivative operators applied “on the fly” to vectors. The latter is achieved via the

adjoint-state method. I use the proposed algorithm to simultaneously invert for P-

and S-wave velocities. The proposed elastic Gauss-Newton FWI generates slightly

better-inverted models than the nonlinear conjugate gradient (NLCG) method based

elastic FWI. The elastic Gauss-Newton FWI converges faster than the elastic NLCG

FWI. Because the proposed elastic Gauss-Newton FWI algorithm is matrix-free, its

memory requirements are similar to those of the elastic NLCG FWI method.
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Migration, least-squares migration, and full-waveform

inversion: Connections

In this chapter, I will draw the connection between migration and steepest-descent full-

waveform inversion, and the connection between least-squares migration and Gauss-Newton

full-waveform inversion.

2.1 Forward problem

The forward problem consists of predicting measurements using given the description of a

physical system (Tarantola, 2005). Assuming that m represents the vector of parameters of

the system and d the predicted measurements, the forward problem can be expressed as

d = φ(m), (2.1)

where the operator φ(·) is called the forward operator. The forward problem can be descried

by Figure 2.1.

The forward problem can be linear or nonlinear in its nature. If the forward problem is

linear, equation 2.1 can be simplified as the following expression

d = Φm, (2.2)

where Φ represents a general linear operator (or a matrix). In general, both linear and

nonlinear forward problems are usually a well-posed problems.

15
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CHAPTER 1

Introduction
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Figure 2.1: The sketch of general forward problem from model parameterized as m in model
space M to the predicted measurement d in the data space D.

2.1.1 Nonlinear forward problem

Examples of nonlinear forward problems include solving Schrödinger equation, Navier-Stokes

equation and Eikonal equation. In this section, I will discuss the seismic wave simulation as

an example which is a nonlinear problem in terms of the elastic parameters of the subsurface.

The seismic wave equation is derived by considering a dynamical equation and a constitutive

equation. The general heterogeneous elastic wave equation is defined as (Aki and Richards,

2002)

ρ(x)v̇(x, t)−∇ · σ(x, t) = f(x, t),

σ̇(x, t)−C(x) : ∇v(x, t) = 0,

σ(x, t) · n(x)|x∈∂Ω = 0,

v(x, t)|t=0 = 0,

x ∈ Ω ⊂ <3, t ∈ <,

(2.3)

where v(x, t) is the particle velocity vector, σ(x, t) is the second-order stress tensor, ρ(x)

is mass density, C(x) is the fourth-order elastic tensor, Ω represents the computational

domain and ∂Ω is the surface of the domain. The above wave equation fulfills a free surface

boundary condition and a zero initial condition.
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nonlinear forward problem include Schrödinger equation modeling for solving wave function,

seismic wave equation modeling for solving seismic data and so on. It can be expressed as

following equation
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As mentioned, the forward problem can be linear or nonlinear in nature. The examples of

nonlinear forward problem include Schrödinger equation modeling for solving wave function,

seismic wave equation modeling for solving seismic data and so on. It can be expressed as
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d = g(m), (1.1)

where g(·) is a nonlinear functional. In this formulation, the data d and model m are

nonlinearly related. There are also lots of forward problems that are linear such as Fourier
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Figure 1.2: The sketch of seismic wave propagation and data acquisition. Star represents
for source and triangular represents for receiver.

Graves, 1996) to discretize the elastic wave equation to get numerical solutions. In FD

modeling, the time sampling should fulfill the stability condition. The grid spacing needs to

be chosen small enough to reduce the numerical dispersion. Increasing the FD order in space

can relax the grid space required. In my code, the order of the staggered di↵erence scheme

in space is selectable. The code can automatically calculate the FD coe�cients and allocate

memory from the user input FD order. To reduce the computation, the computational

domain is often a truncated part of the entire earth. The truncated boundaries will generate

artificial reflections in the FD modeling. I use the convolutional perfectly matched layer (C-

PML) method to resolve this problem (Komatitsch and Martin, 2007).

Figure 1.3 shows the isotropic elastic Marmousi2 model (Martin et al., 2006). The model

contains 6801 ⇥ 1401 grid points. I run my elastic FD code on this model. The source

wavelet is a Ricker wavelet with central frequency 20 Hz. The sources are distributed on

the surface of the ocean and the receivers are distributed along the ocean bottom.

1.1.2 Linear forward problem example: Born approximation

The Born approximation is a concept from quantum mechanics.
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Figure 1.2: The sketch of seismic wave propagation and data acquisition. Star represents
for source and triangular represents for receiver.

Graves, 1996) to discretize the elastic wave equation to get numerical solutions. In FD

modeling, the time sampling should fulfill the stability condition. The grid spacing needs to

be chosen small enough to reduce the numerical dispersion. Increasing the FD order in space

can relax the grid space required. In my code, the order of the staggered di↵erence scheme

in space is selectable. The code can automatically calculate the FD coe�cients and allocate

memory from the user input FD order. To reduce the computation, the computational

domain is often a truncated part of the entire earth. The truncated boundaries will generate

artificial reflections in the FD modeling. I use the convolutional perfectly matched layer (C-

PML) method to resolve this problem (Komatitsch and Martin, 2007).

Figure 1.3 shows the isotropic elastic Marmousi2 model (Martin et al., 2006). The model

contains 6801 ⇥ 1401 grid points. I run my elastic FD code on this model. The source

wavelet is a Ricker wavelet with central frequency 20 Hz. The sources are distributed on

the surface of the ocean and the receivers are distributed along the ocean bottom.

1.1.2 Linear forward problem example: Born approximation

The Born approximation is a concept from quantum mechanics.
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transform, Radon transform, Born approximation modeling, etc. The linear forward prob-

lem can be expressed as

d = Gm, (1.2)

where G represents a linear operator.

1.1.1 Nonlinear forward problem example: seismic wave propaga-

tion

The seismic wave propagation follows the Newton’s second law and the constitutive equation.

The general heterogenous elastic wave equation in three dimensional space is defined as

⇢(x)v̇(x, t)�r · �(x, t) = f(x, t),

�̇(x, t)�C(x) : rv(x, t) = 0,

�(x, t) · n(x)|
x2@⌦

= 0,

v(x, t)|
t=0

= 0,

x 2 ⌦ ⇢ <3

, t 2 <,

(1.3)

where v(x, t) is the particle velocity vector, �(x, t) is the second-order stress tensor, ⇢(x)

is mass density, C(x) is the fourth-order elastic tensor, ⌦ represents for the computational

domain and @⌦ is the surface of the domain. The above wave equation fulfills a free sur-

face boundary condition and a zero initial condition. For isotropic elastic medium, the

components of the elastic tensor C(x) can be simplified

c

ijkl

= ��

ij

�

kl

+ µ(�
ik

�

jl

+ �

il

�

jk

), i, j, k, l = 1, 2, 3, (1.4)

where � and µ are Lamé parameters. The general elastic wave equation reduces to

⇢(x)v̇(x, t)�r · �(x, t) = f(x, t),

�̇(x, t)� µ(x)
�rv(x, t) +rv(x, t)T

�
+ �(x) (r · v(x, t)) I = 0,

(1.5)

where I is identity matrix. The density ⇢ and Lamé parameters �, µ are nonlinearly related

with the wavefield v and �. They are coupled by multiplication. The wave equation can be

concisely written as

S(m)u = f , (1.6)

The seismic data d are extracted at the receiver positions via sampling the seismic wavefield.

Figure 1.2 describes the concept of seismic wave propagation and acquisition.

I use the staggered-grid scheme finite-di↵erence (FD) (Virieux, 1984, 1986; Levander, 1988;Figure 2.2: A sketch representing the seismic wave propagation problem d = φ(m). The
star represents a source and triangles represent for receivers.
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The seismic wave equation can be concisely written as

Su = f , (2.4)

where S = S(m) is the wave equation operator with m as the model parameter describing

the subsurface, u is the wavefield and f is the source function. The solution of the wave

equation 2.4 can be written using Green’s operator

u = S−1f = Gf , (2.5)

where G = S−1 is the Green’s operator. The seismic data d are extracted at the receiver

positions by the application of a sampling or restriction operator

d = φ(m) = Ru(m) = RG(m)f . (2.6)

The symbol R represents the sampling operator. Green’s operator G is a nonlinear function

of m. Figure 2.2 shows the seismic wave propagation and data acquisition in a controlled

source experiment.

(a) (b)

(c)

Figure 1:Chen & Sacchi – GEO-Example

5

Figure 2.3: The isotropic elastic Marmousi2 model. (a) P-wave velocity. (b) S-wave velocity.
(c) Density.

For an heterogeneous subsurface model, there is no analytical solution for the Green’s op-
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(a) (b)

Figure 2:Chen & Sacchi – GEO-Example

6

Figure 2.4: Simulated OBC seismic data for shot at lateral position x = 3400 m. (a)
Horizontal particle velocity data. (b) Vertical particle velocity data. Simulation is done
with a time-domain staggered-grid finite-difference scheme and an unsplit convolutional
perfectly matched layer (C-PML) boundary.

erator. Numerical methods such as finite-difference, finite-element or spectral-element are

needed to solve the elastic wave equation. Figure 2.3 presents the isotropic elastic Mar-

mousi2 model. Figure 2.4 shows an ocean bottom cable (OBC) seismic experiment data

simulated with the elastic Marmousi2 model.

2.1.2 Linear forward problem

Many geophysical problems rely on linear forward modelling. Examples of the latter are

the inversion of density from gravity anomalies and post-stack seismic deconvolution. The

Born approximation is often used to represent a nonlinear forward problem associated to

wave propagation phenomena via a linear approximation. The Born approximation is the

basis of seismic migration techniques. The subsurface model is assumed to be a perturbed

model around a background model

m = m0 + δm . (2.7a)

Similarly, the wavefield is a perturbation around background wavefield

u = u0 + δu. (2.7b)
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The wave equation 2.4 is now rewritten as follows

S(m0 + δm)(u0 + δu) = f . (2.8)

The above equation can be written as

(S0 + δS)(u0 + δu) = f , (2.9)

where S0 is the background wave equation operator and δS is the perturbed wave equation

operator. The propagation of seismic waves in the background model is described as

S0u0 = f . (2.10)

Figure 2.5 a shows the propagation of seismic waves in a background model.

CHAPTER 1. INTRODUCTION 3CHAPTER 1. INTRODUCTION 3

CHAPTER 1

Introduction

1.1 Forward problem

The forward problem is the problem of predicting the result of measurement using given

description of a physical system (Tarantola, 2005). No matter the forward problem is linear

or nonlinear, it has a unique solution. Because of the uniqueness, the forward modeling

problem is a stable process. Assuming m is the parameter of the system and d is the

predicted measurement, the forward problem can be descried by Figure 1.1.

CHAPTER 1

Introduction

1.1 Forward problem

The forward problem is the problem of predicting the result of measurement using given

description of a physical system (Tarantola, 2005). No matter the forward problem is linear

or nonlinear, it has a unique solution. Assuming m is the parameter of the system and d is

the predicted measurement, the forward problem can be descried by

d = g(m) (1.1)

1

CHAPTER 1

Introduction

1.1 Forward problem

The forward problem is the problem of predicting the result of measurement using given

description of a physical system (Tarantola, 2005). No matter the forward problem is linear

or nonlinear, it has a unique solution. Assuming m is the parameter of the system and d is

the predicted measurement, the forward problem can be descried by

d = g(m) (1.1)

1

CHAPTER 1

Introduction

1.1 Forward problem

The forward problem is the problem of predicting the result of measurement using given

description of a physical system (Tarantola, 2005). No matter the forward problem is linear

or nonlinear, it has a unique solution. Assuming m is the parameter of the system and d is

the predicted measurement, the forward problem can be descried by Figure 1.1.

CHAPTER 1

Introduction

1.1 Forward problem

The forward problem is the problem of predicting the result of measurement using given

description of a physical system (Tarantola, 2005). No matter the forward problem is linear

or nonlinear, it has a unique solution. Assuming m is the parameter of the system and d is

the predicted measurement, the forward problem can be descried by

d = g(m) (1.1)

1

CHAPTER 1

Introduction

1.1 Forward problem

The forward problem is the problem of predicting the result of measurement using given

description of a physical system (Tarantola, 2005). No matter the forward problem is linear

or nonlinear, it has a unique solution. Assuming m is the parameter of the system and d is

the predicted measurement, the forward problem can be descried by

d = g(m) (1.1)

1

Figure 1.1: The sketch of general forward problem from a model in model space M to a
measure in data space D.

1

CHAPTER 1

Introduction

1.1 Forward problem

The forward problem is the problem of predicting the result of measurement using given

description of a physical system (Tarantola, 2005). No matter the forward problem is linear

or nonlinear, it has a unique solution. Assuming m is the parameter of the system and d is

the predicted measurement, the forward problem can be descried by Figure 1.1.

CHAPTER 1

Introduction

1.1 Forward problem

The forward problem is the problem of predicting the result of measurement using given

description of a physical system (Tarantola, 2005). No matter the forward problem is linear

or nonlinear, it has a unique solution. Assuming m is the parameter of the system and d is

the predicted measurement, the forward problem can be descried by

d = g(m) (1.1)

1

CHAPTER 1

Introduction

1.1 Forward problem

The forward problem is the problem of predicting the result of measurement using given

description of a physical system (Tarantola, 2005). No matter the forward problem is linear

or nonlinear, it has a unique solution. Assuming m is the parameter of the system and d is

the predicted measurement, the forward problem can be descried by

d = g(m) (1.1)

1

Figure 1.1: The sketch of general forward problem from a model in model space M to a
measure in data space D

1

Figure 1.1: The sketch of general forward problem from a model parameter in model space
M to a predicted measurement in data space D.

As mentioned, the forward problem can be linear or nonlinear in nature. The examples of

nonlinear forward problem include Schrödinger equation modeling for solving wave function,
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following equation

d = g(m), (1.1)

where g(·) is a nonlinear functional. In this formulation, the data d and model m are

nonlinearly related. There are also lots of forward problems that are linear such as Fourier

1

CHAPTER 1

Introduction

1.1 Forward problem

The forward problem is the problem of predicting the result of measurement using given

description of a physical system (Tarantola, 2005). No matter the forward problem is linear

or nonlinear, it has a unique solution. Because of the uniqueness, the forward modeling

problem is a stable process. Assuming m is the parameter of the system and d is the

predicted measurement, the forward problem can be descried by Figure 1.1.

CHAPTER 1

Introduction

1.1 Forward problem

The forward problem is the problem of predicting the result of measurement using given

description of a physical system (Tarantola, 2005). No matter the forward problem is linear

or nonlinear, it has a unique solution. Assuming m is the parameter of the system and d is

the predicted measurement, the forward problem can be descried by

d = g(m) (1.1)

1

CHAPTER 1

Introduction

1.1 Forward problem

The forward problem is the problem of predicting the result of measurement using given

description of a physical system (Tarantola, 2005). No matter the forward problem is linear

or nonlinear, it has a unique solution. Assuming m is the parameter of the system and d is

the predicted measurement, the forward problem can be descried by

d = g(m) (1.1)

1

CHAPTER 1

Introduction

1.1 Forward problem

The forward problem is the problem of predicting the result of measurement using given

description of a physical system (Tarantola, 2005). No matter the forward problem is linear

or nonlinear, it has a unique solution. Assuming m is the parameter of the system and d is

the predicted measurement, the forward problem can be descried by Figure 1.1.

CHAPTER 1

Introduction

1.1 Forward problem

The forward problem is the problem of predicting the result of measurement using given

description of a physical system (Tarantola, 2005). No matter the forward problem is linear

or nonlinear, it has a unique solution. Assuming m is the parameter of the system and d is

the predicted measurement, the forward problem can be descried by

d = g(m) (1.1)

1

CHAPTER 1

Introduction

1.1 Forward problem

The forward problem is the problem of predicting the result of measurement using given

description of a physical system (Tarantola, 2005). No matter the forward problem is linear

or nonlinear, it has a unique solution. Assuming m is the parameter of the system and d is

the predicted measurement, the forward problem can be descried by

d = g(m) (1.1)

1

Figure 1.1: The sketch of general forward problem from a model in model space M to a
measure in data space D.

1

CHAPTER 1

Introduction

1.1 Forward problem

The forward problem is the problem of predicting the result of measurement using given

description of a physical system (Tarantola, 2005). No matter the forward problem is linear

or nonlinear, it has a unique solution. Assuming m is the parameter of the system and d is

the predicted measurement, the forward problem can be descried by Figure 1.1.

CHAPTER 1

Introduction

1.1 Forward problem

The forward problem is the problem of predicting the result of measurement using given

description of a physical system (Tarantola, 2005). No matter the forward problem is linear

or nonlinear, it has a unique solution. Assuming m is the parameter of the system and d is

the predicted measurement, the forward problem can be descried by

d = g(m) (1.1)

1

CHAPTER 1

Introduction

1.1 Forward problem

The forward problem is the problem of predicting the result of measurement using given

description of a physical system (Tarantola, 2005). No matter the forward problem is linear

or nonlinear, it has a unique solution. Assuming m is the parameter of the system and d is

the predicted measurement, the forward problem can be descried by

d = g(m) (1.1)

1

Figure 1.1: The sketch of general forward problem from a model in model space M to a
measure in data space D

1

Figure 1.1: The sketch of general forward problem from a model parameter in model space
M to a predicted measurement in data space D.

As mentioned, the forward problem can be linear or nonlinear in nature. The examples of

nonlinear forward problem include Schrödinger equation modeling for solving wave function,

seismic wave equation modeling for solving seismic data and so on. It can be expressed as

following equation

d = g(m), (1.1)

where g(·) is a nonlinear functional. In this formulation, the data d and model m are
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Graves, 1996) to discretize the elastic wave equation to get numerical solutions. In FD

modeling, the time sampling should fulfill the stability condition. The grid spacing needs to

be chosen small enough to reduce the numerical dispersion. Increasing the FD order in space

can relax the grid space required. In my code, the order of the staggered di↵erence scheme

in space is selectable. The code can automatically calculate the FD coe�cients and allocate

memory from the user input FD order. To reduce the computation, the computational

domain is often a truncated part of the entire earth. The truncated boundaries will generate

artificial reflections in the FD modeling. I use the convolutional perfectly matched layer (C-

PML) method to resolve this problem (Komatitsch and Martin, 2007).

Figure 1.3 shows the isotropic elastic Marmousi2 model (Martin et al., 2006). The model

contains 6801 ⇥ 1401 grid points. I run my elastic FD code on this model. The source

wavelet is a Ricker wavelet with central frequency 20 Hz. The sources are distributed on

the surface of the ocean and the receivers are distributed along the ocean bottom.

1.1.2 Linear forward problem example: Born approximation

The Born approximation is a concept from quantum mechanics.
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Graves, 1996) to discretize the elastic wave equation to get numerical solutions. In FD

modeling, the time sampling should fulfill the stability condition. The grid spacing needs to

be chosen small enough to reduce the numerical dispersion. Increasing the FD order in space

can relax the grid space required. In my code, the order of the staggered di↵erence scheme

in space is selectable. The code can automatically calculate the FD coe�cients and allocate

memory from the user input FD order. To reduce the computation, the computational

domain is often a truncated part of the entire earth. The truncated boundaries will generate

artificial reflections in the FD modeling. I use the convolutional perfectly matched layer (C-

PML) method to resolve this problem (Komatitsch and Martin, 2007).

Figure 1.3 shows the isotropic elastic Marmousi2 model (Martin et al., 2006). The model

contains 6801 ⇥ 1401 grid points. I run my elastic FD code on this model. The source

wavelet is a Ricker wavelet with central frequency 20 Hz. The sources are distributed on

the surface of the ocean and the receivers are distributed along the ocean bottom.

1.1.2 Linear forward problem example: Born approximation

The Born approximation is a concept from quantum mechanics.
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transform, Radon transform, Born approximation modeling, etc. The linear forward prob-

lem can be expressed as

d = Gm, (1.2)

where G represents a linear operator.

1.1.1 Nonlinear forward problem example: seismic wave propaga-

tion

The seismic wave propagation follows the Newton’s second law and the constitutive equation.

The general heterogenous elastic wave equation in three dimensional space is defined as

⇢(x)v̇(x, t)�r · �(x, t) = f(x, t),

�̇(x, t)�C(x) : rv(x, t) = 0,

�(x, t) · n(x)|
x2@⌦

= 0,

v(x, t)|
t=0

= 0,

x 2 ⌦ ⇢ <3

, t 2 <,

(1.3)

where v(x, t) is the particle velocity vector, �(x, t) is the second-order stress tensor, ⇢(x)

is mass density, C(x) is the fourth-order elastic tensor, ⌦ represents for the computational

domain and @⌦ is the surface of the domain. The above wave equation fulfills a free sur-

face boundary condition and a zero initial condition. For isotropic elastic medium, the

components of the elastic tensor C(x) can be simplified

c

ijkl

= ��

ij

�

kl

+ µ(�
ik

�

jl

+ �

il

�

jk

), i, j, k, l = 1, 2, 3, (1.4)

where � and µ are Lamé parameters. The general elastic wave equation reduces to

⇢(x)v̇(x, t)�r · �(x, t) = f(x, t),

�̇(x, t)� µ(x)
�rv(x, t) +rv(x, t)T

�
+ �(x) (r · v(x, t)) I = 0,

(1.5)

where I is identity matrix. The density ⇢ and Lamé parameters �, µ are nonlinearly related

with the wavefield v and �. They are coupled by multiplication. The wave equation can be

concisely written as

S(m)u = f , (1.6)

The seismic data d are extracted at the receiver positions via sampling the seismic wavefield.

Figure 1.2 describes the concept of seismic wave propagation and acquisition.

I use the staggered-grid scheme finite-di↵erence (FD) (Virieux, 1984, 1986; Levander, 1988;Figure 1.2: The sketch of seismic wave propagation and data acquisition. Star represents
for source and triangular represents for receiver.

Graves, 1996) to discretize the elastic wave equation to get numerical solutions. In FD

modeling, the time sampling should fulfill the stability condition. The grid spacing needs to

be chosen small enough to reduce the numerical dispersion. Increasing the FD order in space

can relax the grid space required. In my code, the order of the staggered di↵erence scheme

in space is selectable. The code can automatically calculate the FD coe�cients and allocate

memory from the user input FD order. To reduce the computation, the computational

domain is often a truncated part of the entire earth. The truncated boundaries will generate

artificial reflections in the FD modeling. I use the convolutional perfectly matched layer (C-

PML) method to resolve this problem (Komatitsch and Martin, 2007).

Figure 1.3 shows the isotropic elastic Marmousi2 model (Martin et al., 2006). The model

contains 6801 ⇥ 1401 grid points. I run my elastic FD code on this model. The source

wavelet is a Ricker wavelet with central frequency 20 Hz. The sources are distributed on

the surface of the ocean and the receivers are distributed along the ocean bottom.

1.1.2 Linear forward problem example: Born approximation

The Born approximation is a concept from quantum mechanics.
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As mentioned, the forward problem can be linear or nonlinear in nature. The examples of

nonlinear forward problem include Schrödinger equation modeling for solving wave function,

seismic wave equation modeling for solving seismic data and so on. It can be expressed as

following equation

d = g(m), (1.1)

where g(·) is a nonlinear functional. In this formulation, the data d and model m are

nonlinearly related. There are also lots of forward problems that are linear such as Fourier
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for source and triangular represents for receiver.

Graves, 1996) to discretize the elastic wave equation to get numerical solutions. In FD

modeling, the time sampling should fulfill the stability condition. The grid spacing needs to

be chosen small enough to reduce the numerical dispersion. Increasing the FD order in space

can relax the grid space required. In my code, the order of the staggered di↵erence scheme

in space is selectable. The code can automatically calculate the FD coe�cients and allocate

memory from the user input FD order. To reduce the computation, the computational

domain is often a truncated part of the entire earth. The truncated boundaries will generate

artificial reflections in the FD modeling. I use the convolutional perfectly matched layer (C-

PML) method to resolve this problem (Komatitsch and Martin, 2007).

Figure 1.3 shows the isotropic elastic Marmousi2 model (Martin et al., 2006). The model

contains 6801 ⇥ 1401 grid points. I run my elastic FD code on this model. The source

wavelet is a Ricker wavelet with central frequency 20 Hz. The sources are distributed on

the surface of the ocean and the receivers are distributed along the ocean bottom.

1.1.2 Linear forward problem example: Born approximation

The Born approximation is a concept from quantum mechanics.
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Graves, 1996) to discretize the elastic wave equation to get numerical solutions. In FD

modeling, the time sampling should fulfill the stability condition. The grid spacing needs to

be chosen small enough to reduce the numerical dispersion. Increasing the FD order in space

can relax the grid space required. In my code, the order of the staggered di↵erence scheme

in space is selectable. The code can automatically calculate the FD coe�cients and allocate

memory from the user input FD order. To reduce the computation, the computational

domain is often a truncated part of the entire earth. The truncated boundaries will generate

artificial reflections in the FD modeling. I use the convolutional perfectly matched layer (C-

PML) method to resolve this problem (Komatitsch and Martin, 2007).

Figure 1.3 shows the isotropic elastic Marmousi2 model (Martin et al., 2006). The model

contains 6801 ⇥ 1401 grid points. I run my elastic FD code on this model. The source

wavelet is a Ricker wavelet with central frequency 20 Hz. The sources are distributed on

the surface of the ocean and the receivers are distributed along the ocean bottom.

1.1.2 Linear forward problem example: Born approximation

The Born approximation is a concept from quantum mechanics.
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transform, Radon transform, Born approximation modeling, etc. The linear forward prob-

lem can be expressed as

d = Gm, (1.2)

where G represents a linear operator.

1.1.1 Nonlinear forward problem example: seismic wave propaga-

tion

The seismic wave propagation follows the Newton’s second law and the constitutive equation.

The general heterogenous elastic wave equation in three dimensional space is defined as

⇢(x)v̇(x, t)�r · �(x, t) = f(x, t),

�̇(x, t)�C(x) : rv(x, t) = 0,

�(x, t) · n(x)|
x2@⌦

= 0,

v(x, t)|
t=0

= 0,

x 2 ⌦ ⇢ <3

, t 2 <,

(1.3)

where v(x, t) is the particle velocity vector, �(x, t) is the second-order stress tensor, ⇢(x)

is mass density, C(x) is the fourth-order elastic tensor, ⌦ represents for the computational

domain and @⌦ is the surface of the domain. The above wave equation fulfills a free sur-

face boundary condition and a zero initial condition. For isotropic elastic medium, the

components of the elastic tensor C(x) can be simplified

c

ijkl

= ��

ij

�

kl

+ µ(�
ik

�

jl

+ �

il

�

jk

), i, j, k, l = 1, 2, 3, (1.4)

where � and µ are Lamé parameters. The general elastic wave equation reduces to

⇢(x)v̇(x, t)�r · �(x, t) = f(x, t),

�̇(x, t)� µ(x)
�rv(x, t) +rv(x, t)T

�
+ �(x) (r · v(x, t)) I = 0,

(1.5)

where I is identity matrix. The density ⇢ and Lamé parameters �, µ are nonlinearly related

with the wavefield v and �. They are coupled by multiplication. The wave equation can be

concisely written as

S(m)u = f , (1.6)

The seismic data d are extracted at the receiver positions via sampling the seismic wavefield.

Figure 1.2 describes the concept of seismic wave propagation and acquisition.

I use the staggered-grid scheme finite-di↵erence (FD) (Virieux, 1984, 1986; Levander, 1988;Figure 1.2: The sketch of seismic wave propagation and data acquisition. Star represents
for source and triangular represents for receiver.

Graves, 1996) to discretize the elastic wave equation to get numerical solutions. In FD

modeling, the time sampling should fulfill the stability condition. The grid spacing needs to

be chosen small enough to reduce the numerical dispersion. Increasing the FD order in space

can relax the grid space required. In my code, the order of the staggered di↵erence scheme

in space is selectable. The code can automatically calculate the FD coe�cients and allocate

memory from the user input FD order. To reduce the computation, the computational

domain is often a truncated part of the entire earth. The truncated boundaries will generate

artificial reflections in the FD modeling. I use the convolutional perfectly matched layer (C-

PML) method to resolve this problem (Komatitsch and Martin, 2007).

Figure 1.3 shows the isotropic elastic Marmousi2 model (Martin et al., 2006). The model

contains 6801 ⇥ 1401 grid points. I run my elastic FD code on this model. The source

wavelet is a Ricker wavelet with central frequency 20 Hz. The sources are distributed on

the surface of the ocean and the receivers are distributed along the ocean bottom.

1.1.2 Linear forward problem example: Born approximation

The Born approximation is a concept from quantum mechanics.
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1.2 Inverse problem

1.2.1 Linear inverse problem

1.2.2 Nonlinear inverse problem

1.3 Elastic full-waveform inversion and parameter res-

olution

1.4 Optimize-before-discretize vs. discretize-before-optimize

1.5 Contributions of this thesis

1.6 Organization of this thesis

In this thesis, propose an elastic LSRTM algorithm. I draw the connection between elastic

LSRTM and elastic Gauss-Newton FWI.
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Graves, 1996) to discretize the elastic wave equation to get numerical solutions. In FD

modeling, the time sampling should fulfill the stability condition. The grid spacing needs to

be chosen small enough to reduce the numerical dispersion. Increasing the FD order in space

can relax the grid space required. In my code, the order of the staggered di↵erence scheme

in space is selectable. The code can automatically calculate the FD coe�cients and allocate

memory from the user input FD order. To reduce the computation, the computational

domain is often a truncated part of the entire earth. The truncated boundaries will generate

artificial reflections in the FD modeling. I use the convolutional perfectly matched layer (C-

PML) method to resolve this problem (Komatitsch and Martin, 2007).

Figure 1.3 shows the isotropic elastic Marmousi2 model (Martin et al., 2006). The model

contains 6801 ⇥ 1401 grid points. I run my elastic FD code on this model. The source
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Graves, 1996) to discretize the elastic wave equation to get numerical solutions. In FD

modeling, the time sampling should fulfill the stability condition. The grid spacing needs to

be chosen small enough to reduce the numerical dispersion. Increasing the FD order in space

can relax the grid space required. In my code, the order of the staggered di↵erence scheme

in space is selectable. The code can automatically calculate the FD coe�cients and allocate

memory from the user input FD order. To reduce the computation, the computational

domain is often a truncated part of the entire earth. The truncated boundaries will generate

artificial reflections in the FD modeling. I use the convolutional perfectly matched layer (C-

PML) method to resolve this problem (Komatitsch and Martin, 2007).

Figure 1.3 shows the isotropic elastic Marmousi2 model (Martin et al., 2006). The model

contains 6801 ⇥ 1401 grid points. I run my elastic FD code on this model. The source

wavelet is a Ricker wavelet with central frequency 20 Hz. The sources are distributed on

the surface of the ocean and the receivers are distributed along the ocean bottom.

1.1.2 Linear forward problem example: Born approximation

The Born approximation is a concept from quantum mechanics.
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transform, Radon transform, Born approximation modeling, etc. The linear forward prob-

lem can be expressed as

d = Gm, (1.2)

where G represents a linear operator.

1.1.1 Nonlinear forward problem example: seismic wave propaga-

tion

The seismic wave propagation follows the Newton’s second law and the constitutive equation.

The general heterogenous elastic wave equation in three dimensional space is defined as

⇢(x)v̇(x, t)�r · �(x, t) = f(x, t),

�̇(x, t)�C(x) : rv(x, t) = 0,

�(x, t) · n(x)|
x2@⌦

= 0,

v(x, t)|
t=0

= 0,

x 2 ⌦ ⇢ <3

, t 2 <,

(1.3)

where v(x, t) is the particle velocity vector, �(x, t) is the second-order stress tensor, ⇢(x)

is mass density, C(x) is the fourth-order elastic tensor, ⌦ represents for the computational

domain and @⌦ is the surface of the domain. The above wave equation fulfills a free sur-

face boundary condition and a zero initial condition. For isotropic elastic medium, the

components of the elastic tensor C(x) can be simplified

c

ijkl

= ��

ij

�

kl

+ µ(�
ik

�

jl

+ �

il

�

jk

), i, j, k, l = 1, 2, 3, (1.4)

where � and µ are Lamé parameters. The general elastic wave equation reduces to

⇢(x)v̇(x, t)�r · �(x, t) = f(x, t),

�̇(x, t)� µ(x)
�rv(x, t) +rv(x, t)T

�
+ �(x) (r · v(x, t)) I = 0,

(1.5)

where I is identity matrix. The density ⇢ and Lamé parameters �, µ are nonlinearly related

with the wavefield v and �. They are coupled by multiplication. The wave equation can be

concisely written as

S(m)u = f , (1.6)

The seismic data d are extracted at the receiver positions via sampling the seismic wavefield.

Figure 1.2 describes the concept of seismic wave propagation and acquisition.

I use the staggered-grid scheme finite-di↵erence (FD) (Virieux, 1984, 1986; Levander, 1988;Figure 1.2: The sketch of seismic wave propagation and data acquisition. Star represents
for source and triangular represents for receiver.

Graves, 1996) to discretize the elastic wave equation to get numerical solutions. In FD

modeling, the time sampling should fulfill the stability condition. The grid spacing needs to

be chosen small enough to reduce the numerical dispersion. Increasing the FD order in space

can relax the grid space required. In my code, the order of the staggered di↵erence scheme

in space is selectable. The code can automatically calculate the FD coe�cients and allocate

memory from the user input FD order. To reduce the computation, the computational

domain is often a truncated part of the entire earth. The truncated boundaries will generate

artificial reflections in the FD modeling. I use the convolutional perfectly matched layer (C-

PML) method to resolve this problem (Komatitsch and Martin, 2007).

Figure 1.3 shows the isotropic elastic Marmousi2 model (Martin et al., 2006). The model

contains 6801 ⇥ 1401 grid points. I run my elastic FD code on this model. The source

wavelet is a Ricker wavelet with central frequency 20 Hz. The sources are distributed on

the surface of the ocean and the receivers are distributed along the ocean bottom.
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The Born approximation is a concept from quantum mechanics.
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Graves, 1996) to discretize the elastic wave equation to get numerical solutions. In FD

modeling, the time sampling should fulfill the stability condition. The grid spacing needs to

be chosen small enough to reduce the numerical dispersion. Increasing the FD order in space

can relax the grid space required. In my code, the order of the staggered di↵erence scheme

in space is selectable. The code can automatically calculate the FD coe�cients and allocate

memory from the user input FD order. To reduce the computation, the computational

domain is often a truncated part of the entire earth. The truncated boundaries will generate

artificial reflections in the FD modeling. I use the convolutional perfectly matched layer (C-

PML) method to resolve this problem (Komatitsch and Martin, 2007).

Figure 1.3 shows the isotropic elastic Marmousi2 model (Martin et al., 2006). The model

contains 6801 ⇥ 1401 grid points. I run my elastic FD code on this model. The source

wavelet is a Ricker wavelet with central frequency 20 Hz. The sources are distributed on

the surface of the ocean and the receivers are distributed along the ocean bottom.
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Graves, 1996) to discretize the elastic wave equation to get numerical solutions. In FD

modeling, the time sampling should fulfill the stability condition. The grid spacing needs to

be chosen small enough to reduce the numerical dispersion. Increasing the FD order in space

can relax the grid space required. In my code, the order of the staggered di↵erence scheme

in space is selectable. The code can automatically calculate the FD coe�cients and allocate

memory from the user input FD order. To reduce the computation, the computational

domain is often a truncated part of the entire earth. The truncated boundaries will generate

artificial reflections in the FD modeling. I use the convolutional perfectly matched layer (C-

PML) method to resolve this problem (Komatitsch and Martin, 2007).

Figure 1.3 shows the isotropic elastic Marmousi2 model (Martin et al., 2006). The model

contains 6801 ⇥ 1401 grid points. I run my elastic FD code on this model. The source

wavelet is a Ricker wavelet with central frequency 20 Hz. The sources are distributed on

the surface of the ocean and the receivers are distributed along the ocean bottom.

1.1.2 Linear forward problem example: Born approximation

The Born approximation is a concept from quantum mechanics.
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transform, Radon transform, Born approximation modeling, etc. The linear forward prob-

lem can be expressed as

d = Gm, (1.2)

where G represents a linear operator.

1.1.1 Nonlinear forward problem example: seismic wave propaga-

tion

The seismic wave propagation follows the Newton’s second law and the constitutive equation.

The general heterogenous elastic wave equation in three dimensional space is defined as

⇢(x)v̇(x, t)�r · �(x, t) = f(x, t),

�̇(x, t)�C(x) : rv(x, t) = 0,

�(x, t) · n(x)|
x2@⌦

= 0,

v(x, t)|
t=0

= 0,

x 2 ⌦ ⇢ <3

, t 2 <,

(1.3)

where v(x, t) is the particle velocity vector, �(x, t) is the second-order stress tensor, ⇢(x)

is mass density, C(x) is the fourth-order elastic tensor, ⌦ represents for the computational

domain and @⌦ is the surface of the domain. The above wave equation fulfills a free sur-

face boundary condition and a zero initial condition. For isotropic elastic medium, the

components of the elastic tensor C(x) can be simplified
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), i, j, k, l = 1, 2, 3, (1.4)

where � and µ are Lamé parameters. The general elastic wave equation reduces to

⇢(x)v̇(x, t)�r · �(x, t) = f(x, t),

�̇(x, t)� µ(x)
�rv(x, t) +rv(x, t)T

�
+ �(x) (r · v(x, t)) I = 0,

(1.5)

where I is identity matrix. The density ⇢ and Lamé parameters �, µ are nonlinearly related

with the wavefield v and �. They are coupled by multiplication. The wave equation can be

concisely written as

S(m)u = f , (1.6)

The seismic data d are extracted at the receiver positions via sampling the seismic wavefield.

Figure 1.2 describes the concept of seismic wave propagation and acquisition.

I use the staggered-grid scheme finite-di↵erence (FD) (Virieux, 1984, 1986; Levander, 1988;Figure 1.2: The sketch of seismic wave propagation and data acquisition. Star represents
for source and triangular represents for receiver.

Graves, 1996) to discretize the elastic wave equation to get numerical solutions. In FD

modeling, the time sampling should fulfill the stability condition. The grid spacing needs to

be chosen small enough to reduce the numerical dispersion. Increasing the FD order in space

can relax the grid space required. In my code, the order of the staggered di↵erence scheme

in space is selectable. The code can automatically calculate the FD coe�cients and allocate

memory from the user input FD order. To reduce the computation, the computational

domain is often a truncated part of the entire earth. The truncated boundaries will generate

artificial reflections in the FD modeling. I use the convolutional perfectly matched layer (C-

PML) method to resolve this problem (Komatitsch and Martin, 2007).

Figure 1.3 shows the isotropic elastic Marmousi2 model (Martin et al., 2006). The model

contains 6801 ⇥ 1401 grid points. I run my elastic FD code on this model. The source

wavelet is a Ricker wavelet with central frequency 20 Hz. The sources are distributed on

the surface of the ocean and the receivers are distributed along the ocean bottom.

1.1.2 Linear forward problem example: Born approximation

The Born approximation is a concept from quantum mechanics.
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As mentioned, the forward problem can be linear or nonlinear in nature. The examples of

nonlinear forward problem include Schrödinger equation modeling for solving wave function,

seismic wave equation modeling for solving seismic data and so on. It can be expressed as

following equation

d = g(m), (1.1)

where g(·) is a nonlinear functional. In this formulation, the data d and model m are

nonlinearly related. There are also lots of forward problems that are linear such as Fourier
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nonlinear forward problem include Schrödinger equation modeling for solving wave function,

seismic wave equation modeling for solving seismic data and so on. It can be expressed as
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d = g(m), (1.1)

where g(·) is a nonlinear functional. In this formulation, the data d and model m are

nonlinearly related. There are also lots of forward problems that are linear such as Fourier
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Graves, 1996) to discretize the elastic wave equation to get numerical solutions. In FD

modeling, the time sampling should fulfill the stability condition. The grid spacing needs to

be chosen small enough to reduce the numerical dispersion. Increasing the FD order in space

can relax the grid space required. In my code, the order of the staggered di↵erence scheme

in space is selectable. The code can automatically calculate the FD coe�cients and allocate

memory from the user input FD order. To reduce the computation, the computational

domain is often a truncated part of the entire earth. The truncated boundaries will generate

artificial reflections in the FD modeling. I use the convolutional perfectly matched layer (C-

PML) method to resolve this problem (Komatitsch and Martin, 2007).

Figure 1.3 shows the isotropic elastic Marmousi2 model (Martin et al., 2006). The model

contains 6801 ⇥ 1401 grid points. I run my elastic FD code on this model. The source

wavelet is a Ricker wavelet with central frequency 20 Hz. The sources are distributed on

the surface of the ocean and the receivers are distributed along the ocean bottom.

1.1.2 Linear forward problem example: Born approximation

The Born approximation is a concept from quantum mechanics.
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As mentioned, the forward problem can be linear or nonlinear in nature. The examples of

nonlinear forward problem include Schrödinger equation modeling for solving wave function,

seismic wave equation modeling for solving seismic data and so on. It can be expressed as

following equation

d = g(m), (1.1)

where g(·) is a nonlinear functional. In this formulation, the data d and model m are

nonlinearly related. There are also lots of forward problems that are linear such as Fourier
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Figure 1.2: The sketch of seismic wave propagation and data acquisition. Star represents
for source and triangular represents for receiver.

Graves, 1996) to discretize the elastic wave equation to get numerical solutions. In FD

modeling, the time sampling should fulfill the stability condition. The grid spacing needs to

be chosen small enough to reduce the numerical dispersion. Increasing the FD order in space

can relax the grid space required. In my code, the order of the staggered di↵erence scheme

in space is selectable. The code can automatically calculate the FD coe�cients and allocate

memory from the user input FD order. To reduce the computation, the computational

domain is often a truncated part of the entire earth. The truncated boundaries will generate

artificial reflections in the FD modeling. I use the convolutional perfectly matched layer (C-

PML) method to resolve this problem (Komatitsch and Martin, 2007).

Figure 1.3 shows the isotropic elastic Marmousi2 model (Martin et al., 2006). The model

contains 6801 ⇥ 1401 grid points. I run my elastic FD code on this model. The source

wavelet is a Ricker wavelet with central frequency 20 Hz. The sources are distributed on

the surface of the ocean and the receivers are distributed along the ocean bottom.

1.1.2 Linear forward problem example: Born approximation

The Born approximation is a concept from quantum mechanics.
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transform, Radon transform, Born approximation modeling, etc. The linear forward prob-

lem can be expressed as

d = Gm, (1.2)

where G represents a linear operator.

1.1.1 Nonlinear forward problem example: seismic wave propaga-

tion

The seismic wave propagation follows the Newton’s second law and the constitutive equation.

The general heterogenous elastic wave equation in three dimensional space is defined as

⇢(x)v̇(x, t)�r · �(x, t) = f(x, t),

�̇(x, t)�C(x) : rv(x, t) = 0,

�(x, t) · n(x)|
x2@⌦

= 0,

v(x, t)|
t=0

= 0,

x 2 ⌦ ⇢ <3

, t 2 <,

(1.3)

where v(x, t) is the particle velocity vector, �(x, t) is the second-order stress tensor, ⇢(x)

is mass density, C(x) is the fourth-order elastic tensor, ⌦ represents for the computational

domain and @⌦ is the surface of the domain. The above wave equation fulfills a free sur-

face boundary condition and a zero initial condition. For isotropic elastic medium, the

components of the elastic tensor C(x) can be simplified
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where � and µ are Lamé parameters. The general elastic wave equation reduces to

⇢(x)v̇(x, t)�r · �(x, t) = f(x, t),

�̇(x, t)� µ(x)
�rv(x, t) +rv(x, t)T

�
+ �(x) (r · v(x, t)) I = 0,

(1.5)

where I is identity matrix. The density ⇢ and Lamé parameters �, µ are nonlinearly related

with the wavefield v and �. They are coupled by multiplication. The wave equation can be

concisely written as

S(m)u = f , (1.6)

The seismic data d are extracted at the receiver positions via sampling the seismic wavefield.

Figure 1.2 describes the concept of seismic wave propagation and acquisition.

I use the staggered-grid scheme finite-di↵erence (FD) (Virieux, 1984, 1986; Levander, 1988;Figure 1.2: The sketch of seismic wave propagation and data acquisition. Star represents
for source and triangular represents for receiver.
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modeling, the time sampling should fulfill the stability condition. The grid spacing needs to

be chosen small enough to reduce the numerical dispersion. Increasing the FD order in space

can relax the grid space required. In my code, the order of the staggered di↵erence scheme

in space is selectable. The code can automatically calculate the FD coe�cients and allocate

memory from the user input FD order. To reduce the computation, the computational

domain is often a truncated part of the entire earth. The truncated boundaries will generate

artificial reflections in the FD modeling. I use the convolutional perfectly matched layer (C-

PML) method to resolve this problem (Komatitsch and Martin, 2007).

Figure 1.3 shows the isotropic elastic Marmousi2 model (Martin et al., 2006). The model

contains 6801 ⇥ 1401 grid points. I run my elastic FD code on this model. The source

wavelet is a Ricker wavelet with central frequency 20 Hz. The sources are distributed on
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As mentioned, the forward problem can be linear or nonlinear in nature. The examples of

nonlinear forward problem include Schrödinger equation modeling for solving wave function,

seismic wave equation modeling for solving seismic data and so on. It can be expressed as

following equation

d = g(m), (1.1)

where g(·) is a nonlinear functional. In this formulation, the data d and model m are

nonlinearly related. There are also lots of forward problems that are linear such as Fourier
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As mentioned, the forward problem can be linear or nonlinear in nature. The examples of

nonlinear forward problem include Schrödinger equation modeling for solving wave function,

seismic wave equation modeling for solving seismic data and so on. It can be expressed as
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where g(·) is a nonlinear functional. In this formulation, the data d and model m are

nonlinearly related. There are also lots of forward problems that are linear such as Fourier
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Figure 1.2: The sketch of seismic wave propagation and data acquisition. Star represents
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Graves, 1996) to discretize the elastic wave equation to get numerical solutions. In FD

modeling, the time sampling should fulfill the stability condition. The grid spacing needs to

be chosen small enough to reduce the numerical dispersion. Increasing the FD order in space

can relax the grid space required. In my code, the order of the staggered di↵erence scheme

in space is selectable. The code can automatically calculate the FD coe�cients and allocate

memory from the user input FD order. To reduce the computation, the computational

domain is often a truncated part of the entire earth. The truncated boundaries will generate

artificial reflections in the FD modeling. I use the convolutional perfectly matched layer (C-

PML) method to resolve this problem (Komatitsch and Martin, 2007).

Figure 1.3 shows the isotropic elastic Marmousi2 model (Martin et al., 2006). The model

contains 6801 ⇥ 1401 grid points. I run my elastic FD code on this model. The source

wavelet is a Ricker wavelet with central frequency 20 Hz. The sources are distributed on

the surface of the ocean and the receivers are distributed along the ocean bottom.

1.1.2 Linear forward problem example: Born approximation

The Born approximation is a concept from quantum mechanics.
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Graves, 1996) to discretize the elastic wave equation to get numerical solutions. In FD

modeling, the time sampling should fulfill the stability condition. The grid spacing needs to

be chosen small enough to reduce the numerical dispersion. Increasing the FD order in space

can relax the grid space required. In my code, the order of the staggered di↵erence scheme

in space is selectable. The code can automatically calculate the FD coe�cients and allocate

memory from the user input FD order. To reduce the computation, the computational

domain is often a truncated part of the entire earth. The truncated boundaries will generate

artificial reflections in the FD modeling. I use the convolutional perfectly matched layer (C-

PML) method to resolve this problem (Komatitsch and Martin, 2007).

Figure 1.3 shows the isotropic elastic Marmousi2 model (Martin et al., 2006). The model

contains 6801 ⇥ 1401 grid points. I run my elastic FD code on this model. The source

wavelet is a Ricker wavelet with central frequency 20 Hz. The sources are distributed on

the surface of the ocean and the receivers are distributed along the ocean bottom.

1.1.2 Linear forward problem example: Born approximation

The Born approximation is a concept from quantum mechanics.
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transform, Radon transform, Born approximation modeling, etc. The linear forward prob-

lem can be expressed as

d = Gm, (1.2)

where G represents a linear operator.

1.1.1 Nonlinear forward problem example: seismic wave propaga-

tion

The seismic wave propagation follows the Newton’s second law and the constitutive equation.

The general heterogenous elastic wave equation in three dimensional space is defined as

⇢(x)v̇(x, t)�r · �(x, t) = f(x, t),

�̇(x, t)�C(x) : rv(x, t) = 0,

�(x, t) · n(x)|
x2@⌦

= 0,

v(x, t)|
t=0

= 0,

x 2 ⌦ ⇢ <3

, t 2 <,

(1.3)

where v(x, t) is the particle velocity vector, �(x, t) is the second-order stress tensor, ⇢(x)

is mass density, C(x) is the fourth-order elastic tensor, ⌦ represents for the computational

domain and @⌦ is the surface of the domain. The above wave equation fulfills a free sur-

face boundary condition and a zero initial condition. For isotropic elastic medium, the

components of the elastic tensor C(x) can be simplified

c

ijkl

= ��

ij

�

kl

+ µ(�
ik

�

jl

+ �

il

�

jk

), i, j, k, l = 1, 2, 3, (1.4)

where � and µ are Lamé parameters. The general elastic wave equation reduces to

⇢(x)v̇(x, t)�r · �(x, t) = f(x, t),

�̇(x, t)� µ(x)
�rv(x, t) +rv(x, t)T

�
+ �(x) (r · v(x, t)) I = 0,

(1.5)

where I is identity matrix. The density ⇢ and Lamé parameters �, µ are nonlinearly related

with the wavefield v and �. They are coupled by multiplication. The wave equation can be

concisely written as

S(m)u = f , (1.6)

The seismic data d are extracted at the receiver positions via sampling the seismic wavefield.

Figure 1.2 describes the concept of seismic wave propagation and acquisition.

I use the staggered-grid scheme finite-di↵erence (FD) (Virieux, 1984, 1986; Levander, 1988;Figure 1.2: The sketch of seismic wave propagation and data acquisition. Star represents
for source and triangular represents for receiver.

Graves, 1996) to discretize the elastic wave equation to get numerical solutions. In FD

modeling, the time sampling should fulfill the stability condition. The grid spacing needs to

be chosen small enough to reduce the numerical dispersion. Increasing the FD order in space

can relax the grid space required. In my code, the order of the staggered di↵erence scheme

in space is selectable. The code can automatically calculate the FD coe�cients and allocate

memory from the user input FD order. To reduce the computation, the computational

domain is often a truncated part of the entire earth. The truncated boundaries will generate

artificial reflections in the FD modeling. I use the convolutional perfectly matched layer (C-

PML) method to resolve this problem (Komatitsch and Martin, 2007).

Figure 1.3 shows the isotropic elastic Marmousi2 model (Martin et al., 2006). The model

contains 6801 ⇥ 1401 grid points. I run my elastic FD code on this model. The source

wavelet is a Ricker wavelet with central frequency 20 Hz. The sources are distributed on

the surface of the ocean and the receivers are distributed along the ocean bottom.

1.1.2 Linear forward problem example: Born approximation

The Born approximation is a concept from quantum mechanics.
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As mentioned, the forward problem can be linear or nonlinear in nature. The examples of

nonlinear forward problem include Schrödinger equation modeling for solving wave function,

seismic wave equation modeling for solving seismic data and so on. It can be expressed as

following equation

d = g(m), (1.1)

where g(·) is a nonlinear functional. In this formulation, the data d and model m are

nonlinearly related. There are also lots of forward problems that are linear such as Fourier
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Figure 1.2: The sketch of seismic wave propagation and data acquisition. Star represents
for source and triangular represents for receiver.

Graves, 1996) to discretize the elastic wave equation to get numerical solutions. In FD

modeling, the time sampling should fulfill the stability condition. The grid spacing needs to

be chosen small enough to reduce the numerical dispersion. Increasing the FD order in space

can relax the grid space required. In my code, the order of the staggered di↵erence scheme

in space is selectable. The code can automatically calculate the FD coe�cients and allocate

memory from the user input FD order. To reduce the computation, the computational

domain is often a truncated part of the entire earth. The truncated boundaries will generate

artificial reflections in the FD modeling. I use the convolutional perfectly matched layer (C-

PML) method to resolve this problem (Komatitsch and Martin, 2007).

Figure 1.3 shows the isotropic elastic Marmousi2 model (Martin et al., 2006). The model

contains 6801 ⇥ 1401 grid points. I run my elastic FD code on this model. The source

wavelet is a Ricker wavelet with central frequency 20 Hz. The sources are distributed on

the surface of the ocean and the receivers are distributed along the ocean bottom.

1.1.2 Linear forward problem example: Born approximation

The Born approximation is a concept from quantum mechanics.
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Graves, 1996) to discretize the elastic wave equation to get numerical solutions. In FD

modeling, the time sampling should fulfill the stability condition. The grid spacing needs to

be chosen small enough to reduce the numerical dispersion. Increasing the FD order in space

can relax the grid space required. In my code, the order of the staggered di↵erence scheme

in space is selectable. The code can automatically calculate the FD coe�cients and allocate

memory from the user input FD order. To reduce the computation, the computational

domain is often a truncated part of the entire earth. The truncated boundaries will generate

artificial reflections in the FD modeling. I use the convolutional perfectly matched layer (C-

PML) method to resolve this problem (Komatitsch and Martin, 2007).

Figure 1.3 shows the isotropic elastic Marmousi2 model (Martin et al., 2006). The model

contains 6801 ⇥ 1401 grid points. I run my elastic FD code on this model. The source

wavelet is a Ricker wavelet with central frequency 20 Hz. The sources are distributed on

the surface of the ocean and the receivers are distributed along the ocean bottom.

1.1.2 Linear forward problem example: Born approximation

The Born approximation is a concept from quantum mechanics.
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transform, Radon transform, Born approximation modeling, etc. The linear forward prob-

lem can be expressed as

d = Gm, (1.2)

where G represents a linear operator.

1.1.1 Nonlinear forward problem example: seismic wave propaga-

tion

The seismic wave propagation follows the Newton’s second law and the constitutive equation.

The general heterogenous elastic wave equation in three dimensional space is defined as

⇢(x)v̇(x, t)�r · �(x, t) = f(x, t),

�̇(x, t)�C(x) : rv(x, t) = 0,

�(x, t) · n(x)|
x2@⌦

= 0,

v(x, t)|
t=0

= 0,

x 2 ⌦ ⇢ <3

, t 2 <,

(1.3)

where v(x, t) is the particle velocity vector, �(x, t) is the second-order stress tensor, ⇢(x)

is mass density, C(x) is the fourth-order elastic tensor, ⌦ represents for the computational

domain and @⌦ is the surface of the domain. The above wave equation fulfills a free sur-

face boundary condition and a zero initial condition. For isotropic elastic medium, the

components of the elastic tensor C(x) can be simplified

c

ijkl

= ��

ij

�

kl

+ µ(�
ik

�

jl

+ �

il

�

jk

), i, j, k, l = 1, 2, 3, (1.4)

where � and µ are Lamé parameters. The general elastic wave equation reduces to

⇢(x)v̇(x, t)�r · �(x, t) = f(x, t),

�̇(x, t)� µ(x)
�rv(x, t) +rv(x, t)T

�
+ �(x) (r · v(x, t)) I = 0,

(1.5)

where I is identity matrix. The density ⇢ and Lamé parameters �, µ are nonlinearly related

with the wavefield v and �. They are coupled by multiplication. The wave equation can be

concisely written as

S(m)u = f , (1.6)

The seismic data d are extracted at the receiver positions via sampling the seismic wavefield.

Figure 1.2 describes the concept of seismic wave propagation and acquisition.

I use the staggered-grid scheme finite-di↵erence (FD) (Virieux, 1984, 1986; Levander, 1988;Figure 1.2: The sketch of seismic wave propagation and data acquisition. Star represents
for source and triangular represents for receiver.

Graves, 1996) to discretize the elastic wave equation to get numerical solutions. In FD

modeling, the time sampling should fulfill the stability condition. The grid spacing needs to

be chosen small enough to reduce the numerical dispersion. Increasing the FD order in space

can relax the grid space required. In my code, the order of the staggered di↵erence scheme

in space is selectable. The code can automatically calculate the FD coe�cients and allocate

memory from the user input FD order. To reduce the computation, the computational

domain is often a truncated part of the entire earth. The truncated boundaries will generate

artificial reflections in the FD modeling. I use the convolutional perfectly matched layer (C-

PML) method to resolve this problem (Komatitsch and Martin, 2007).

Figure 1.3 shows the isotropic elastic Marmousi2 model (Martin et al., 2006). The model

contains 6801 ⇥ 1401 grid points. I run my elastic FD code on this model. The source

wavelet is a Ricker wavelet with central frequency 20 Hz. The sources are distributed on

the surface of the ocean and the receivers are distributed along the ocean bottom.
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Graves, 1996) to discretize the elastic wave equation to get numerical solutions. In FD

modeling, the time sampling should fulfill the stability condition. The grid spacing needs to

be chosen small enough to reduce the numerical dispersion. Increasing the FD order in space

can relax the grid space required. In my code, the order of the staggered di↵erence scheme

in space is selectable. The code can automatically calculate the FD coe�cients and allocate

memory from the user input FD order. To reduce the computation, the computational

domain is often a truncated part of the entire earth. The truncated boundaries will generate

artificial reflections in the FD modeling. I use the convolutional perfectly matched layer (C-

PML) method to resolve this problem (Komatitsch and Martin, 2007).

Figure 1.3 shows the isotropic elastic Marmousi2 model (Martin et al., 2006). The model

contains 6801 ⇥ 1401 grid points. I run my elastic FD code on this model. The source

wavelet is a Ricker wavelet with central frequency 20 Hz. The sources are distributed on

the surface of the ocean and the receivers are distributed along the ocean bottom.
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Graves, 1996) to discretize the elastic wave equation to get numerical solutions. In FD

modeling, the time sampling should fulfill the stability condition. The grid spacing needs to

be chosen small enough to reduce the numerical dispersion. Increasing the FD order in space

can relax the grid space required. In my code, the order of the staggered di↵erence scheme

in space is selectable. The code can automatically calculate the FD coe�cients and allocate

memory from the user input FD order. To reduce the computation, the computational

domain is often a truncated part of the entire earth. The truncated boundaries will generate

artificial reflections in the FD modeling. I use the convolutional perfectly matched layer (C-

PML) method to resolve this problem (Komatitsch and Martin, 2007).

Figure 1.3 shows the isotropic elastic Marmousi2 model (Martin et al., 2006). The model

contains 6801 ⇥ 1401 grid points. I run my elastic FD code on this model. The source

wavelet is a Ricker wavelet with central frequency 20 Hz. The sources are distributed on

the surface of the ocean and the receivers are distributed along the ocean bottom.

1.1.2 Linear forward problem example: Born approximation

The Born approximation is a concept from quantum mechanics.
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transform, Radon transform, Born approximation modeling, etc. The linear forward prob-

lem can be expressed as

d = Gm, (1.2)

where G represents a linear operator.

1.1.1 Nonlinear forward problem example: seismic wave propaga-

tion

The seismic wave propagation follows the Newton’s second law and the constitutive equation.

The general heterogenous elastic wave equation in three dimensional space is defined as

⇢(x)v̇(x, t)�r · �(x, t) = f(x, t),

�̇(x, t)�C(x) : rv(x, t) = 0,

�(x, t) · n(x)|
x2@⌦

= 0,

v(x, t)|
t=0

= 0,

x 2 ⌦ ⇢ <3

, t 2 <,

(1.3)

where v(x, t) is the particle velocity vector, �(x, t) is the second-order stress tensor, ⇢(x)

is mass density, C(x) is the fourth-order elastic tensor, ⌦ represents for the computational

domain and @⌦ is the surface of the domain. The above wave equation fulfills a free sur-

face boundary condition and a zero initial condition. For isotropic elastic medium, the

components of the elastic tensor C(x) can be simplified

c

ijkl

= ��

ij

�

kl

+ µ(�
ik

�

jl

+ �

il

�

jk

), i, j, k, l = 1, 2, 3, (1.4)

where � and µ are Lamé parameters. The general elastic wave equation reduces to

⇢(x)v̇(x, t)�r · �(x, t) = f(x, t),

�̇(x, t)� µ(x)
�rv(x, t) +rv(x, t)T

�
+ �(x) (r · v(x, t)) I = 0,

(1.5)

where I is identity matrix. The density ⇢ and Lamé parameters �, µ are nonlinearly related

with the wavefield v and �. They are coupled by multiplication. The wave equation can be

concisely written as

S(m)u = f , (1.6)

The seismic data d are extracted at the receiver positions via sampling the seismic wavefield.

Figure 1.2 describes the concept of seismic wave propagation and acquisition.

I use the staggered-grid scheme finite-di↵erence (FD) (Virieux, 1984, 1986; Levander, 1988;Figure 1.2: The sketch of seismic wave propagation and data acquisition. Star represents
for source and triangular represents for receiver.
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Graves, 1996) to discretize the elastic wave equation to get numerical solutions. In FD

modeling, the time sampling should fulfill the stability condition. The grid spacing needs to

be chosen small enough to reduce the numerical dispersion. Increasing the FD order in space

can relax the grid space required. In my code, the order of the staggered di↵erence scheme

in space is selectable. The code can automatically calculate the FD coe�cients and allocate

memory from the user input FD order. To reduce the computation, the computational

domain is often a truncated part of the entire earth. The truncated boundaries will generate

artificial reflections in the FD modeling. I use the convolutional perfectly matched layer (C-

PML) method to resolve this problem (Komatitsch and Martin, 2007).

Figure 1.3 shows the isotropic elastic Marmousi2 model (Martin et al., 2006). The model

contains 6801 ⇥ 1401 grid points. I run my elastic FD code on this model. The source

wavelet is a Ricker wavelet with central frequency 20 Hz. The sources are distributed on

the surface of the ocean and the receivers are distributed along the ocean bottom.
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Graves, 1996) to discretize the elastic wave equation to get numerical solutions. In FD

modeling, the time sampling should fulfill the stability condition. The grid spacing needs to

be chosen small enough to reduce the numerical dispersion. Increasing the FD order in space

can relax the grid space required. In my code, the order of the staggered di↵erence scheme

in space is selectable. The code can automatically calculate the FD coe�cients and allocate

memory from the user input FD order. To reduce the computation, the computational

domain is often a truncated part of the entire earth. The truncated boundaries will generate

artificial reflections in the FD modeling. I use the convolutional perfectly matched layer (C-

PML) method to resolve this problem (Komatitsch and Martin, 2007).

Figure 1.3 shows the isotropic elastic Marmousi2 model (Martin et al., 2006). The model

contains 6801 ⇥ 1401 grid points. I run my elastic FD code on this model. The source

wavelet is a Ricker wavelet with central frequency 20 Hz. The sources are distributed on

the surface of the ocean and the receivers are distributed along the ocean bottom.

1.1.2 Linear forward problem example: Born approximation

The Born approximation is a concept from quantum mechanics.
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transform, Radon transform, Born approximation modeling, etc. The linear forward prob-

lem can be expressed as

d = Gm, (1.2)

where G represents a linear operator.

1.1.1 Nonlinear forward problem example: seismic wave propaga-

tion

The seismic wave propagation follows the Newton’s second law and the constitutive equation.

The general heterogenous elastic wave equation in three dimensional space is defined as

⇢(x)v̇(x, t)�r · �(x, t) = f(x, t),

�̇(x, t)�C(x) : rv(x, t) = 0,

�(x, t) · n(x)|
x2@⌦

= 0,

v(x, t)|
t=0

= 0,

x 2 ⌦ ⇢ <3

, t 2 <,

(1.3)

where v(x, t) is the particle velocity vector, �(x, t) is the second-order stress tensor, ⇢(x)

is mass density, C(x) is the fourth-order elastic tensor, ⌦ represents for the computational

domain and @⌦ is the surface of the domain. The above wave equation fulfills a free sur-

face boundary condition and a zero initial condition. For isotropic elastic medium, the

components of the elastic tensor C(x) can be simplified

c

ijkl

= ��

ij

�

kl

+ µ(�
ik

�

jl

+ �

il

�

jk

), i, j, k, l = 1, 2, 3, (1.4)

where � and µ are Lamé parameters. The general elastic wave equation reduces to

⇢(x)v̇(x, t)�r · �(x, t) = f(x, t),

�̇(x, t)� µ(x)
�rv(x, t) +rv(x, t)T

�
+ �(x) (r · v(x, t)) I = 0,

(1.5)

where I is identity matrix. The density ⇢ and Lamé parameters �, µ are nonlinearly related

with the wavefield v and �. They are coupled by multiplication. The wave equation can be

concisely written as

S(m)u = f , (1.6)

The seismic data d are extracted at the receiver positions via sampling the seismic wavefield.

Figure 1.2 describes the concept of seismic wave propagation and acquisition.

I use the staggered-grid scheme finite-di↵erence (FD) (Virieux, 1984, 1986; Levander, 1988;Figure 1.2: The sketch of seismic wave propagation and data acquisition. Star represents
for source and triangular represents for receiver.

Graves, 1996) to discretize the elastic wave equation to get numerical solutions. In FD

modeling, the time sampling should fulfill the stability condition. The grid spacing needs to

be chosen small enough to reduce the numerical dispersion. Increasing the FD order in space

can relax the grid space required. In my code, the order of the staggered di↵erence scheme

in space is selectable. The code can automatically calculate the FD coe�cients and allocate

memory from the user input FD order. To reduce the computation, the computational

domain is often a truncated part of the entire earth. The truncated boundaries will generate

artificial reflections in the FD modeling. I use the convolutional perfectly matched layer (C-

PML) method to resolve this problem (Komatitsch and Martin, 2007).

Figure 1.3 shows the isotropic elastic Marmousi2 model (Martin et al., 2006). The model

contains 6801 ⇥ 1401 grid points. I run my elastic FD code on this model. The source

wavelet is a Ricker wavelet with central frequency 20 Hz. The sources are distributed on

the surface of the ocean and the receivers are distributed along the ocean bottom.

1.1.2 Linear forward problem example: Born approximation

The Born approximation is a concept from quantum mechanics.
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7

Figure 2.5: (a) The propagation of seismic wave in a background model u0 = G0f . (b) The
first-order Born approximation δu = −G0δSu0. The Born approximation takes the incident
field u0 in place of the total field as the driving field at each scatterer. The incident field
hits the scatterer and acts as secondary Born source. The black dot represents a scatter
(model perturbation) δm.

If the model perturbation is small, the second-order term of the perturbation is dropped,

equation 2.9 can be simplified in the so-called first-order Born approximation

S0δu = −δSu0. (2.11)

or

δu = −S−1
0 δSu0 = −G0δSu0 = −G0

∂S

∂m
u0δm, (2.12)

where G0 is the Green’s operator in the background model. The scattered wavefield is
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sampled at the receiver positions by the restriction operator R

δd︸︷︷︸
data

= Rδu = −RG0
∂S

∂m
u0δm = −RG0

∂S

∂m
G0f︸ ︷︷ ︸

Born operator

δm︸︷︷︸
model

. (2.13)

The Green’s operator G0 only depends on m0, it does not depends on δm. Therefore, the

Born approximation modelling operator is a linear forward problem of the form

δd = Φδm, (2.14)

where Φ denotes the Born approximation modelling operator. Figure 2.5 b shows the first-

order Born approximation. Reflectors with more complex structure can be regarded as a

superposition of scatterers.

2.2 Inverse problem

The inverse problem consists of using the actual result of measurements to infer the values

of the parameters that characterize the system (Tarantola, 2005). In our case, seismic

observations are used to infer the elastic properties of the subsurface. As in many real

scenarios, the data measurements are normally contaminated by noise. In general, noise can

be assumed Gaussian and uncorrelated. The latter facilitates the design of cost function to

solve the inverse problem. However, there are situation where one might prefer to adopt

strategies that do not assume measurements contaminated with Gaussian noise.

CHAPTER 1

Introduction

1.1 Forward problem

The forward problem is the problem of predicting the result of measurement using given

description of a physical system (Tarantola, 2005). No matter the forward problem is linear

or nonlinear, it has a unique solution. Assuming m is the parameter of the system and d is

the predicted measurement, the forward problem can be descried by

d = g(m) (1.1)
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Figure 2.6: The sketch of general inverse problem from a measurement in data space D to
a model parameter in model space M.

Different criteria can be used for solving inverse problems (Claerbout and Muir, 1973; Huber,

1981; Chen and Sacchi, 2015, 2017b). The least-squares criterion is often adopted because

it leads to linear system of equations when the problem is linear.
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2.2.1 Linear inverse problem

Many geophysical inverse problems can be formulated as a linear least-squares inverse (LLSI)

problem. Examples of the latter include deconvolution, linearized AVO inversion, least-

squares migration (LSM), Radon de-multiple, etc. Linear inverse theory is popular because

of its simplicity. In this section, I will discuss LSM as an example. The simplest approxima-

tion to the “inverse” solution of the Born forward modelling equation 2.14 can be computed

via the adjoint (or transpose) of the linear operator

δm∗ = Φ†δd, (2.15)

where † denotes the adjoint of the Born operator. Applying the adjoint operator to obtain a

distorted image δm∗ is called seismic migration or seismic imaging in exploration seismology

(Claerbout, 1970; French, 1975; Loewenthal and Mufti, 1983). Migration assumes that the

smooth background model (m0) is known. Migration locates the singularities of subsurface

structures (δm). The adjoint process is simple but suffers from artifacts, low-resolution

and it does not honour the data perturbation δd. The LSM problem (Tarantola, 1984b;

Bourgeois et al., 1989; Kuehl and Sacchi, 2003; Dai et al., 2012) consists of estimating the

least-squares inverse solution of equation 2.14

minimizes J(δm) =
1

2
‖Φδm− δd‖22, (2.16)

where δd is the observed scattered data and J is a quadratic function of δm. Figure 2.7

shows a simple 2D quadratic function.

The gradient of the objective function 2.16 is given by

∂J(δm)

∂δm†
= Φ†(Φδm− δd). (2.17)

The LLSI problem has a unique local minimum which is also the global minimum. The

minimum is at the point where the gradient vanishes [∂J(δm)]/∂δm† = 0

Φ†Φδm = Φ†δd. (2.18)

The direct analytical solution of LLSI problem 2.16 is

δm̂ = (Φ†Φ)
−1

Φ†δd. (2.19)

The size of operator Φ†Φ can be large. The direct solution is impractical for large-scale

problems. Linear iterative algorithms are usually used to solve the linear inverse problem.

For instance, one can adopt the conjugate gradient least-squares (CGLS) method or the
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Figure 2.7: An example of 2D quadratic function J(x, y) = x2 + y2.

LSQR algorithm (Paige and Saunders, 1982) to iteratively solve the inverse problem without

assembling the operator Φ†Φ.

In Chapters 3 and 4 of this thesis, I discuss the linear inverse problem and I propose elastic

least-squares reverse time migration (LSRTM) algorithms for elastic seismic imaging of

subsurface structures. At this point, it is important to mention that the operator Φ is never

stored as a matrix. In my research, Φ and Φ† are functions (subroutines) in C language.

This point will become clear in Chapters 3 and 4.

2.2.2 Nonlinear inverse problem

The nonlinear least-squares inverse (NLSI) problem consists of searching a model that fits the

observed data with a nonlinear forward operator in a least-squares sense. Geophysical inverse

problems such as inversion of the Knott-Zoeppritz equations and full-waveform inversion

(FWI) are nonlinear inverse problem. In this section, I will discuss FWI as an introductory

example. FWI estimates the coefficients of the wave equation given the seismic data observed

on Earth’s surface (boundary values). FWI does not assume a scale separation of the

subsurface model. It aims at retrieving both the long wavelengths and short wavelengths of

the model. The FWI problem is usually formulated via the following problem

minimizes J(m) =
1

2
‖φ(m)− d‖22, (2.20)
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where the function J is non-quadratic function of m. The operator φ(·) indicates the

nonlinear forward modelling. The NLSI problem normally has a large number of local

minima. Figure 2.8 shows a simple example of a 2D non-quadratic function.
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Figure 2.8: An example of 2D non-quadratic function.

In general, there is no analytical solution for the NLSI problem 2.20. The dimension of the

model space is usually large. Global optimization methods, such as Monte-Carlo search,

simulated annealing and genetic algorithms, are too expensive for solving large-scale prob-

lems. Local optimization iterative algorithms are preferred for FWI. The minimum of the

objective function J is sought in the vicinity of current model m. The updated model is a

perturbation of the available model m→m + δm. The objective function in the vicinity of

m can be expanded using Taylor series

J(m + δm) = J(m) + δm†
∂J(m)

∂m
+

1

2
δm†

∂2J(m)

∂m2
δm +O(δm3). (2.21)

Discarding the third and higher-order perturbation terms, the derivative of objective func-

tion with respect to model parameters is given by

∂J(m + δm)

∂δm
=
∂J(m)

∂m
+
∂2J(m)

∂m2
δm. (2.22)

The minimum of the objective function in the vicinity of model m is obtained when the

derivative vanishes. The latter leads to the optimal model update (Virieux and Operto,
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2009)

δm = −
[
∂2J(m)

∂m2

]−1
∂J(m)

∂m

= −

[(
∂φ(m)

∂m

)†(
∂φ(m)

∂m

)
+

(
∂2φ(m)

∂m2

)†
(φ(m)− d)

]−1(
∂φ(m)

∂m

)†
(φ(m)− d)

=

[
Φ†Φ−

(
∂Φ

∂m

)†
δd

]−1

Φ†δd,

(2.23)

where Φ = ∂φ(m)/∂m is the Fréchet derivative of the nonlinear operator and δd = d −
φ(m). The Fréchet derivative is given by

Φ =
∂φ(m)

∂m
= R

∂u

∂m
, (2.24)

where u is the wavefield and R is the sampling operator. The derivative ∂u/∂m can be

obtained by differentiating the wave equation 2.4 with respect to m

∂S

∂m
u + S

∂u

∂m
= 0. (2.25)

The Fréchet derivative Φ becomes

Φ = R
∂u

∂m
= −RS−1 ∂S

∂m
u = −RG

∂S

∂m
Gf , (2.26)

where G is the Green’s operator in the current model solution m. It is easy to recognize

that the Fréchet derivative operator Φ is the Born approximation operator 2.13.

The term in the squares brackets in equation 2.23 is named the full Hessian of the FWI

problem. The computation of the action of second-order derivative on a vector involves

the second-order adjoint-state method (Santosa and Symes, 1988; Fichtner and Trampert,

2011). Discarding this term leads to the Gauss-Newton update

δm = (Φ†Φ)−1Φ†δd. (2.27)

I recognize that the Gauss-Newton model update expression is equivalent to the LSM for-

mulation 2.19. The fixed-point iteration for the Gauss-Newton FWI algorithm is given

by

m(k+1) = m(k) + η(k)δm(k) = m(k) + η(k)(Φ(k)†Φ(k))−1Φ(k)†δd(k) (2.28)

where m(k) is the model at the kth iteration, η(k) is the step size at kth iteration and δm(k)

is the Gauss-Newton search direction at kth iteration. Therefore, the Gauss-Newton FWI
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method is an iterative least-squares migration problem. In the conventional steepest-descent

FWI, the approximated Hessian Φ(k)†Φ(k) is ignored to save computational cost

m(k+1) = m(k) + η(k)Φ(k)†δd(k). (2.29)

The model update direction in each iteration of steepest-descent FWI is the same with

the migration formulation 2.15. The steepest-descent FWI can be regarded as an iterative

migration problem.

In Chapter 5, I will discuss the nonlinear inverse problem. For this purpose, I will propose

a matrix-free elastic Gauss-Newton FWI algorithm for elastic parameters inversion.



CHAPTER 3

Elastic least-squares reverse time migration 1

Time domain elastic least-squares reverse time migration (LSRTM) is formulated as a lin-

earized elastic full waveform inversion (FWI) problem. The elastic Born approximation and

elastic reverse time migration (RTM) operators are derived from the time-domain continuous

adjoint-state method. Our approach defines P-wave and S-wave impedance perturbations

as unknown elastic images. Our algorithm is obtained using continuous functional analysis

where the problem is discretized at the final stage (optimize-before-discretize approach).

The discretized numerical versions of the elastic Born operator and its adjoint (elastic RTM

operator) pass the dot product test. The conjugate gradient least squares (CGLS) method

is used to solve the least-squares migration quadratic optimization problem. In other words,

the Hessian operator for elastic LSRTM is implicitly inverted via a matrix-free algorithm

that only requires the action of forward and adjoint operators on vectors. The diagonal of

the pseudo-Hessian operator is used to design a preconditioning operator to accelerate the

convergence of the elastic LSRTM. The elastic LSRTM provides higher resolution images

with fewer artifacts and a superior balance of amplitudes when compared to elastic RTM.

More important, elastic LSRTM can mitigate cross-talk between the P-wave and S-wave

impedance perturbations given that the off-diagonal elements of the Hessian are attenuated

via the inversion.

3.1 Introduction

Acoustic reverse time migration (RTM) was initially proposed for poststack seismic data

migration (McMechan, 1983; Baysal et al., 1983; Whitmore, 1983). Prestack RTM was

1A version of this chapter has been published in Chen, K., and M. D. Sacchi, 2017, Elastic least-squares
reverse time migration via linearized elastic full-waveform inversion with pseudo-Hessian preconditioning:
Geophysics, 82, no. 5, S341-S358.
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implemented in shot-profile domain by either applying the excitation-time imaging condition

(Chang and McMechan, 1986) or the crosscorrelation imaging condition (Etgen, 1986). RTM

utilizes the two-way wave equation for extrapolating wavefields into the interior of the earth.

RTM can handle steep and complex geological structures such as sedimentary areas with

salt inclusions (Etgen et al., 2009). Lailly (1983) pointed out that computing the gradient

in full waveform inversion (FWI) is equivalent to apply the prestack RTM operator on data

residuals. From then, RTM has been connected to the adjoint-state method that is utilized

in FWI (Tromp et al., 2005; Plessix, 2006; Douma et al., 2010).

Acoustic methods approximate the elastic solid earth by a fluid. However, shear waves also

convey subsurface rock property information. Shear waves can be recorded by multicom-

ponent sensors (Hardage et al., 2011). The multicomponent seismic data can be used for

elastic seismic imaging. Elastic RTM was developed by Sun and McMechan (1986) and

Chang and McMechan (1987) with the excitation-time imaging condition. The elastic data

record is back-extrapolated using the elastic wave equation and the image time is computed

by ray tracing using a P-wave velocity model. In these methods, P- and S-images are not

explicitly separated. Instead, they compute the so-called vertical and horizontal images.

The latter could impede the proper interpretation of multicomponent images. Sun and

McMechan (2001) and Sun et al. (2004) proposed another method where the elastic data

are first back-propagated by the elastic wave equation and then a Helmholtz decomposition

(Dellinger and Etgen, 1990) is used to separate P- and S-wave modes at a predefined datum.

The separated P- and S-wave data are extrapolated upwards to the surface of the earth via

the acoustic wave equation. Then, the separated P- and S-wave data are injected into two

acoustic RTM algorithms that adopt an excitation-time imaging condition. In a similar vein,

Yan and Sava (2008) proposed to perform forward and backward extrapolation of wavefields

via elastic wave equation and to apply Helmholtz decomposition to separate P- and S-wave

fields followed by the crosscorrelation imaging condition (Lu et al., 2009). One drawback of

methods based on the Helmholtz wave-mode decomposition is that the P-S images will have

polarity reversals. The latter will prevent stacking of individual shot contributions. Polarity

reversal correction strategies for elastic RTM methods that adopt Helmholtz decomposition

have been proposed (Du et al., 2012; Duan and Sava, 2015). Early work in the field of

FWI (Tarantola, 1986) recognized that the gradient in each iteration of an elastic FWI al-

gorithm is indeed a prestack elastic RTM operator applied to data residuals. This idea was

adopted by Luo et al. (2009) and Zhu et al. (2009) who proposed elastic RTM algorithms

based on FWI sensitivity kernels. In these methods, the elastic model perturbations on the

background model are defined as “elastic images”.

A migration algorithm can be described as the adjoint of the forward Born modelling opera-

tor. In this case, the migrated image can be considered a blurred version of subsurface model

perturbations. The deblurring operator is the inverse of the Hessian of the imaging problem
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which is defined, for linearized inversion, as the cascade of the forward and adjoint opera-

tors. Several strategies have been developed to approximate the Hessian to deblur seismic

images. For instance, prestack least-squares Kirchhoff migration was initially formulated to

retrieve acoustic velocity perturbation given a background velocity model (Tarantola, 1984b;

Lambare et al., 1992). Nemeth et al. (1999) implemented least-squares Kirchhoff migration

for migrating incomplete reflection seismic data. Least-squares Fourier finite-difference one-

way wave-equation migration was formulated by Rickett (2003) and then utilized by Tang

(2009) for blended seismic data migration. Least-squares reverse time migration (LSRTM)

was investigated for inverting P-wave impedance perturbation and P-wave velocity pertur-

bation (Bourgeois et al., 1989) under the name “linearized inversion”. Ostmo et al. (2002)

implemented acoustic LSRTM in frequency domain under the name of “linearized wave-

form inversion”. In recent years, LSRTM was further developed for high-resolution true

amplitude imaging (Dong et al., 2012; Zhang et al., 2015; Yao and Jakubowicz, 2016), mi-

gration of multi-source blended seismic data (Dai et al., 2012; Xue et al., 2016), and for

imaging with multiples (Zhang and Schuster, 2014; Wong et al., 2015). The acoustic slow-

ness perturbation or velocity perturbation represents the “image” or reflectivity model. We

would like to classify the above-mentioned least-squares migration techniques as linearized

waveform inversion. These methods, in general, invert an image that is proportional to

an averaged subsurface reflectivity. Least-squares migration can also be implemented in

an extended-domain to produce an image volume that depends on redundant parameters

(Symes, 2008). This idea was proposed and implemented by Kuehl and Sacchi (2003) using

the survey-sinking approach (Claerbout, 1985). The technique was modified to process 3D

field data via the constant azimuth approximation by Wang et al. (2005) and to include

sparsity constraints to increase vertical resolution by Wang and Sacchi (2007). Moreover,

Kaplan et al. (2010) derived least-squares split-step migration for extended shot domain im-

age inversion. The latter was also applied for the migration of blended seismic data (Cheng

et al., 2016). Similarly, Dai and Schuster (2013) implemented LSRTM in extended plane

wave domain for blended seismic data. Finally, we also mention that Hou and Symes (2016)

and Huang et al. (2016) implemented LSRTM in extended subsurface offset domain and

extended shot domain, respectively. We can classify this type of least-squares migration al-

gorithms as extended least-squares migration (Symes, 2008) where an extended reflectivity

volume is inverted. Least-squares migration has also been formulated in image domain that

the inverse of Hessian is approximated via various strategies (Rickett, 2003; Guitton, 2004;

Fletcher et al., 2016; Wang et al., 2016). The image domain least-squares migration requires

lower computational cost than data domain least-squares migration methods.

The aforementioned least-squares migration methods are based on the acoustic approxi-

mation. Land data and ocean bottom data record both P- and S-waves. The geophysical

community has investigated several elastic least-squares migration algorithms. Elastic least-



CHAPTER 3. ELASTIC LSRTM 29

squares ray-Born migration/inversion was implemented by Beydoun and Mendes (1989) and

Jin et al. (1992) in heterogeneous media for multicomponent seismic data. Tura and John-

son (1993) discussed an elastic least-squares migration/inversion method in the f -k domain

for homogeneous background media. Anikiev et al. (2013) investigated the decoupling of

parameters for frequency domain elastic LSRTM for the case of a point scatter in a ho-

mogeneous background model. In these studies, the elastic parameter perturbations are

inverted and defined as “elastic images”. Recently, Stanton and Sacchi (2015, 2017) and

Xu et al. (2016) utilized Helmholtz decomposition (Dellinger and Etgen, 1990) for elastic

least-squares split-step and reverse time migration for the inversion of elastic reflectivity

volumes in extended domain, respectively.

We propose to formulate time-domain elastic LSRTM as a linearized elastic FWI problem

(Chen and Sacchi, 2016). The discussion of the relationship between LSRTM and Gauss-

Newton FWI can be found in Chapter 2. We derive the elastic Born approximation and

elastic RTM operators via a time-domain continuous adjoint-state method for the first-

order velocity-stress elastic wave equation system. The adjoint-state equation system is

equivalent to the state equation system after a variable transformation (Vigh et al., 2014).

This allows us to reuse our forward modelling code to compute the receiver side wavefield

(adjoint-state variable). The differences are the replacement of the explosive source by

an adjoint source and the back-propagation of the adjoint source from final time to zero

time. In our work, P-wave and S-wave impedance perturbations are defined as elastic

images. The two terms “model perturbation” and “image” are used interchangeably. All

derivations are in continuous functional form, the problem is discretized after developing

the algorithm. This is the so-called optimize-before-discretize approach (Borzi and Schulz,

2012). We carefully discretize the continuous forms of the elastic Born operator and the

elastic RTM operator to guarantee that the operators pass the dot product test (Mora,

1987a; Claerbout, 1992). The latter allows the use of the conjugate gradient least squares

(CGLS) algorithm (Hestenes and Stiefel, 1952; Paige and Saunders, 1982) to solve the least-

squares migration optimization problem. In other words, the Hessian operator is implicitly

inverted via a matrix-free algorithm that requires only the forward and adjoint operator

applied to vectors. Another advantage of the CGLS algorithm is that the step size of the

method is analytically calculated. One does not need to compute the step size via line

search (Dong et al., 2012) as it often done when the forward and adjoint operators do

not satisfy the numerical condition for adjointness. We investigate the structure of the

multiparameter Hessian operator for elastic LSRTM to design a preconditioning strategy.

We adapt the pseudo-Hessian (Shin et al., 2001a) to the time-domain elastic case and derive

the equations of the Hessian and pseudo-Hessian for elastic parameters. We adopt the

diagonal of the pseudo-Hessian to precondition the CGLS algorithm. Our elastic LSRTM

yields higher resolution images with fewer artifacts and more balanced amplitudes than
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elastic RTM. Moreover, elastic LSRTM can reduce the multiparameter cross-talk given that

the off-diagonal terms of the Hessian operator are attenuated via the least-squares inversion.

Finally, the adopted pseudo-Hessian preconditioning strategy accelerates the convergence

of our algorithm and improves the amplitude responses of both the P-wave and S-wave

impedance perturbation images.

This article is organized as follows. First, we describe the system of equations that we

have adopted to forward model elastic wavefields. Then, we introduce linearized forward

modelling by adopting the elastic Born approximation. Subsequently, we derive the adjoint

operator (elastic RTM operator) of the linearized forward modelling operator. We discuss

the numerical adjointness of forward and adjoint operators and propose to solve the elastic

least-squares reverse time migration via the conjugate gradients least squares (CGLS) algo-

rithm. Furthermore, we discuss preconditioning as a strategy to accelerate the convergence

of the CGLS algorithm. In the last section, we provide numerical examples that permit us

to evaluate the performance of the proposed algorithm. The first numerical example is a

simple elastic Camembert model. Our second numerical example entails adopting the elastic

Marmousi2 model for additional tests.

3.2 Theory

3.2.1 Heterogeneous, isotropic elastic wave equation

In this study, we assume a 2D heterogeneous, isotropic elastic earth media. The propagation

of P-SV wave is governed by first-order partial differential equations (Virieux, 1986; Vigh

et al., 2014) (
ρI 0

0 I

)
∂

∂t
u−

(
0 D

CDT 0

)
u = f , (3.1)

where

u =

(
v

σ

)
, v =

(
vx

vz

)
, σ =

 σxx

σzz

σxz

 , f =

(
0

fσ

)
,

C =

 λ+ 2µ λ 0

λ λ+ 2µ 0

0 0 µ

 , D =

 ∂

∂x
0

∂

∂z

0
∂

∂z

∂

∂x

 ,

with zero initial condition u |t=0= 0 and appropriate boundary conditions. The vector u

denotes the wavefield where v is the vector particle velocity field and σ is the stress vector.



CHAPTER 3. ELASTIC LSRTM 31

Similarly, ρ indicates density, C is the isotropic elastic tensor in Voigt notation with λ and

µ the Lamé parameters. The matrix D is a collection of spatial differential operators and

fσ is the explosive source term. Finally, I is the identity matrix. In the wave equation, we

dropped the dependence on spatial and temporal coordinates x and t of our variables to

make the notations concise but we understand that v = v(x, t), λ = λ(x), etc. The elastic

wave equation is the state equation of the elastic parameter inversion problem when it is

regarded as optimal control problem (Lions, 1971; Plessix, 2006). Abstractly, the elastic

wave equation 3.1 can be written in functional form as follows

Su = f , (3.2)

where u is the wavefield vector in space U, f is the source vector in space F, S = S(m)

(S : U→ F) is the wave equation operator with initial conditions and boundary conditions,

and m = (ρ, λ, µ)T denotes the model parameter vector in space M . The solution of the

wave equation can be abstractly written as

u = S−1f = Gf , (3.3)

where G = S−1 is the inverse of wave equation operator S named the Green’s operator

(Tarantola, 1988). The Green’s operator is an integral operator with the integration kernel

given by the Green’s function of the wave equation (Tarantola, 1988). The wavefield u is

linear in the source term f but is nonlinear in the model m. If the source term is assumed

known, u can be regarded as a nonlinear function of the model parameters m

u = u(m). (3.4)

In a general heterogeneous media, there is no analytic solution for u given m. A numerical

method must be used to solve the forward problem. In this article, a time domain staggered-

grid finite-difference (FD) scheme (Virieux, 1986; Levander, 1988) is utilized to discretize

the continuous form elastic wave equation 3.1. The unsplit Convolutional Perfectly Matched

Layer (C-PML) method is used to absorb incident waves on artificial computational bound-

aries (Komatitsch and Martin, 2007). In our FD code, we adopted a second-order centred

difference scheme in time and a selectable order staggered difference scheme in space. In

seismic exploration, the wavefield is sampled at the surface of the earth by a finite number

of receivers

d(m) = Ru(m), (3.5)

where d is recorded full waveform seismic data and operator R represents the sampling

operator that extracts the wavefield at receivers positions.
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3.2.2 The linearized forward problem: elastic Born approximation

The relationship between the seismic data d and model parameters m is nonlinear as dis-

cussed above. An expansion in terms of Taylor series can be used to linearize the nonlinear

forward problem d = d(m). A perturbation of the model parameters m → m + δm leads

to a perturbation of the seismic data d(m)→ d(m + δm)

d(m + δm) = d(m) +
∂d

∂m
δm +O(‖δm‖2), (3.6)

where m is the background model, δm is the model perturbation, d(m) is the seismic data

associated to propagation in the background model, d(m+δm) is the seismic data associated

to propagation in the perturbed model and the linear operator ∂d
∂m =

(
∂d
∂ρ ,

∂d
∂λ ,

∂d
∂µ

)
is the

Fréchet derivative or Jacobian matrix of d. The second and higher order terms in the Taylor

series are dropped resulting in the first-order Born approximation

δd = Lδm =
∂d

∂m
δm = R

∂u

∂m
δm, (3.7)

where Fréchet derivative L = ∂d
∂m is the Born modelling operator, δd is the first-order

scattered seismic data δd ≈ d(m + δm)− d(m), and the linear operator ∂u
∂m is the Fréchet

derivative or Jacobian matrix of u. The Fréchet derivative is prohibitively expensive to

compute explicitly. Alternatively, the adjoint-state method is used to compute the action of

the Fréchet derivative on vectors. For this purpose, we first differentiate the wave equation

3.2 with respect to m (Fichtner, 2010; Fichtner and Trampert, 2011)

∂S

∂m
u + S

∂u

∂m
= 0, (3.8)

where linear operator ∂S
∂m =

(
∂S
∂ρ ,

∂S
∂λ ,

∂S
∂µ

)
. The right side of equation becomes zero because

the source term does not depend on the model. Then, the Fréchet derivative of u can be

expressed as follows
∂u

∂m
= −S−1 ∂S

∂m
u = −S−1 ∂S

∂m
S−1f , (3.9)

where the multiplication of two operators follows the rule ABv = A(Bv) (Chen and Lee,

2015). The term − ∂S
∂mu is the so-called “virtual secondary source” which is the product of

the incident wavefield and ∂S
∂m . The operator ∂S

∂m represents the radiation pattern of the

virtual secondary source (Pageot et al., 2013). Inserting the expression of Fréchet derivative

of u into equation 3.7, the Born approximation can be written as

δd = Lδm =
∂d

∂m
δm = −RS−1 ∂S

∂m
uδm. (3.10)
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Equation 3.10 indicates that the incident wavefield u hits the scatters δm, acts as a secondary

source and generates the scattered wavefield. The latter is sampled at the surface of the

earth by receivers and generates the scattered seismic data. The linearized Born modelling

operator L only depends on the smooth background model m and the acquisition geometry.

One can apply the abstract linearized Born approximation equation 3.10 directly to the

first-order velocity-stress elastic wave equation system 3.1. Alternatively, perturbing the

elastic wave equation will lead to the same result. A perturbation of the model parameters

ρ→ ρ+ δρ, (3.11a)

λ→ λ+ δλ, (3.11b)

µ→ µ+ δµ, (3.11c)

leads to a perturbation of the wavefield

u→ u + δu. (3.11d)

Inserting equation 3.11 into equation 3.1, subtracting equation 3.1, and dropping second

and higher order terms leads to the Born approximation for the first-order velocity stress

elastic wave equation system

(
ρI 0

0 I

)
∂

∂t
δu−

(
0 D

CDT 0

)
δu =

 −δρ ∂∂tv
δCDTv

 , (3.12)

where

δu =

(
δv

δσ

)
, δv =

(
δvx

δvz

)
, δσ =

 δσxx

δσzz

δσxz

 , δC =

 δλ+ 2δµ δλ 0

δλ δλ+ 2δµ 0

0 0 δµ

 ,

with zero initial condition δu |t=0= 0 and appropriate boundary conditions. The vector δu

is the scattered wavefield, with δv and δσ the scattered particle velocity field and scattered

stress field due to model perturbations δρ, δλ and δµ, and v is the incident particle velocity

field. The right side of equation 3.12 is the so-called “secondary source”. The scattered

wavefield can be computed using the same finite-difference code that is adopted to compute

the source side incident wavefield in equation 3.1. The scattered data is obtained by sampling

the scattered wavefield at the receiver positions δd = Rδu.
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3.2.3 The linearized adjoint problem: elastic reverse time migra-

tion

The migration operator is the adjoint of the Born modelling operator that maps from re-

flection data to model perturbation or image. The adjoint operator of the Born operator

satisfies

〈δd,Lδm〉D = 〈L†δd, δm〉M, (3.13)

where † denotes the adjoint of an operator, 〈·, ·〉D and 〈·, ·〉M denotes inner products in

data domain and model domain, respectively. The adjoint of Born operator (equation 3.10)

applied to reflection data can be expressed as (Tarantola, 1984a)

δm∗ = L†δd =

(
∂d

∂m

)†
δd = −

(
∂S

∂m
u

)† (
S−1

)†
R†δd = −

(
∂S

∂m
u

)† (
S†
)−1

R†δd,

(3.14)

where R† is the adjoint of sampling operator R. Notice that we used the property
(
S−1

)†
=(

S†
)−1

in equation 3.14 (Tarantola, 1988). We adopted the symbol δm∗ to represent the

model perturbation that one can obtain by applying the adjoint operator to data perturba-

tion δd. Evidently, the adjoint operator is not equal to the inverse of the linearized forward

operator and therefore, δm∗ 6= δm. To continue with our analysis, we now introduce the

adjoint-state variable p =
(
S†
)−1

R†δd. The latter satisfies the “adjoint-state equation”

corresponding to the state equation 3.2

S†p = R†δd, (3.15)

where p is the adjoint-state variable of the state variable u, S† is the adjoint wave equation

operator and R†δd is the adjoint source. The model perturbations or images (equation

3.14) can be expressed as follows

δm∗ = −
(
∂S

∂m
u

)†
p, (3.16)

or rewritten the implicit inner product over time explicitly

δm(x)∗ = −
∫ (

∂S(x, t)

∂m(x)
u(x, t)

)†
p(x, t)dt = −

∫
p(x, t)T

(
∂S(x, t)

∂m(x)
u(x, t)

)
dt, (3.17)

where p(x, t)† = p(x, t)T was applied. This is the formulation of reverse time migration

with the adjoint-state method (Lions, 1971; Tarantola, 1984a, 1988; Tromp et al., 2005).

The estimated images for different shots are usually stacked to form a stacked image.

The abstract form adjoint-state equation 3.15 can be applied to the first-order velocity-stress
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elastic wave equation system 3.1(
ρI 0

0 I

) †(
∂

∂t

)†
p−

(
0 D

CDT 0

)†
p = R†δd, (3.18)

with zero final condition p |t=T= 0 and appropriate boundary conditions. The vector p =

(υ, ς)T , where υ = (υx, υz)
T is the adjoint-state particle velocity field and ς = (ςxx, ςzz, ςxz)

T

is the adjoint-state stress field. The reflection data δd = (δdv, δdσ)T acts as the adjoint

source to the adjoint-state equation. The differential operator is anti-self-adjoint
(
∂
∂x

)†
=

−
(
∂
∂x

)
. Consequently, one can write the expression D† = −DT . Finally, the adjoint-state

equation can be rewritten as follows(
ρI 0

0 I

) (
− ∂

∂t

)
p +

(
0 DC

DT 0

)
p = R†δd. (3.19)

The structure of the adjoint-state equation is slightly different to the structure of the state

equation 3.1. However, the adjoint-state equation can be redefined into a form that resembles

the state equation by adopting a transformation of variables (Vigh et al., 2014)

p̃ =

(
I 0

0 C

)
p,

where p̃ = (υ̃, ς̃)T is the transformed adjoint-state variable, υ̃ = (υ̃x, υ̃z)
T and ς̃ =

(ς̃xx, ς̃zz, ς̃xz)
T . If we multiply both side of the adjoint-state equation 3.19 by the trans-

formation matrix, the adjoint-state equation can be rewritten as follows(
ρI 0

0 I

) (
− ∂

∂t

)
p̃ +

(
0 D

CDT 0

)
p̃ =

(
I 0

0 C

)
R†δd, (3.20)

where the adjoint-state equation now has the same structure as the state equation 3.1.

Consequently, the finite-difference code adopted to solve the forward equation system 3.1

and the Born modelling equation system 3.12 can be reused to compute the adjoint wavefield

in equation 3.20. The only difference is that the source term is replaced by an elastic

tensor scaled adjoint source and the finite-difference steps are in time reversal mode. After

computing the transformed adjoint-state variable p̃, the original adjoint-state variable p can

be retrieved by the inverse transformation

p =

(
I 0

0 C−1

)
p̃ =

(
I 0

0 C−1

)(
υ̃

ς̃

)
=

(
υ̃

C−1ς̃

)
, (3.21)
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with

C−1 =


λ+ 2µ

4λµ+ 4µ2
− λ

4λµ+ 4µ2
0

− λ

4λµ+ 4µ2

λ+ 2µ

4λµ+ 4µ2
0

0 0
1

µ

 .

Using the migration operator formulation given by equation 3.17, elastic wave equation 3.1

and the adjoint wave equation 3.20, and variable transformation equation 3.21, the adjoint

model perturbations or images (δm∗ = (δρ∗, δλ∗, δµ∗)
T

) for a single shot can be expressed

as

δρ∗ = −
∫

v̇ · υdt = −
∫

v̇ · υ̃dt = −
∫

(v̇xυ̃x + v̇zυ̃z)dt

δλ∗ =

∫ (
∂C

∂λ
DTv

)
· ςdt =

∫ (
∂C

∂λ
C−1σ̇

)
·
(
C−1ς̃

)
dt =

∫
(σ̇xx + σ̇zz)(ς̃xx + ς̃zz)

4(λ+ µ)2
dt

δµ∗ =

∫ (
∂C

∂µ
DTv

)
· ςdt =

∫ (
∂C

∂µ
C−1σ̇

)
·
(
C−1ς̃

)
dt

=

∫ [
σ̇xz ς̃xz
µ2

+
(σ̇xx + σ̇zz)(ς̃xx + ς̃zz)

4(λ+ µ)2
+

(σ̇xx − σ̇zz)(ς̃xx − ς̃zz)
4µ2

]
dt,

(3.22)

where the over-dot means time derivative. The interaction of the forward wavefield (state

variable) and backward wavefield (adjoint-state variable) requires access to the two wave-

fields at same time step. However, these two wavefields are computed in the reverse time

direction. Naive methods such as saving either forward or backward wavefield to disk can

be utilized. However, I/O can degrade computational performance for large-scale problems.

In our work, we have adopted the source wavefield reconstruction method (Gauthier et al.,

1986; Dussaud et al., 2008). During the forward simulation of state (source side) wavefield,

only the wavefield within the depth of half of the spatial finite difference operator length

on boundaries and the final time snapshots are saved in memory. Then, the state (source

side) wavefield is recomputed from the saved wavefield by backward propagation while si-

multaneously computing the backward adjoint (receiver side) wavefield. This completes the

derivation of the elastic Born operator and elastic RTM operator using continuous functional

analysis and the time domain adjoint-state method.

3.2.4 Numerical adjointness of the elastic Born and RTM programs

We derived the elastic Born operator and elastic RTM operator using continuous functional

analysis first and then discretize them. This is the so-called optimize-before-discretize ap-

proach (Borzi and Schulz, 2012). One must be careful when discretizing the forward and

adjoint operators to guarantee that they truly behave like a forward and adjoint pair. In
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particular, one needs to be attentive to scaling terms, source injection strategies, and rules

for updating particle velocities and stresses. We adopted the dot product test to numeri-

cally evaluate how close the discretize adjoint operator is to the true adjoint of the forward

operator (Mora, 1987a; Claerbout, 1992; Le, 2016). This implies generating data and model

vectors of random numbers δd1 and δm2. Then, we evaluate δd2 = Lδm2 and δm1 = L†δd1

and finally, we compute the closeness of inner products via the following expression

err = | 〈δd1, δd2〉D − 〈δm1, δm2〉M
〈δd1, δd2〉D + 〈δm1, δm2〉M

| .

Our code was written in single-precision float data type in C. The relative error of our dot

product test is 10−3 for a model that consists of 500 × 500 samples in space and a single

shot that consists of 5000 samples in time and 500 receivers.

3.2.5 Elastic least-squares reverse time migration

CGLS with adjoint-state method

From the above derivation, a properly designed elastic RTM code can be considered equiv-

alent to the adjoint operator of the elastic Born forward modelling operator. The adjoint

operator is an approximation to the inverse operator where the Hessian of the linearized

inversion problem is replaced by an identity matrix. In other words, the migrated image

obtained via the adjoint operator is a blurred version of the true subsurface image. The mi-

grated image, in general, suffers from relative low resolution, unbalanced amplitudes due to

geometric spreading and acquisition footprint. Moreover, multiparameter elastic migration

will generate cross-talk among different components because different parameters are cou-

pled. In order to estimate higher resolution images with properly balanced amplitudes and

fewer cross-talk and artifacts, the elastic least-squares reverse time migration is formulated

as a quadratic optimization problem where one minimizes the following cost function

J(δm) =
1

2

Ns∑
i=1

‖Liδm− δdi‖22, (3.23)

where Li is the Born approximation operator for the ith shot, δdi is the reflection data

associated to the ith shot gather, δm denotes model perturbation (elastic images), Ns

indicates the number of shots and ‖ · ‖2 indicates the `2 norm of vector. The optimal

solution satisfies the condition ∂J(δm)
∂δm = 0. The latter leads to the normal equations(
Ns∑
i=1

L†iLi

)
δm =

Ns∑
i=1

L†i δdi, (3.24)
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where
∑Ns

i=1 L†i δdi is the reverse time migrated image and
∑Ns

i=1 L†iLi is the Hessian operator

for least-squares migration. Last expression indicates that the migrated image is a blurred

version of the true parameter perturbations. By applying the inverse of the Hessian operator,

the raw migrated images can be deblurred. Explicit forming and inverting the Hessian is

prohibitive expensive in terms of computational cost and memory requirements. Instead,

we adopt an iterative method: the conjugate gradient least squares (CGLS) (Hestenes and

Stiefel, 1952; Paige and Saunders, 1982). The CGLS only requires two operators Li and L†i
that are applied “on the fly” to vectors. The operators are applied on vectors efficiently via

the adjoint-state method. The CGLS algorithm can be safely used because our discretized

numerical versions of Li and L†i passed the dot product test. A series of steps (CGLS

iterations) are required to solve the quadratic optimization problem given by equation 3.23.

The CGLS algorithm for elastic LSRTM is summarized as Algorithm 1.

Algorithm 1 CGLS algorithm

Initialize
δm(0) = 0
r

(0)
i = δdi, i = 1, · · · , Ns

s(0) =
∑Ns

i=1 L†ir
(0)
i //compute the gradient

p(0) = s(0)

γ(0) = ‖s(0)‖22
for k = 0, 1, · · · while not converge do

q
(k)
i = Lip

(k), i = 1, · · · , Ns //Born forward modeling

δ(k) =
∑Ns

i=1 ‖q
(k)
i ‖22

α(k) = γ(k)/δ(k) //calculate the step size

δm(k+1) = δm(k) + α(k)p(k) //update the model

r
(k+1)
i = r

(k)
i − α(k)q

(k)
i , i = 1, · · · , Ns //compute data residuals

s(k+1) =
∑Ns

i=1 L†ir
(k+1)
i //compute the gradient

γ(k+1) = ‖s(k+1)‖22
β(k) = γ(k+1)/γ(k)

p(k+1) = s(k+1) + β(k)p(k) //compute the conjugate direction

end

Parameterization

For reflection data full waveform inversion, P-wave impedance, S-wave impedance and den-

sity are the most suitable parameters to invert. The latter was confirmed by a detailed

radiation pattern analysis for different parameterizations of elastic FWI (Tarantola, 1986).

We parameterized our elastic LSRTM in terms of P-wave impedance perturbation δIp and

S-wave impedance perturbation δIs. We have preferred to omit the inversion of the density
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perturbation. We use the following relationships between elastic parameters

λ = ρV 2
p − 2ρV 2

s , µ = ρV 2
s ,

Ip = ρVp, Is = ρVs,

in conjunction with total derivatives to write down the following parameter perturbation

transformation (
δλ

δµ

)
=

(
2Vp − 4Vs

0 2Vs

)(
δIp

δIs

)
. (3.25)

We insert the above parameter transformation into the elastic LSRTM formulation (equation

3.23). The parameter transformation matrix and its adjoint are incorporated into the CGLS

algorithm (Algorithm 1). The change of parameters is similar to adding preconditioning to

our system of equations. In our experience, inverting for impedance perturbations leads to

an algorithm with faster convergence than inverting the Lamé parameter perturbations.

3.2.6 Preconditioning using multiparameter Hessian

The elastic LSRTM implicitly inverts the Hessian operator via CGLS iterations combined

with adjoint-state method, i.e. apply Fréchet derivative and its adjoint on vectors via

adjoint-state method on the fly in each CGLS iteration. It does not need to form the

Fréchet derivative or Hessian explicitly. However, the CGLS algorithm may need a relatively

large number of iterations to converge to an optimal solution. Preconditioning of gradients

is important to accelerate the convergence of CGLS and saving computational resources.

We investigate the structure of the Hessian operator of the elastic LSRTM and utilize the

diagonal of pseudo-Hessian for preconditioning (Shin et al., 2001a). The Hessian operator

of elastic LSRTM problem can be expressed as

H =

Ns∑
i=1

L†iLi =

Ns∑
i=1

(
R
∂ui
∂m

)†(
R
∂ui
∂m

)
=

Ns∑
i=1

(
RS−1 ∂S

∂m
ui

)†(
RS−1 ∂S

∂m
ui

)
, (3.26)

where ui is the source side wavefield for ith shot, and recall that S−1 is the Green’s operator.

If the Green’s functions are not saved, explicitly computing the Hessian needs Ns · Nm
forward simulations with Nm as the number of model grid points. Using the reciprocity of the

Green’s function (Tarantola, 1988), the number of forward simulations needed for explicitly

computing the Hessian reduces to Ns ·Ng where Ng denotes the number of receivers. The

diagonal element of the Hessian is the zero-lag autocorrelation of the Fréchet derivative.

It accounts for the geometric spreading effect (Shin et al., 2001b). Explicitly computing

the diagonal of the Hessian also requires Ns · Ng forward simulations. Shin et al. (2001a)

proposed to neglect the receiver Green’s function to save computation cost. Under this
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assumption, the Hessian can be simplified to the so-called “pseudo-Hessian”

H =

Ns∑
i=1

(
∂S

∂m
ui

)†(
∂S

∂m
ui

)
. (3.27)

For multiparameter problem, the Hessian and pseudo-Hessian are blockwise. The pseudo-

Hessian for Lamé parameters is given by

HL =

(
Hλλ Hλµ

Hµλ Hµµ

)
. (3.28)

Using pseudo-Hessian operator expression (equation 3.27) and the elastic wave equation 3.1,

the diagonal blocks can be expressed as

Hλλ(x,x′) =

Ns∑
i=1

∫ (
∂C

∂λ
DTv(x)

)
·
(
∂C

∂λ
DTv(x′)

)
dt,

Hµµ(x,x′) =

Ns∑
i=1

∫ (
∂C

∂µ
DTv(x)

)
·
(
∂C

∂µ
DTv(x′)

)
dt,

(3.29)

where the dependence on shot index i of particle velocity field is omitted to avoid notation

clutter. The diagonal terms of the pseudo-Hessian (x = x′) for Lamé parameters can be

expressed as follows

Hλλ(x,x) =

Ns∑
i=1

∫
(σ̇xx + σ̇zz)

2

2(λ+ µ)2
dt,

Hµµ(x,x) =

Ns∑
i=1

∫ [
σ̇2
xz

µ2
+

(σ̇xx + σ̇zz)
2

2(λ+ µ)2
+

(σ̇xx − σ̇zz)2

2µ2

]
dt.

(3.30)

Using the relationships between elastic parameters and chain rule, the pseudo-Hessian for

P- and S- wave impedances is given by

HI =

(
HIpIp HIpIs

HIsIp HIsIs

)
=

(
2Vp 0

−4Vs 2Vs

)(
Hλλ Hλµ

Hµλ Hµµ

)(
2Vp − 4Vs

0 2Vs

)
.

(3.31)

We use the inverse of the diagonal of the pseudo-Hessian for preconditioning. The diagonal
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terms of the pseudo-Hessian for P- and S-wave impedances can be expressed as follows

HIpIp(x,x) =

Ns∑
i=1

∫
2V 2

p

(σ̇xx + σ̇zz)
2

(λ+ µ)2
dt,

HIsIs(x,x) =

Ns∑
i=1

∫
4V 2

s

[
σ̇2
xz

µ2
+

(σ̇xx + σ̇zz)
2

2(λ+ µ)2
+

(σ̇xx − σ̇zz)2

2µ2

]
dt.

(3.32)

The preconditioned version of elastic LSRTM minimizes

J(δm̃) =
1

2

Ns∑
i=1

‖LiTPδm̃− δdi‖22, (3.33)

where P denotes the inverse of the diagonal of pseudo-Hessian for P- and S-wave impedances,

T denotes the parameter transformation matrix in equation 3.25. As discussed in last sec-

tion, the parameter transformation matrix T and its adjoint also play the role of precon-

ditioning to our system of equations. The preconditioned conjugate gradient least squares

(PCGLS) algorithm (Bjorck, 1996) can be summarized as Algorithm 2. The output of Al-

gorithm 2 is the inverted Lamé parameter perturbations δm̂ = (δλ̂, δµ̂)T = TPδ ˆ̃m. And

the inverted P- and S-wave impedance perturbations can be retrieved by (δÎp, δÎs)
T =

T−1(δλ̂, δµ̂)T .

Algorithm 2 Preconditioned CGLS algorithm

Initialize
δm(0) = 0
r

(0)
i = δdi, i = 1, · · · , Ns

s(0) = P†T†
(∑Ns

i=1 L†ir
(0)
i

)
//compute the preconditioned gradient

p(0) = s(0)

γ(0) = ‖s(0)‖22
for k = 0, 1, · · · while not converge do

t(k) = TPp(k),

q
(k)
i = Lit

(k), i = 1, · · · , Ns //Born forward modeling

δ(k) =
∑Ns

i=1 ‖q
(k)
i ‖22

α(k) = γ(k)/δ(k) //calculate the step size

δm(k+1) = δm(k) + α(k)t(k) //update the model

r
(k+1)
i = r

(k)
i − α(k)q

(k)
i , i = 1, · · · , Ns //compute data residuals

s(k+1) = P†T†
(∑Ns

i=1 L†ir
(k+1)
i

)
//compute the preconditioned gradient

γ(k+1) = ‖s(k+1)‖22
β(k) = γ(k+1)/γ(k)

p(k+1) = s(k+1) + β(k)p(k) //compute the conjugate direction

end
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3.3 Examples

The proposed method was tested on two synthetic models: the elastic version of the Camem-

bert model (Gauthier et al., 1986) and the elastic Marmousi2 model (Martin et al., 2006). All

the “observed data” are generated with time-domain elastic staggered-grid finite-difference

method. In other words, we have NOT committed the so-called “inverse crime” that entails

using the linearized Born modelling operator to generate data to test least squares migration.

The same staggered-grid finite-difference code was used for the elastic LSRTM inversion.

The C-PML boundary condition was applied on the top of the model. The observed data

were assumed to be vector particle velocity fields. Only the direct wave was muted from

the data. The data contain internal multiples that are not honoured by the linearized Born

modelling. In real data applications, the multiples can be attenuated from the data to only

keep first-order scattered energy. The code for our numerical examples was written in C

and parallelized with Message Passing Interface (MPI).

3.3.1 Elastic Camembert model

The elastic LSRTM is tested on a synthetic elastic version of Camembert model. This test

shows that elastic LSRTM can attenuate cross-talk between P-wave and S-wave impedance

perturbations. Figure 3.1 a and b show the true P- and S-wave velocity models. The

velocity anomalies are embedded in two layered models. The velocity anomalies for P and

S are in different positions. Density is assumed to be constant (1500 kg/m
3
). The model

has a dimension of 2.5 km in horizontal axis and 1.5 km in depth with 501 × 301 grid

points. There are 101 shots and 501 receivers that simulate a fixed-spread survey geometry.

The shot interval is 25 m and receiver interval is 5 m. The shot depth is 5 m and the

receiver depth is 10 m. A 20 Hz central frequency Ricker wavelet is used to simulate an

explosive source. The “observed data” are simulated using our elastic finite-difference code.

No other pre-processing was applied to the data except for muting the direct wave. The

“observed data” are shown in Figure 3.2. Figure 3.1 c and d show the smoothed background

velocity models for elastic RTM and elastic LSRTM. Smoothed models were obtained by

convolving the true models with a 2D Gaussian function of 50 m width with standard

deviation as half the width. The width of the 2D Gaussian function is approximately equal

to the shortest P-wave wavelength. Figure 3.1 e and f show the true P-wave and S-wave

impedance perturbations with respect to the background models.

The results of elastic RTM are shown in Figure 3.3 a and b. The elastic RTM operator

generates high-amplitude low-frequency artifacts caused by the cross-correlation of head

wave, diving wave and backscattered internal reflections. A Laplacian filter (Youn and
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Zhou, 2001) was used to attenuate the artifacts. As expected, there is cross-talk between

P-wave and S-wave impedance perturbations in the elastic RTM images. Elastic LSRTM

(Figure 3.3 c and d) not only reduces multiparameter cross-talk but also displays fewer

artifacts, properly balanced amplitudes and higher resolution. To make a fair comparison

with the elastic RTM images (Figure 3.3 a and b), the least-squares inverted images were

post-processed by Laplacian filtering. No filters were applied during the inversion process.

These results were computed after 82 iterations of elastic LSRTM. The relative data misfit

percentage reduces to about 6%. The relative data misfit is defined as
∑Ns

i=1 ‖Liδm̂−δdi‖22∑Ns
i=1 ‖δdi‖22

.

Figure 3.3 e and f show the pseudo-Hessian preconditioned elastic LSRTM after 20 iter-

ations. The relative data misfit also reduces to about 6%. The results are similar to

unpreconditioned elastic LSRTM. Figure 3.4 compares the convergence curves of the unpre-

conditioned and preconditioned version of elastic LSRTM. From this figure one can observe

that preconditioned elastic LSRTM converges much faster than unpreconditioned LSRTM.

3.3.2 Sensitivity to background model error

We tested the proposed elastic LSRTM using background models with different degree of

spatial smoothing. The setup is equivalent to the setup adopted in the last section (elastic

Camembert model test). We have run our algorithm using background models with increas-

ing degree of smoothing. The background velocity models were smoothed via 2D Gaussian

functions of width (W ) 50 m, 100 m, 150 m and 200 m. The standard derivation of the 2D

Gaussian function equals to its half width. Results for W = 50 m smoothing have already

been shown in the previous section. We only plot the models and results for smoothing with

100 m, 150 m and 200 m widths. Figure 3.5 shows background models using different levels

of smoothing. The comparison of the data misfit convergence curves of elastic LSRTM using

the four background models is shown in Figure 3.6. We observe that the level of smoothing

of the background models influences the data misfit. The elastic LSRTM for different back-

ground models converge to different levels of data misfit. We have compared the results at

fixed number of iterations (82 iterations) that all misfit curves have converged. The inverted

results are shown in Figure 3.7. The quality of inverted images degrades and more artifacts

are present in the images as the level of smoothing increases.

3.3.3 Elastic Marmousi2 model

The proposed method was also tested on a complex elastic model. To this end, we adopted

the elastic Marmousi2 model (Martin et al., 2006). The model consists of a total of 199 layers

with a steep anticline fault zone. The size of the original model was reduced to 1001 × 426
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Elastic Camembert model. (a) P-wave velocity model. (b) S-wave velocity model.

(c) Smoothed P-wave velocity model. (d) Smoothed S-wave velocity model. (e) True P-

wave impedance perturbation. (f) True S-wave impedance perturbation.
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Figure 3.1: Elastic Camembert model. (a) P-wave velocity model. (b) S-wave velocity
model. (c) Smoothed P-wave velocity model. (d) Smoothed S-wave velocity model. (e)
True P-wave impedance perturbation. (f) True S-wave impedance perturbation.
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(a)

(b)

Figure 2: Prestack multicomponent data for elastic Camembert model. (a) Horizontal

particle velocity data. (b) Vertical particle velocity data.

Chen & Sacchi – GEO-Example 47

Figure 3.2: Prestack multicomponent data for elastic Camembert model. (a) Horizontal
particle velocity data. (b) Vertical particle velocity data.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: (a) P-wave impedance perturbation image estimated via elastic RTM. (b) S-wave

impedance perturbation estimated via elastic RTM. (c) P-wave impedance perturbation

image estimated via elastic LSRTM. (d) S-wave impedance perturbation image estimated

via elastic LSRTM. (e) P-wave impedance perturbation image estimated via preconditioned

elastic LSRTM. (f) S-wave impedance perturbation image estimated via preconditioned

elastic LSRTM.
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Figure 3.3: (a) P-wave impedance perturbation image estimated via elastic RTM. (b) S-wave
impedance perturbation estimated via elastic RTM. (c) P-wave impedance perturbation
image estimated via elastic LSRTM. (d) S-wave impedance perturbation image estimated
via elastic LSRTM. (e) P-wave impedance perturbation image estimated via preconditioned
elastic LSRTM. (f) S-wave impedance perturbation image estimated via preconditioned
elastic LSRTM.
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Figure 4: Comparison of relative data misfit convergence curves for elastic LSRTM (blue)

and preconditioned elastic LSRTM (red) for Camembert model.
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Figure 3.4: Comparison of relative data misfit convergence curves for elastic LSRTM (blue)
and preconditioned elastic LSRTM (red) for Camembert model.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Analysis of the influence of the background models on elastic LSRTM. (a)-(b)

Smoothed P- and S-wave velocity models using a 2D Gaussian function of width W = 100

m. (c)-(d) Smoothed P- and S-wave velocity models via 2D Gaussian function of width

W = 150 m. (e)-(f) Smoothed P- and S-wave velocity models using a 2D Gaussian function

of W = 200 m.
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Figure 3.5: Analysis of the influence of the background models on elastic LSRTM. (a)-(b)
Smoothed P- and S-wave velocity models using a 2D Gaussian function of width W = 100
m. (c)-(d) Smoothed P- and S-wave velocity models via 2D Gaussian function of width
W = 150 m. (e)-(f) Smoothed P- and S-wave velocity models using a 2D Gaussian function
of W = 200 m.
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Figure 6: Comparison of relative data misfit convergence curves for elastic LSRTM for

background models with di↵erent degree of smoothing: W = 50 m (Blue), W = 100 m

(Red), W = 150 m (Purple) and W = 200 m (Green).
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Figure 3.6: Comparison of relative data misfit convergence curves for elastic LSRTM for
background models with different degree of smoothing: W = 50 m (Blue), W = 100 m
(Red), W = 150 m (Purple) and W = 200 m (Green).
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Comparison of elastic LSRTM results for background models with increasing

degree of smoothing. (a)-(b) Inverted P- and S-wave impedance perturbation images using

background models smoothed with a 2D Gaussian function of width W = 100 m. (c)-(d)

Inverted P- and S-wave impedance perturbation images using background models smoothed

with a 2D Gaussian function of widthW = 150 m. (e)-(f) Inverted P- and S-wave impedance

perturbation images using background models smoothed with a 2D Gaussian function of

width W = 200 m.

Chen & Sacchi – GEO-Example

52

Figure 3.7: Comparison of elastic LSRTM results for background models with increasing
degree of smoothing. (a)-(b) Inverted P- and S-wave impedance perturbation images using
background models smoothed with a 2D Gaussian function of width W = 100 m. (c)-(d)
Inverted P- and S-wave impedance perturbation images using background models smoothed
with a 2D Gaussian function of width W = 150 m. (e)-(f) Inverted P- and S-wave impedance
perturbation images using background models smoothed with a 2D Gaussian function of
width W = 200 m.
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grid points to decrease the turnaround time of our tests. The water layer in the original

Marmousi2 model was removed and replaced by a low-velocity layer to simulate a purely

elastic model. Figure 3.8 shows the modified elastic Marmousi2 P- and S-wave velocity

models. In the steep fault zone, there are two hydrocarbon reservoirs around depth 500 m

that have decreased P-wave velocity and a small change in the S-wave velocity (indicated by

white triangles). This uncorrelated P- and S-wave structure will cause cross-talk in elastic

RTM images. We will show that the elastic LSRTM can attenuate the cross-talk. Density is

assumed to be constant (2000 kg/m
3
). The model has a dimension of 2500 m in horizontal

distance and 1062.5 m in depth. A land acquisition geometry is simulated with 101 shots

and 1001 receivers distributed on the surface of the earth. The shot interval is 25 m and

receiver interval is 2.5 m. The central frequency of source function (Ricker wavelet) is 35

Hz. The “observed data” were simulated with our finite-difference code and the direct wave

was removed from the observed data. The “observed data” are shown in Figure 3.9. Figure

3.10 shows the smoothed background velocity models for elastic RTM and elastic LSRTM.

Smoothing was accomplished by convolving the true velocity models with a 35 m width 2D

Gaussian function. Figure 3.11 shows the true P-wave and S-wave impedance perturbations

with respect to the smoothed background models. From this figure, we can also observe

that the P- and S-wave models are inconsistent in the two hydrocarbon reservoirs region

at about 500 m depth in the steep fault zone (indicated by white triangles). Figure 3.12

shows the P- and S- wave impedance perturbation images obtained via elastic RTM. The

elastic RTM algorithm has successfully imaged the geological structures. However, the

amplitudes of the elastic images are unbalanced. Uncollapsed energy artifacts caused by

not having a dense distribution of sources and limited aperture are also visible. Most

important, the elastic RTM operator has generated cross-talk between P and S images in the

two hydrocarbon reservoir areas because the P- and S-wave velocity structures are different.

These problems are caused by the fact that the elastic RTM operator is an adjoint operator

as opposed to an ideal inverse operator. The elastic least-squares reverse time migration

(Figure 3.13) can solve these problems. Results for elastic LSRTM were computed after

98 iterations. The relative data misfit percentage reduces to about 40% (Figure 3.15).

The geological structure of the elastic Marmousi2 model is complex. The data generated by

finite-difference modelling contain internal multiples that are not honoured by the linearized

Born modelling operator. We believe that the latter explains the inability of the algorithm to

reduce the data misfit further. The elastic LSRTM corrected the unbalanced amplitudes and

suppressed the low-frequency RTM artifacts and artifacts caused by limited aperture. The

elastic LSRTM also generates high-resolution images. More important, the elastic LSRTM

can successfully decouple elastic parameters and suppress multiparameter cross-talk in areas

with hydrocarbon traps in both P and S impedance perturbation images. These benefits

are the result of the embedded de-blurring process that is associated with the inversion of
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the Hessian operator in elastic LSRTM.

Figure 3.14 shows the pseudo-Hessian preconditioned elastic LSRTM after 58 iterations.

The relative data misfit also reduces to about 40%. The preconditioned version of the

elastic LSRTM yielded more amplitude balanced images than the unpreconditioned elastic

LSRTM. To finalize our analysis, we also provide Figure 3.15 where we compared conver-

gence curves for the unpreconditioned and preconditioned elastic LSRTM. Preconditioning

with the pseudo-Hessian has lead to a visible improvement in convergence.

3.4 Conclusions

Elastic least-squares reverse time migration is formulated as a linearized elastic waveform in-

version problem. The inversion is parameterized in terms of P-wave impedance perturbation

and S-wave impedance perturbation. The formulations of elastic Born approximation opera-

tor and elastic reverse time migration operator are derived from the time-domain continuous

adjoint-state method. The adjoint-state equation system is the same as the state equation

system. The only difference is the replacement of an explosive source to an adjoint source.

After developing the functional formulations for our forward and adjoint operators, we have

discretized the elastic Born and RTM operators. The numerical discretized versions of the

two operators pass the dot product test. This allows us to use the conjugate gradient least

squares (CGLS) algorithm for solving the least-squares optimization problem. The Hessian

is implicitly inverted via the adjoint-state method combined with conjugate gradient least

squares algorithm. We investigated adopting the diagonal of the pseudo-Hessian operator

to precondition the elastic LSRTM and thereby, to accelerate its convergence. The elastic

LSRTM produces high-resolution images with fewer artifacts and more balanced amplitudes

than elastic RTM. More important, elastic LSRTM can reduce cross-talk artifacts between

P- and S-wave impedance perturbations that are present in elastic RTM images. In essence,

the off-diagonal elements of the Hessian operator are attenuated by the inversion process.

The pseudo-Hessian preconditioning operator adopted in our work not only accelerates the

convergence of the elastic LSRTM but also improves the overall amplitude response of our

images.
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(a)

(b)

Figure 8: Elastic Marmousi2 model. (a) P-wave velocity model. (b) S-wave velocity model.
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Figure 3.8: Elastic Marmousi2 model. (a) P-wave velocity model. (b) S-wave velocity
model.
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(a)

(b)

Figure 9: Prestack multicomponent data for elastic Marmousi2 model. (a) Horizontal

particle velocity data. (b) Vertical particle velocity data.
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Figure 3.9: Prestack multicomponent data for elastic Marmousi2 model. (a) Horizontal
particle velocity data. (b) Vertical particle velocity data.
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(a)

(b)

Figure 10: Elastic Marmousi2 model. (a) Smoothed P-wave velocity model. (b) Smoothed

S-wave velocity model.
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Figure 3.10: Elastic Marmousi2 model. (a) Smoothed P-wave velocity model. (b) Smoothed
S-wave velocity model.
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(a)

(b)

Figure 11: Elastic Marmousi2 model. (a) True P-wave impedance perturbation. (b) True

S-wave impedance perturbation.
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Figure 3.11: Elastic Marmousi2 model. (a) True P-wave impedance perturbation. (b) True
S-wave impedance perturbation.
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(a)

(b)

Figure 12: Images obtained via elastic RTM. (a) P-wave impedance perturbation image.

(b) S-wave impedance perturbation image.
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Figure 3.12: Images obtained via elastic RTM. (a) P-wave impedance perturbation image.
(b) S-wave impedance perturbation image.
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(a)

(b)

Figure 13: Images obtained via elastic LSRTM. (a) P-wave impedance perturbation image.

(b) S-wave impedance perturbation image.
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Figure 3.13: Images obtained via elastic LSRTM. (a) P-wave impedance perturbation image.
(b) S-wave impedance perturbation image.
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(a)

(b)

Figure 14: Images obtained via preconditioned elastic LSRTM. (a) P-wave impedance per-

turbation image. (b) S-wave impedance perturbation image.
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Figure 3.14: Images obtained via preconditioned elastic LSRTM. (a) P-wave impedance
perturbation image. (b) S-wave impedance perturbation image.
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Figure 15: Comparison of relative data misfit convergence curves for elastic LSRTM (blue)

and preconditioned elastic LSRTM (red) for the Marmousi2 model.
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Figure 3.15: Comparison of relative data misfit convergence curves for elastic LSRTM (blue)
and preconditioned elastic LSRTM (red) for the Marmousi2 model.



CHAPTER 4

The importance of including density in elastic

least-squares reverse time migration: multiparameter

crosstalk and convergence 1

Time-domain elastic least-squares reverse time migration (LSRTM) can provide higher res-

olution images with fewer artifacts and a superior balance of amplitudes than elastic reverse

time migration (RTM). More important, it can mitigate the crosstalk between P- and S-wave

images. In previously proposed elastic LSRTM algorithms, density is either assumed to be

constant or known. In other words, the density perturbation is not part of the least-squares

inversion formulation. Neglecting density in elastic LSRTM may lead to crosstalk artifacts

in the P- and S-wave images. In this article, we propose a time-domain three-parameter

elastic LSRTM algorithm to simultaneously invert for density, P- and S-wave velocity per-

turbation images. We derive the elastic Born approximation and elastic RTM operators

using the continuous adjoint-state method. We carefully discretize the two operators to

assure that they pass the dot-product test. This allows us to use the conjugate gradient

least-squares (CGLS) method to solve the least-squares migration problem. We evaluate the

proposed algorithm on two synthetic examples. We show that our proposed three-parameter

elastic LSRTM can reduce the multiparameter crosstalk among density, P- and S-wave ve-

locity perturbation images and it can estimate the density perturbation image. Moreover,

including density image in the elastic LSRTM inversion can improve the convergence of the

least-squares inversion.

1A version of this chapter has been submitted to Geophysical Journal International.

61
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4.1 Introduction

Seismic imaging techniques aim at portraying subsurface structure using seismic data. Re-

verse time migration (RTM) (McMechan, 1983; Baysal et al., 1983; Whitmore, 1983; Chang

and McMechan, 1986; Etgen, 1986) is one of the most important seismic imaging meth-

ods. RTM utilizes the two-way acoustic wave equation for extrapolating wavefields into

the interior of the earth. For this reason, RTM can handle steep and complex geological

structures such as sedimentary areas with salt inclusions (Etgen et al., 2009). Due to the

rapid development of computing power, RTM has become one of the most popular methods

for industry applications of imaging techniques for resource exploration and exploitation.

Acoustic RTM methods approximate the elastic solid earth by a fluid. However, an elastic

formulation provides a better approximation to realistic media at exploration scales. Dif-

ferent elastic RTM methods have been developed by applying the excitation-time imaging

condition (Sun and McMechan, 1986; Chang and McMechan, 1987; Sun and McMechan,

2001), the crosscorrelation imaging condition (Yan and Sava, 2008; Du et al., 2012), or uti-

lizing elastic full-waveform inversion (FWI) gradients (Tarantola, 1986; Virieux and Operto,

2009; Luo et al., 2009; Zhu et al., 2009).

Migration is the adjoint of the forward Born modelling. The migrated images may suffer

from relative low resolution, unbalanced amplitudes due to geometric spreading and ac-

quisition footprint. Those issues can be mitigated by the least-squares migration (LSM).

Different LSM techniques have been proposed in seismic imaging: least-squares Kirchhoff

migration (Tarantola, 1984b; Lambare et al., 1992; Nemeth et al., 1999; Trad, 2017), least-

squares one-way wave-equation migration (Kuehl and Sacchi, 2003; Rickett, 2003; Wang

et al., 2005; Tang, 2009; Kaplan et al., 2010; Kazemi and Sacchi, 2015; Cheng et al., 2016)

and least-squares reverse time migration (LSRTM) (Bourgeois et al., 1989; Ostmo et al.,

2002; Dai et al., 2012; Dong et al., 2012; Zhang et al., 2015; Wong et al., 2015; Yao and

Jakubowicz, 2016; Xue et al., 2016; Hou and Symes, 2016; Yang et al., 2016b; Chen et al.,

2017). For inverting multicomponent data, elastic LSM methods have also been developed.

For example, elastic least-squares Kirchhoff migration (Beydoun and Mendes, 1989; Jin

et al., 1992), elastic least-squares one-way wave-equation migration (Stanton and Sacchi,

2015, 2017), and elastic LSRTM (Anikiev et al., 2013; Xu et al., 2016; Feng and Schuster,

2017; Duan et al., 2017; Chen and Sacchi, 2017a; Ren et al., 2017; Gu et al., 2017; Guo and

McMechan, 2018).

Conventional elastic LSRTM algorithms do not include density image in the inversion. It

inverts for P- and S-wave images. We call this type of elastic LSRTM a two-parameter

elastic LSRTM. The density is either assumed to be constant or already known. However,

this assumption is not valid in realistic earth media. Neglecting the density image in elastic



CHAPTER 4. INCLUDING DENSITY IN ELASTIC LSRTM 63

LSRTM may result in crosstalk artifacts in the P- and S-wave images. Chen and Sacchi

(2017a) derive an elastic LSRTM algorithm including the density image component. How-

ever, they did not include density image inversion in their numerical examples. Sun et al.

(2017) study a frequency-domain elastic LSRTM with density variation. Qu et al. (2018)

present an elastic LSRTM with density variation based on P- and S-wave decoupled elastic

velocity-stress wave equation. In this chpater, we propose a time-domain three-parameter

elastic LSRTM algorithm to simultaneously invert for density perturbation, P- and S-wave

velocity perturbation (Chen and Sacchi, 2018). The latter complements our previous work

on elastic LSRTM (Chen and Sacchi, 2017a). Our three-parameter elastic LSRTM algo-

rithm directly adopts the elastic wave equation without splitting the equation to P- and

S-wave components as in Qu et al. (2018). We derive the elastic Born approximation and

elastic RTM operators using the continuous adjoint-state method (Lions, 1971; Tarantola,

1988; Tromp et al., 2005; Plessix, 2006; Chen and Lee, 2015). We carefully discretize the

two operators to ensure that they pass the dot-product test. The latter allows us to use

the conjugate gradient least-squares (CGLS) method to solve the least-squares migration

optimization problem. We show that the proposed three-parameter elastic LSRTM algo-

rithm is able to mitigate the crosstalk among density, P- and S-wave velocity perturbations.

Moreover, it improves the convergence and data fitting over the conventional two-parameter

elastic LSRTM.

We have organized this article as follows. First, we describe the wave equation that we

have adopted to simulate elastic wavefields. Then, we introduce the three-parameter elastic

Born approximation and the elastic RTM operators. Subsequently, we present the proposed

three-parameter elastic LSRTM algorithm. In the last section, we evaluate the performance

of the proposed algorithm with numerical examples.
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4.2 Theory

4.2.1 Elastic wave equation

The propagation of seismic wave in a heterogeneous, isotropic elastic earth media is described

by the elastic wave equation (Virieux, 1986)

ρ
∂vx
∂t
−
(
∂σxx
∂x

+
∂σxz
∂z

)
= 0,

ρ
∂vz
∂t
−
(
∂σxz
∂x

+
∂σzz
∂z

)
= 0,

∂σxx
∂t
− (λ+ 2µ)

∂vx
∂x
− λ∂vz

∂z
= fxx,

∂σzz
∂t
− (λ+ 2µ)

∂vz
∂z
− λ∂vx

∂x
= fzz,

∂σxz
∂t
− µ

(
∂vx
∂z

+
∂vz
∂x

)
= 0,

(4.1)

where vx and vz are the horizontal and vertical particle velocity fields, σxx, σxz and σzz are

the stress fields, ρ is the density, λ and µ are the Lamé parameters, and fxx and fzz are

the explosive source terms. In the wave equation, we dropped the dependence on spatial

and temporal coordinates x and t of our variables to make the notations concise but we

understand that vx = vx(x, t), λ = λ(x), etc. The elastic wave equation can be written in

abstract functional form as follows

S(m̄)u = f , (4.2)

where m̄ = (ρ, λ, µ)T denotes the model parameter vector, S is the wave equation operator,

u = (vx, vz, σxx, σzz, σxz)
T is the wavefield vector and f = (0, 0, fxx, fzz, 0)T is the source

vector. The seismic data are observed by receivers

d = Ru, (4.3)

where d = (dvx , dvz , 0, 0, 0)T is the seismic data vector and R is the sampling operator.
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4.2.2 Three-parameter elastic Born approximation

Seismic imaging methods rely on the adjoint of the linearized forward problem. A pertur-

bation around the known background model parameters

ρ→ ρ+ δρ, (4.4a)

λ→ λ+ δλ, (4.4b)

µ→ µ+ δµ, (4.4c)

leads to a perturbation of the wavefields

vx → vx + δvx, (4.4d)

vz → vz + δvz, (4.4e)

σxx → σxx + δσxx, (4.4f)

σzz → σzz + δσzz, (4.4g)

σxz → σxz + δσxz. (4.4h)

Inserting equation 4.4 into equation 4.1, subtracting equation 4.1, and dropping second and

higher order terms leads to the Born approximation for the first-order velocity stress elastic

wave equation system (Chen and Sacchi, 2017a)

ρ
∂δvx
∂t
−
(
∂δσxx
∂x

+
∂δσxz
∂z

)
= −δρv̇x,

ρ
∂δvz
∂t
−
(
∂δσxz
∂x

+
∂δσzz
∂z

)
= −δρv̇z,

∂δσxx
∂t

− (λ+ 2µ)
∂δvx
∂x
− λ∂δvz

∂z
= (δλ+ δµ)

σ̇xx + σ̇zz
2(λ+ µ)

+ δµ
σ̇xx − σ̇zz

2µ
,

∂δσzz
∂t

− (λ+ 2µ)
∂δvz
∂z
− λ∂δvx

∂x
= (δλ+ δµ)

σ̇xx + σ̇zz
2(λ+ µ)

− δµσ̇xx − σ̇zz
2µ

,

∂δσxz
∂t

− µ
(
∂δvx
∂z

+
∂δvz
∂x

)
= δµ

σ̇xz
µ
,

(4.5)

where u = (vx, vz, σxx, σzz, σxz)
T

is the incident wavefield or called source-side wavefield

in the background model m̄ = (ρ, λ, µ)
T

, δu = (δvx, δvz, δσxx, δσzz, δσxz)
T

is the scattered

wavefield due to model perturbation δm̄ = (δρ, δλ, δµ)
T

, and over-dot means the time

derivative. We parameterize our three-parameter elastic LSRTM in terms of density, P-

and S-wave velocity perturbations. The different model parameter perturbations obey the
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following expressions δρ

δλ

δµ

 =

 1 0 0

V 2
p − 2V 2

s 2ρVp − 4ρVs

V 2
s 0 2ρVs


 δ%

δVp

δVs

 , (4.6)

where Vp =
√

(λ+ 2µ)/ρ and Vs =
√
µ/ρ are background P- and S-wave velocities, δVp and

δVs are P- and S-wave velocity perturbations.

We can also express the above expressions in abstract functional form. The model pertur-

bation m̄→ m̄ + δm̄ leads to a perturbation in wave equation 4.2

(S + δS)(u + δu) = f , (4.7)

where δS is the wave equation operator perturbation, δu is the wavefield perturbation, S

is the wave equation operator in background model and u is the wavefield in background

model. Using wave equation Su = f and neglecting second order term, equation 4.7 can be

simplified as

Sδu = −δSu. (4.8)

The perturbed seismic data can be expressed as

δd = Rδu = −RS−1δSu = −RS−1 ∂S

∂m̄
uδm̄ (4.9)

where R is the sampling operator, S−1 is the inverse of wave equation operator and the

linear operator ∂S/∂m̄ denotes the diffraction pattern of density and Lamé parameters

(Pageot et al., 2013; Operto et al., 2013). The vector δm̄ = (δρ, δλ, δµ)T denotes density

and Lamé parameters perturbations. The parameter perturbations are connected via

δm̄ = Tδm, (4.10)

where T denotes the transformation matrix in equation 4.6, and δm = (δ%, δVp, δVs)
T

. The

elastic Born approximation can be expressed in abstract form as

δd = Lδm = −RS−1 ∂S

∂m̄
uTδm, (4.11)

where operator L indicates the elastic Born approximation operator.
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4.2.3 Three-parameter elastic reverse time migration

Seismic migration estimates subsurface structural image using the seismic data recorded on

the surface of the earth. Migration can be regarded as the adjoint of the Born approximation

operator

δm∗ = L†δd = −T†
(
∂S

∂m̄
u

)† (
S−1

)†
R†δd = −T†

(
∂S

∂m̄
u

)† (
S†
)−1

R†δd (4.12)

where † indicates the adjoint of an operator, L† is the elastic RTM operator and δm∗ is the

migrated elastic images (δm∗ = (δ%∗, δV ∗p , δV
∗
s )T ). We introduce the adjoint-state variable

p =
(
S†
)−1

R†δd. The latter satisfies the adjoint-state equation corresponding to the state

equation 4.2

S†p = R†δd, (4.13)

where S† is the adjoint wave equation operator and R†δd is the adjoint source. The migrated

elastic images can be simplified as

δm∗ = −T†
(
∂S

∂m̄
u

)†
p = −T†δm̄∗, (4.14)

where T† is the adjoint of the transformation matrix in equation 4.6 and δm̄∗ = (δρ∗, δλ∗, δµ∗)T .

The adjoint-state equation corresponding to the first-order velocity-stress elastic wave equa-

tion 4.1 can be derived

− ρ∂υx
∂t

+

(
∂ςxx
∂x

+
∂ςxz
∂z

)
= δdvx ,

− ρ∂υz
∂t

+

(
∂ςxz
∂x

+
∂ςzz
∂z

)
= δdvz ,

− ∂ςxx
∂t

+ (λ+ 2µ)
∂υx
∂x

+ λ
∂υz
∂z

= 0,

− ∂ςzz
∂t

+ (λ+ 2µ)
∂υz
∂z

+ λ
∂υx
∂x

= 0,

− ∂ςxz
∂t

+ µ

(
∂υx
∂z

+
∂υz
∂x

)
= 0,

(4.15)
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where p = (υx, υz, ςxx, ςzz, ςxz)
T is the adjoint-state wavefield and δd = (δdvx , δdvz , 0, 0, 0)T

is the data residual. The migrated density and Lamé parameter images can be written as

δρ∗ = −
∫

(v̇xυx + v̇zυz)dt,

δλ∗ =

∫
(σ̇xx + σ̇zz)(ςxx + ςzz)

4(λ+ µ)2
dt,

δµ∗ =

∫ [
σ̇xzςxz
µ2

+
(σ̇xx + σ̇zz)(ςxx + ςzz)

4(λ+ µ)2
+

(σ̇xx − σ̇zz)(ςxx − ςzz)
4µ2

]
dt.

(4.16)

The density and Lamé parameter perturbations can be transformed to density and wave

velocity perturbations δ%∗

δV ∗p

δV ∗s

 =

 1 V 2
p − 2V 2

s V 2
s

0 2ρVp 0

0 − 4ρVs 2ρVs


 δρ∗

δλ∗

δµ∗

 . (4.17)

4.2.4 Three-parameter elastic least-squares reverse time migration

To improve the resolution of images and reduce the cross-talk and artifacts in the images,

we formulate the three-parameter elastic LSRTM as a least-squares inversion problem

J =
1

2

Ns∑
i=1

‖Liδm− δdi‖22, (4.18)

where Li is the elastic Born approximation operator for the ith shot, δdi is the ith shot

gather, δm = (δ%, δVp, δVs)
T denotes elastic images, Ns indicates the number of shots and

‖ · ‖2 indicates the `2 norm of vector. To accelerate the convergence of the inversion, we

adopt the elastic pseudo-Hessian for preconditioning the system of equations (Shin et al.,

2001a)

J =
1

2

Ns∑
i=1

‖LiPδm̃− δdi‖22, (4.19)

where P denotes the inverse of the diagonal of pseudo-Hessian, δm = Pδm̃ = (δ%, δVp, δVs)
T .

It is important to mention that we carefully discretize the elastic Born and RTM operators

(L and L†) to assure they pass the dot-product test (Claerbout, 1992; Chen and Sacchi,

2017a). We adopt the preconditioned conjugate gradient least squares (PCGLS) algorithm

(Bjorck, 1996) to solve equation 4.19. In this study, the damping regularization term was not

included to the objective function 4.19. Instead, we adopt an iterative regularization method

in which the iteration number plays the role of the regularization parameter (Hansen, 1998).

The latter avoids the difficulty of picking regularization parameter.
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4.3 Numerical examples

Our code was written in C language and parallelized with Message Passing Interface (MPI)

over shots. Our forward modelling engine adopts a time domain staggered-grid finite-

difference (FD) scheme (Virieux, 1986) to discretize the elastic wave equation and the unsplit

Convolutional Perfectly Matched Layer (C-PML) boundary (Komatitsch and Martin, 2007)

to absorb the artificial reflections from computational boundaries. In our code, the spa-

tial FD order is selectable. The code automatically computes the FD coefficients from the

user-specified FD order (Liu and Sen, 2009). Our elastic Born and RTM codes pass the dot-

product test. The inversion is conducted with the PCGLS algorithm as mentioned above.

We present two numerical examples to test the proposed algorithm. We compare the results

of the proposed three-parameter elastic LSRTM and the results of two-parameter elastic

LSRTM (Chen and Sacchi, 2017a). We emphasize that our synthetic multicomponent data

are the solution of the time-domain elastic wave equation 4.1. We do not use the linearized

Born modelling to generate data. The data contain full-wave modes except for direct waves.

4.3.1 Elastic inclusion model

Figure 4.1 a, c and e show the true P- and S-wave velocity and density models. This model

may not be realistic. However, it is useful to demonstrate the multiparameter crosstalk in

the elastic imaging. The model has 501 × 301 grid points with grid interval of 5 m. There

are 101 shots located along the surface of the model with an interval of 25 m. There are 501

receivers located along the surface of the model with an interval of 5 m. We use a Ricker

wavelet with central frequency 20 Hz as the source wavelet. The observed data (Figure

4.2) are simulated using our time domain elastic FD code. Figure 4.1 b, d and f are the

migration P- and S-wave velocity and density models. The migration models are obtained

by convolving the true models with a 2D Gaussian filter of 50 m width. Figure 4.3 a, c, and

e show the true P- and S-wave velocity and density perturbations.

The elastic RTM generates images with strong multiparameter crosstalk (Figure 4.3 b, d, f).

Results, in this case, cannot be interpreted properly. Moreover, there are high-amplitude

low-frequency RTM artifacts in the images even after applying a Laplacian filtering. We

adopted a number of 30 iterations for the two-parameter elastic LSRTM. The relative data

misfit reduces to 10%. Our results show that the method significantly attenuated the

crosstalk between the P- and S-wave velocity perturbation images (Figure 4.4 b and d).

However, the density perturbation manifests as crosstalk in the estimated P- and S-wave

velocity perturbation images. It is clear that the results will impede the proper interpreta-

tion of the P and S-wave images. The proposed three-parameter elastic LSRTM can suppress
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the crosstalk and properly estimate the three images (Figure 4.4 a, c, e). Moreover, typical

RTM artifacts have decreased, and the resolution of the images have significantly improved.

The number of iterations of the three-parameter elastic LSRTM is 20, and the relative data

misfit reduces to 6%. We also compare the convergence curves of the three-parameter elastic

LSRTM and the two-parameter elastic LSRTM (Figure 4.5). Including density perturbation

in the inversion leads to an improvement in the convergence of the iterative inversion.

4.3.2 Elastic Marmousi2 model

In this section, we evaluate the proposed algorithm on a more complex model: the elastic

Marmousi2 model (Martin et al., 2006). We reduce the size of the original model to 1001×426

grids with grid interval 2.5 m. We also replace the water layer by a low-velocity layer in

the original model. Figure 4.6 a, c and e show the true P- and S-wave velocity and density

models. There are uncorrelated structures in the three models (indicated by the white

triangles) representing potential hydrocarbon reservoirs. There are 101 shots located along

the surface of the model with interval of 25 m. There are 1001 receivers located along the

surface of the model with interval of 2.5 m. The source wavelet is a Ricker wavelet with

central frequency 35 Hz. The observed data are simulated using our time domain elastic

FD code (Figure 4.7). Figure 4.6 b, d and f are the smoothed background P- and S-wave

velocity and density models. Background model smoothing is obtained by convolving the

true models with a 2D Gaussian filter of 35 m width. Figure 4.8 a, c, and e show the true

P- and S-wave velocity and density perturbations.

The images generated by elastic RTM contain strong low-frequency RTM artifacts (Figure

4.8 b, d, f). Moreover, the amplitudes for the shallow and deep parts of the images are

unbalanced. A particular issue is that the elastic RTM generates crosstalk among the

three elastic images in areas where the models are uncorrelated. The two-parameter elastic

LSRTM (Chen and Sacchi, 2017a) can largely resolve those problems (Figure 4.9 b and d).

However, it does not provide an estimation of the density perturbation image. These results

were obtained after 100 iterations of the two-parameter elastic LSRTM. And the relative

data misfit reduces to 40%. The proposed three-parameter elastic LSRTM is able to properly

estimate the P- and S-wave velocity and density perturbation images (Figure 4.9 a, c and

e). The images have more balanced amplitudes, fewer low-frequency RTM artifacts and

reduced multiparameter crosstalk. These results were obtained after 100 iterations of the

three-parameter elastic LSRTM. And the relative data misfit reduces to 23%. To appreciate

details more clearly, we compare the elastic images in the three windows around the three

white triangles in the model (Figure 4.6 a, c and e) as Figure 4.10, Figure 4.11 and Figure

4.12. The three-parameter elastic LSRTM generated images with the highest resolution and

fewest artifacts and crosstalk. We compare the convergence curves of the three-parameter
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Elastic inclusion model. (a) P-wave velocity model. (b) Smoothed P-wave velocity

model. (c) S-wave velocity model. (d) Smoothed S-wave velocity model. (e) Density model.

(f) Smoothed density model.
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Figure 4.1: Elastic inclusion model. (a) P-wave velocity model. (b) Smoothed P-wave
velocity model. (c) S-wave velocity model. (d) Smoothed S-wave velocity model. (e)
Density model. (f) Smoothed density model.
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(a)

(b)

Figure 2: Multicomponent data of the elastic inclusion model. (a) Horizontal particle

velocity data. (b) Vertical particle velocity data.

Chen & Sacchi – GJI Manuscript

27

Figure 4.2: Multicomponent data of the elastic inclusion model. (a) Horizontal particle
velocity data. (b) Vertical particle velocity data.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: (a) True P-wave velocity perturbation. (b) P-wave velocity perturbation image

estimated via elastic RTM. (c) True S-wave velocity perturbation. (d) S-wave velocity

perturbation image estimated via elastic RTM. (e) True density perturbation. (f) Density

perturbation image estimated via elastic RTM.
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Figure 4.3: (a) True P-wave velocity perturbation. (b) P-wave velocity perturbation image
estimated via elastic RTM. (c) True S-wave velocity perturbation. (d) S-wave velocity
perturbation image estimated via elastic RTM. (e) True density perturbation. (f) Density
perturbation image estimated via elastic RTM.
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(a) (b)

(c) (d)

(e)

Figure 4: P-wave velocity perturbation image estimated via three-parameter elastic LSRTM

(a) and two-parameter elastic LSRTM (b). S-wave velocity perturbation image estimated

via three-parameter elastic LSRTM (c) and two-parameter elastic LSRTM (d). Density

perturbation image estimated via three-parameter elastic LSRTM (e).
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Figure 4.4: P-wave velocity perturbation image estimated via three-parameter elastic
LSRTM (a) and two-parameter elastic LSRTM (b). S-wave velocity perturbation image
estimated via three-parameter elastic LSRTM (c) and two-parameter elastic LSRTM (d).
Density perturbation image estimated via three-parameter elastic LSRTM (e).
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Figure 5: Comparison of the convergence curves of three-parameter elastic LSRTM (red)

and two-parameter elastic LSRTM (blue) for elastic inclusion model.

Chen & Sacchi – GJI Manuscript

30

Figure 4.5: Comparison of the convergence curves of three-parameter elastic LSRTM (red)
and two-parameter elastic LSRTM (blue) for elastic inclusion model.
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elastic LSRTM and two-parameter elastic LSRTM in Figure 4.13. The three-parameter

elastic LSRTM converges faster than the two-parameter elastic LSRTM.

4.4 Discussion

The newly developed three-parameter elastic LSRTM can mitigate the multiparameter

crosstalk among density, P- and S-wave images. The method does not completely remove

the crosstalk. From the radiation pattern analysis (Figure 1.3), the P-P wave responses

caused by density perturbation and P-wave velocity perturbation are closely coupled at

small scattering angle. The P-S converted wave response due to density and S-wave velocity

perturbation are coupled at moderate scattering angle. It indicates that even the short

wavelength of the density model may be resolved only partially. It may not be possible to

completely decouple the three isotropic elastic images. It is also important to point out

that our synthetic data are obtained via the finite-difference solution of the elastic wave

equation. The data contain all modes including multiples. In other words, the data were

not generated using the linearized Born modeling operator. This also adds complications

to linearized least-squares waveform inversion because multiples are not honoured by the

linearized Born forward modeling operator. A recommendation is to apply free-surface and

internal multiple attenuation methods prior to least-squares migration (Verschuur et al.,

1992; Weglein, 1999). However, we point out that the proper elimination of internal multi-

ples is an important challenge (Berkhout and Verschuur, 2005).

4.5 Conclusions

The conventional two-parameter elastic LSRTM algorithm does not consider density image

in the inversion. Neglecting density image in the inversion may generate crosstalk artifacts in

P- and S-wave images. We propose a time-domain three-parameter elastic LSRTM method.

It simultaneously inverts for density, P- and S-wave velocity perturbation images. We derive

the elastic Born approximation and elastic RTM operators using the time-domain continuous

adjoint-state method. We carefully discretize the two operators to assure that they pass the

dot-product test. The latter allows us to use the CGLS method to solve the least-squares

migration quadratic optimization problem on the fly. We observe that the proposed three-

parameter elastic LSRTM can decouple the three isotropic elastic parameters and suppress

the crosstalk. Moreover, it provides faster convergence and an improved data fitting than

the two-parameter elastic LSRTM.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Elastic Marmousi2 model. (a) P-wave velocity model. (b) Smoothed P-wave

velocity model. (c) S-wave velocity model. (d) Smoothed S-wave velocity model. (e)

Density model. (f) Smoothed density model.
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Figure 4.6: Elastic Marmousi2 model. (a) P-wave velocity model. (b) Smoothed P-wave
velocity model. (c) S-wave velocity model. (d) Smoothed S-wave velocity model. (e) Density
model. (f) Smoothed density model.
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(a)

(b)

Figure 7: Multicomponent data of the elastic Marmousi2 model. (a) Horizontal particle

velocity data. (b) Vertical particle velocity data.
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Figure 4.7: Multicomponent data of the elastic Marmousi2 model. (a) Horizontal particle
velocity data. (b) Vertical particle velocity data.
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(a) (b)

(c) (d)

(e) (f)

Figure 8: (a) True P-wave velocity perturbation. (b) P-wave velocity perturbation image

estimated via elastic RTM. (c) True S-wave velocity perturbation. (d) S-wave velocity

perturbation image estimated via elastic RTM. (e) True density perturbation. (f) Density

perturbation image estimated via elastic RTM.
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Figure 4.8: (a) True P-wave velocity perturbation. (b) P-wave velocity perturbation image
estimated via elastic RTM. (c) True S-wave velocity perturbation. (d) S-wave velocity
perturbation image estimated via elastic RTM. (e) True density perturbation. (f) Density
perturbation image estimated via elastic RTM.
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(a) (b)

(c) (d)

(e)

Figure 9: P-wave velocity perturbation image estimated via three-parameter elastic LSRTM

(a) and two-parameter elastic LSRTM (b). S-wave velocity perturbation image estimated

via three-parameter elastic LSRTM (c) and two-parameter elastic LSRTM (d). Density

perturbation image estimated via three-parameter elastic LSRTM (e).
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Figure 4.9: P-wave velocity perturbation image estimated via three-parameter elastic
LSRTM (a) and two-parameter elastic LSRTM (b). S-wave velocity perturbation image
estimated via three-parameter elastic LSRTM (c) and two-parameter elastic LSRTM (d).
Density perturbation image estimated via three-parameter elastic LSRTM (e).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 10: Comparison of images in the range 750 m < x < 1125 m and 125 m < z < 875 m.

P-wave velocity perturbation: (a) true model, (b) elastic RTM, (c) three-parameter elastic

LSRTM, (d) two-parameter elastic LSRTM. S-wave velocity perturbation: (e) true model,

(f) elastic RTM, (g) three-parameter elastic LSRTM, (h) two-parameter elastic LSRTM.

Density perturbation: (i) true model, (j) elastic RTM, (k) three-parameter elastic LSRTM.
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Figure 4.10: Comparison of images in the range 750 m < x < 1125 m and 125 m <
z < 875 m. P-wave velocity perturbation: (a) true model, (b) elastic RTM, (c) three-
parameter elastic LSRTM, (d) two-parameter elastic LSRTM. S-wave velocity perturbation:
(e) true model, (f) elastic RTM, (g) three-parameter elastic LSRTM, (h) two-parameter
elastic LSRTM. Density perturbation: (i) true model, (j) elastic RTM, (k) three-parameter
elastic LSRTM.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 11: Comparison of images in the range 1500 m< x < 1875 m and 125 m< z < 875 m.

P-wave velocity perturbation: (a) true model, (b) elastic RTM, (c) three-parameter elastic

LSRTM, (d) two-parameter elastic LSRTM. S-wave velocity perturbation: (e) true model,

(f) elastic RTM, (g) three-parameter elastic LSRTM, (h) two-parameter elastic LSRTM.

Density perturbation: (i) true model, (j) elastic RTM, (k) three-parameter elastic LSRTM.
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Figure 4.11: Comparison of images in the range 1500 m < x < 1875 m and 125 m <
z < 875 m. P-wave velocity perturbation: (a) true model, (b) elastic RTM, (c) three-
parameter elastic LSRTM, (d) two-parameter elastic LSRTM. S-wave velocity perturbation:
(e) true model, (f) elastic RTM, (g) three-parameter elastic LSRTM, (h) two-parameter
elastic LSRTM. Density perturbation: (i) true model, (j) elastic RTM, (k) three-parameter
elastic LSRTM.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 12: Comparison of images in the range 0 m < x < 375 m and 125 m < z < 750 m.

P-wave velocity perturbation: (a) true model, (b) elastic RTM, (c) three-parameter elastic

LSRTM, (d) two-parameter elastic LSRTM. S-wave velocity perturbation: (e) true model,

(f) elastic RTM, (g) three-parameter elastic LSRTM, (h) two-parameter elastic LSRTM.

Density perturbation: (i) true model, (j) elastic RTM, (k) three-parameter elastic LSRTM.
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Figure 4.12: Comparison of images in the range 0 m < x < 375 m and 125 m < z < 750 m.
P-wave velocity perturbation: (a) true model, (b) elastic RTM, (c) three-parameter elastic
LSRTM, (d) two-parameter elastic LSRTM. S-wave velocity perturbation: (e) true model,
(f) elastic RTM, (g) three-parameter elastic LSRTM, (h) two-parameter elastic LSRTM.
Density perturbation: (i) true model, (j) elastic RTM, (k) three-parameter elastic LSRTM.
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Figure 13: Comparison of the convergence curves of three-parameter elastic LSRTM (red)

and two-parameter elastic LSRTM (blue) for elastic Marmousi2 model.

Chen & Sacchi – GJI Manuscript

38

Figure 4.13: Comparison of the convergence curves of three-parameter elastic LSRTM (red)
and two-parameter elastic LSRTM (blue) for elastic Marmousi2 model.



CHAPTER 5

Time-domain matrix-free elastic Gauss-Newton

full-waveform inversion via adjoint-state method 1

We propose a time-domain matrix-free elastic Gauss-Newton full-waveform inversion (FWI)

algorithm. The elastic Gauss-Newton FWI is considered as an iterative elastic LSRTM

problem. The proposed algorithm consists of two nested iteration loops: the outer Gauss-

Newton nonlinear iterations and the inner conjugate gradient least-squares (CGLS) linear

iterations. The Gauss-Newton search direction in each outer FWI iteration is computed us-

ing the CGLS method. This step is equivalent to applying elastic LSRTM on data residuals.

The Fréchet derivative operator is the elastic Born modelling operator and the adjoint of

the Fréchet derivative operator is the elastic RTM operator. The CGLS algorithm can be

safely used for solving the Gauss-Newton search direction because our discretized numerical

versions of elastic Born and RTM operators passed the dot-product test. Our proposed

algorithm is matrix-free because it only requires the forward and adjoint Fréchet deriva-

tive operators applied “on the fly” to vectors. The latter is achieved via the adjoint-state

method. We use the proposed algorithm to simultaneously invert for P- and S-wave ve-

locities. The proposed elastic Gauss-Newton FWI generates slightly better-inverted models

than the nonlinear conjugate gradient (NLCG) method. The elastic Gauss-Newton FWI

converges faster than the elastic NLCG FWI.

5.1 Introduction

Full-waveform inversion (FWI) (Bamberger et al., 1982; Lailly, 1983; Tarantola, 1984a;

Pratt, 1999; Virieux and Operto, 2009) aims at estimating subsurface model parameters

1A version of this chapter is in preparation for submission for publication.
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using full-wave mode data recorded by seismic receivers. It is a nonlinear and ill-posed

inverse problem. Tarantola (1984a) formulates time-domain acoustic FWI as a nonlinear

least-squares inverse problem (Tarantola and Valette, 1982). The inverse problem was pro-

posed to be solved using a gradient-based iterative method. Tarantola (1984a) adopts the

adjoint-state method (Lions, 1971) to compute the gradient of the objective function to

avoid the expensive explicit computation of the Fréchet derivative (Bamberger et al., 1982;

Lailly, 1983). Gauthier et al. (1986) conduct the first numerical study of 2D acoustic FWI

in the time domain with synthetic seismic reflection and transmission data. Gauthier et al.

(1986) point out the importance of transmission data in the recovering of the low spatial

frequency content of the model. Bunks et al. (1995) propose a multiscale method to mit-

igate the cycle-skipping problem in time-domain FWI. Subsequently, a more efficient FWI

formulation was proposed in the frequency domain (Song et al., 1995; Pratt et al., 1996,

1998; Pratt, 1999; Pratt and Shipp, 1999; Ravaut et al., 2004).

The above-mentioned work is mainly focused on monoparameter acoustic inversion. Taran-

tola (1986) extends the FWI theory to isotropic elastic earth media. By analyzing diffraction

patterns, Tarantola (1986) proposes a hierarchical inversion strategy for time-domain elastic

FWI. For the long wavelengths of the model, the inversion is parameterized in terms of P-

and S-wave velocities. For the short wavelengths of the model, he suggests first optimizing

for the P-wave impedance, then optimizing for the S-wave impedance, and finally optimizing

for the density. Mora (1987b, 1988) numerically study the 2D time-domain elastic FWI of

synthetic reflection and transmission multicomponent data. The three isotropic elastic pa-

rameters are simultaneously inverted for. For reflection data inversion, Mora (1987b) points

out that the coupling between P-wave velocity and density are not well resolved when using

the velocity-density parameterization. For reflection and transmission data inversion, Mora

(1988) observes that the low-wavenumber content of density cannot be resolved because

density has little effect on seismic wave traveltimes. Crase et al. (1990) propose a robust

time-domain elastic FWI based on the `1 norm minimization criterion to invert for short

wavelengths of both P- and S-wave impedances. The latter is applied to a real marine

streamer dataset (Crase et al., 1990) and to land seismic reflection data (Crase et al., 1992).

The 2D time-domain elastic FWI has also been applied to real multicomponent ocean-

bottom cable (OBC) seismic data using a hierarchical inversion scheme (Singh et al., 2008;

Sears et al., 2008, 2010). The inversion scheme entails first inverting for P-wave velocity

using the vertical component, second inverting for S-wave velocity using the vertical com-

ponent, and finally inverting for S-wave velocity using horizontal component. The density

is updated using Gardner’s empirical relationship for P-wave velocity. Kohn et al. (2012)

investigate the influence of model parameterization in 2D time-domain elastic FWI using

synthetic examples. The three isotropic elastic parameters are simultaneously optimized

with a hard constraint applied on the density during inversion. Time-domain elastic FWI
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has also been extended to three dimensional (Guasch et al., 2012; Vigh et al., 2014; Borisov

and Singh, 2015; Albertin et al., 2016; Borisov et al., 2018; Oh et al., 2018). Even on modern

high-performance computers, 3D time-domain elastic FWI is still computational challenging.

In these studies, the P- and S-wave velocities are simultaneously inverted for. The density is

either kept constant (Vigh et al., 2014; Albertin et al., 2016; Borisov et al., 2018; Oh et al.,

2018) or updated using empirical relationship during inversion (Guasch et al., 2012; Borisov

and Singh, 2015). The development of elastic FWI has also seen significant progress in

the frequency domain. Gelis et al. (2007) implemented a 2D frequency-domain elastic FWI

using Born and Rytov approximations on synthetic data. Choi et al. (2008a,b) proposed

a 2D frequency-domain elastic FWI for density, P- and S-wave velocities. Brossier et al.

(2009b) investigate a 2D frequency-domain elastic FWI for synthetic land seismic surface

and body wave data. Brossier et al. (2009a, 2010) apply the `1 norm data misfit function in

the 2D frequency-domain elastic FWI. Romdhane et al. (2011) apply 2D frequency-domain

elastic FWI for characterizing 2D shallow structure in the presence of complex topography.

Pageot et al. (2013) apply 2D frequency-domain elastic FWI on synthetic teleseismic data

for lithospheric imaging. The density model is assumed to be constant in those studies (Ge-

lis et al., 2007; Brossier et al., 2009b,a; Romdhane et al., 2011; Pageot et al., 2013). Jeong

et al. (2012) propose a hierarchical inversion scheme for 2D frequency-domain elastic FWI.

In the first stage, the Lamé parameters are optimized with fixed density. In the second

stage, the density and Lamé parameters are simultaneously optimized.

The convergence rate of gradient-based optimization methods is linear. Newton’s methods

converge quadratically, and the convergence rate is grid independent (Santosa and Symes,

1988; Burstedde and Ghattas, 2009). The first discussion of Gauss-Newton methods for

time-domain FWI problem can be traced back to Tarantola (1984a) where they call it the

“total inversion” method (Tarantola and Valette, 1982). Santosa and Symes (1988) pro-

posed a truncated Newton method and apply it to 1D time-domain acoustic FWI problem.

The Hessian is not explicitly computed and stored. In each Newton’s iteration, the Hessian

is implicitly inverted using the conjugate gradient algorithm. The latter requires only com-

putation of the action of the Hessian operator on a vector with the help of the second-order

adjoint-state method. Santosa and Symes (1988) also discussed the Gauss-Newton method

where the second order derivative is discarded. Akcelik et al. (2002) implemented a 3D

time-domain acoustic Gauss-Newton-Krylov FWI. The latter is an extension of Santosa and

Symes (1988)’s Gauss-Newton method to three dimensions. The Gauss-Newton Hessian is

implicitly inverted using the symmetric conjugate gradient algorithm. Epanomeritakis et al.

(2008) extended Gauss-Newton-Krylov FWI to the 3D time-domain elastic case (Akcelik

et al., 2002). However, Epanomeritakis et al. (2008) only invert for a single parameter

(shear modulus) in their numerical examples. Burstedde and Ghattas (2009) investigate a

1D time-domain acoustic Newton FWI using the Newton-Krylov method proposed in (San-
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tosa and Symes, 1988). The conjugate gradient is terminated early to avoid directions of

negative curvature (Burstedde and Ghattas, 2009). Anagaw and Sacchi (2012) and Metivier

et al. (2013, 2014) apply the truncated Newton method to 2D frequency-domain acoustic

FWI.

Pratt et al. (1998) formulated the Gauss-Newton and Newton method in the frequency

domain. The Gauss-Newton Hessian or the full Hessian matrix is explicitly computed and

inverted. Time-domain elastic Gauss-Newton FWI has also been investigated in Sheen et al.

(2006). In Sheen et al. (2006), the Fréchet derivative and Hessian matrices are computed

explicitly using the reciprocity of the Green’s function. Pan et al. (2016) discussed the

Gauss-Newton and full-Newton method in elastic HTI media. However, it is also based on

explicitly computing and inverting the Hessian matrix. Obviously, those methods are too

expensive and unfeasible for application to large-scale problems.

In this chapter, I propose a time-domain matrix-free elastic Gauss-Newton FWI algorithm

(Chen and Sacchi, 2017c). The proposed algorithm consists of two loops of iterations:

the outer Gauss-Newton nonlinear iterations (Nocedal and Wright, 2006) and the inner

conjugate gradient least-squares (CGLS) linear iterations (Hestenes and Stiefel, 1952; Paige

and Saunders, 1982). The outer nonlinear iteration uses a parabolic fitting line search

(Vigh et al., 2009) to estimate the step size. The Gauss-Newton search direction in each

outer FWI iteration is computed using the matrix-free CGLS algorithm. I recognize that

this step is actually equivalent to applying an elastic LSRTM to data residuals (Chen and

Sacchi, 2017a), with the Fréchet derivative operator as the elastic Born modelling operator

and the adjoint of Fréchet derivative operator as the elastic RTM operator. The CGLS

algorithm can be safely used for solving the Gauss-Newton search direction because our

discretized numerical versions of elastic Born and RTM operators passed the dot-product

test (Mora, 1987a; Claerbout, 1992). In the inner CGLS linear iterations, the step size is

analytically calculated without of the need of a line search. The inner CGLS linear iterations

are preconditioned using the elastic pseudo-Hessian operator (Shin et al., 2001a; Chen and

Sacchi, 2017a). The proposed algorithm is matrix-free because it only requires the forward

Fréchet derivative and adjoint Fréchet derivative operators applied “on the fly” to vectors.

The operators are applied on vectors efficiently via the adjoint-state method (Lions, 1971).

The proposed algorithm is adopted to simultaneously invert for P- and S-wave velocities.

One has preferred to avoid inverting for density because the seismic traveltimes are not

sensitive to density. Only the seismic wave amplitude is sensitive to density. From an

analysis of diffraction pattern (Forgues and Lambare, 1997; Tarantola, 1986), the wavefield

scattered by a density perturbation is mainly detectable at small aperture angles. The latter

means that only short-to-intermediate wavelengths of the density can be reconstructed. If

no proper constraint or a priori information is imposed on density, the inverted density by

isotropic elastic FWI will deviate from true density. This agrees with observations made in
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previous studies (Choi et al., 2008a,b; Jeong et al., 2012; Kohn et al., 2012). The proposed

elastic Gauss-Newton FWI generates slightly better-inverted models than the nonlinear

conjugate gradient method.

This chapter is organized as follows: First, we describe the system of equations that we

have adopted to forward model elastic wavefields. Then, we discuss the general time-domain

elastic Gauss-Newton FWI algorithm. Subsequently, we propose to formulate the step of

solving Gauss-Newton search direction as an elastic LSRTM problem. We discuss the elastic

Born and RTM operators and the numerical adjointness of those operators. Furthermore,

we propose to solve the Gauss-Newton search direction using the CGLS algorithm and

also propose to precondition the CGLS algorithm by elastic pseudo-Hessian. Then, we

summarize the time-domain matrix-free elastic Gauss-Newton FWI algorithm. In the last

section, we provide numerical examples that permit one to evaluate the performance of the

proposed algorithm.

5.2 Theory

5.2.1 The forward problem

In this study, we consider a 2D heterogeneous, isotropic elastic earth media. The propagation

of 2D P-SV waves in this media can be expressed by the elastodynamic equations (Virieux,

1986)

ρ
∂vx
∂t
−
(
∂σxx
∂x

+
∂σxz
∂z

)
= 0,

ρ
∂vz
∂t
−
(
∂σxz
∂x

+
∂σzz
∂z

)
= 0,

∂σxx
∂t
− (λ+ 2µ)

∂vx
∂x
− λ∂vz

∂z
= fxx,

∂σzz
∂t
− (λ+ 2µ)

∂vz
∂z
− λ∂vx

∂x
= fzz,

∂σxz
∂t
− µ

(
∂vx
∂z

+
∂vz
∂x

)
= 0,

(5.1)

where vx and vz are the horizontal and vertical particle velocity fields, σxx, σxz and σzz are

the stress fields, fxx and fzz are the explosive source terms, ρ is density, λ and µ the Lamé

coefficients. These coefficients describe the spatially variable property of the earth. The

latter is related to the seismic P- and S- wave velocities via λ+ 2µ = ρV 2
p and µ = ρV 2

s . To

make the notation concise, we dropped the dependency on spatial and temporal coordinates

x and t of our variables. Using a more general operator notation, the elastic wave equation
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may be compactly written as

S(m)u = f , (5.2)

where u = (vx, vz, σxx, σzz, σxz)
T is the wavefield vector, f = (0, 0, fxx, fzz, 0)T is the source

vector, S is the wave equation operator, and m denotes the model parameter vector. The

wavefield u = u(m) can be considered as a nonlinear implicit function of the model param-

eters m. Seismic data are recorded by receivers deployed on the surface of the earth

d = Ru, (5.3)

where R is the sampling operator (often also called the restriction operator).

5.2.2 Time-domain elastic Gauss-Newton full-waveform inversion

Elastic FWI estimates the subsurface isotropic elastic parameters from the observed seismic

data. It is usually formulated as a nonlinear least-squares inverse problem that minimizes

the functional (Tarantola, 1984a, 1986)

J(m) =
1

2

Ns∑
i=1

‖di(m)− dobsi ‖22, (5.4)

where di(m) represents the forward modelled seismic data for ith shot, dobsi is the observed

seismic data for ith shot, and ‖ · ‖2 denotes the `2 norm of a vector. Because of the large

size of the model space, global optimization methods are prohibitively expensive for solving

FWI problem. Instead, the FWI problem is usually solved via iterative local optimization

algorithms. Introducing a model perturbation m→m+δm and a second-order Taylor series

expansion, the objective function in the vicinity of m is given by the following expression

(Virieux and Operto, 2009)

J(m + δm) = J(m) + δmT ∂J(m)

∂m
+

1

2
δmT ∂

2J(m)

∂m2
δm +O(‖δm‖3), (5.5)

where ∂J(m)/∂m is the gradient and ∂2J(m)/∂m2 is the Hessian of the objective function.

In the vicinity of m, the objective function is linearized and an optimal model update δm

should satisfy ∂J(m + δm)/∂δmT = 0. This leads to the following result

δm = −
[
∂2J(m)

∂m2

]−1
∂J(m)

∂m

= −

{
Ns∑
i=1

[(
∂di
∂m

)†(
∂di
∂m

)
+

(
∂2di
∂m2

)† (
di − dobsi

)]}−1 [ Ns∑
i=1

(
∂di
∂m

)† (
di − dobsi

)]
,

(5.6)
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where † denotes the adjoint of an operator, ∂di/∂m is the Fréchet derivative operator. The

latter is also called the elastic Born approximation operator. In equation 5.6, the term

in the braces is called the full Hessian of the FWI problem (Pratt et al., 1998; Fichtner

and Trampert, 2011; Metivier et al., 2013). The second term in the braces corresponds to

second-order multiple scattering. This term is small when the objective function is close

to a minimum. Dropping the second-order term leads to the Gauss-Newton update (Pratt

et al., 1998)

δm = −

[
Ns∑
i=1

(
∂di
∂m

)†(
∂di
∂m

)]−1 [ Ns∑
i=1

(
∂di
∂m

)† (
di − dobsi

)]
, (5.7)

where the term in the first bracket is the called the approximated Hessian of FWI

Ha =

Ns∑
i=1

(
∂di
∂m

)†(
∂di
∂m

)
, (5.8)

and the term in the second bracket is the gradient of the FWI problem

g =

Ns∑
i=1

(
∂di
∂m

)† (
di − dobsi

)
. (5.9)

We can observe that the approximated Hessian is the cascade of forward and adjoint Fréchet

derivative operators. Moreover, the gradient is obtained by applying the adjoint Fréchet

derivative operator to data residuals. The gradient of the elastic FWI problem is equivalent

to a prestack elastic RTM algorithm applied to data residuals (Tarantola, 1986). Using

equations 5.8 and 5.9, the Gauss-Newton update 5.7 can be simplified as follows

δm = −Ha
−1g. (5.10)

The elastic Gauss-Newton FWI iteratively minimizes the nonlinear least-squares objective

function by updating the model in the Gauss-Newton direction δm. The updated model at

(k + 1)th iteration can be written as

m(k+1) = m(k) + η(k)δm(k) = m(k) − η(k)(H(k)
a )
−1

g(k), (5.11)

where m(k) is the model at the kth iteration, η(k) is the step size at the kth iteration, and

δm(k) is the Gauss-Newton search direction at the kth iteration, H
(k)
a is the approximated

Hessian at the kth iteration and g(k) is the gradient at the kth iteration. In this study, we

estimate the step size via parabolic fitting. The general time-domain elastic Gauss-Newton

FWI algorithm is summarized by Algorithm 3
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Algorithm 3 Time-domain elastic Gauss-Newton FWI

Initialize: m(0)

for k = 0, 1, · · · while it does not converge do

1. Forward modelling: d
(k)
i = di(m

(k)), i = 1, · · · , Ns
2. Compute data residuals: δd

(k)
i = dobsi − d

(k)
i , i = 1, · · · , Ns

3. Compute Gauss-Newton search direction: δm(k) = −(H
(k)
a )
−1

g(k)

4. Compute step size η(k) via parabolic fitting line search.
5. m(k+1) = m(k) + η(k)δm(k)

end

5.2.3 Solving for the Gauss-Newton step via the CGLS algorithm

combined with the adjoint-state method

Formulation of the Gauss-Newton step as an elastic LSRTM problem

In this section, we will drop the FWI iteration index (k) of the approximated Hessian,

gradient and model update to make the notation more concise but we understand that these

quantities depend on the FWI iteration index. In the definition of the Gauss-Newton update

(equation 5.11), the approximated Hessian Ha needs to be inverted. However, explicitly

computing and inverting the Hessian operator are prohibitively expensive for realistic scale

problem. Instead, we solve for the Gauss-Newton step update via the matrix-free conjugate

gradient least-squares algorithm combing with adjoint-state method. Gauss-Newton update

5.7 can be computed via solving normal equations

Ns∑
i=1

(
∂di
∂m

)†(
∂di
∂m

)
δm = −

Ns∑
i=1

(
∂di
∂m

)† (
di − dobsi

)
, (5.12)

or compactly written as,

Haδm = −g. (5.13)

If we use Li to denote the Fréchet derivative operator (∂di/∂m) and δdi to denote the data

residual (dobsi − di) for ith shot, the normal equations 5.12 become

Ns∑
i=1

L†iLiδm =

Ns∑
i=1

L†i δdi. (5.14)

Solving above normal equations is equivalent to solving a least-squares inversion problem

that minimizes

Jgn(δm) =
1

2

Ns∑
i=1

‖Liδm− δdi‖22. (5.15)
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We recognize that this is actually an elastic LSRTM formulation (Chen and Sacchi, 2017a).

The Fréchet derivative operator Li is the elastic Born modelling operator and the adjoint

of Fréchet derivative operator L†i is the elastic RTM operator. In the following sections, we

will briefly show the expressions for these two operators. More details on the derivations of

those operators can be found in Chapter 3.

Fréchet derivative operator L: elastic Born modelling operator

As discussed in previous section, the Fréchet derivative of the objective function of elastic

FWI is indeed the elastic Born approximation. The elastic Born approximation describes

that the incident wavefield hits a scatterer and generates the scattered wavefield. It maps

from model perturbation (scatterers) to data perturbation (scattered energy).

δd = Lδm. (5.16)

The source-side incident wavefield in the current background model is computed using the

elastic wave equation

ρ
∂vx
∂t
−
(
∂σxx
∂x

+
∂σxz
∂z

)
= 0,

ρ
∂vz
∂t
−
(
∂σxz
∂x

+
∂σzz
∂z

)
= 0,

∂σxx
∂t
− (λ+ 2µ)

∂vx
∂x
− λ∂vz

∂z
= fxx,

∂σzz
∂t
− (λ+ 2µ)

∂vz
∂z
− λ∂vx

∂x
= fzz,

∂σxz
∂t
− µ

(
∂vx
∂z

+
∂vz
∂x

)
= 0.

(5.17)

We assume that the model parameters are perturbed around a background model such that

ρ→ ρ+ δρ, λ→ λ+ δλ and µ→ µ+ δµ. The wavefields will be perturbed in the sense that

vx → vx + δvx, vz → vz + δvz, σxx → σxx + δσxx, σzz → σzz + δσzz and σxz → σxz + δσxz.

We substitute the perturbed model parameters and wavefields into equation 5.17. After

canceling second order terms involving small perturbations, we end up with the following
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partial differential equations (Chen and Sacchi, 2017a)

ρ
∂δvx
∂t
−
(
∂δσxx
∂x

+
∂δσxz
∂z

)
= −δρv̇x,

ρ
∂δvz
∂t
−
(
∂δσxz
∂x

+
∂δσzz
∂z

)
= −δρv̇z,

∂δσxx
∂t

− (λ+ 2µ)
∂δvx
∂x
− λ∂δvz

∂z
= (δλ+ δµ)

σ̇xx + σ̇zz
2(λ+ µ)

+ δµ
σ̇xx − σ̇zz

2µ
,

∂δσzz
∂t

− (λ+ 2µ)
∂δvz
∂z
− λ∂δvx

∂x
= (δλ+ δµ)

σ̇xx + σ̇zz
2(λ+ µ)

− δµσ̇xx − σ̇zz
2µ

,

∂δσxz
∂t

− µ
(
∂δvx
∂z

+
∂δvz
∂x

)
= δµ

σ̇xz
µ
.

(5.18)

where the vector δu = (δvx, δvz, δσxx, δσzz, δσxz)
T is the scattered wavefield due to model

perturbations δρ, δλ and δµ, and u = (vx, vz, σxx, σzz, σxz)
T is the incident wavefield field

in the background model ρ, λ, µ, and the over-dot means the time derivative. The right side

of equation 5.18 is the so-called “secondary source”. Equation 5.18 is the first-order Born

approximation equation in an heterogeneous, isotropic elastic media. The scattered data

are obtained by sampling the scattered wavefield at the receiver positions

δd = Rδu. (5.19)

For elastic FWI problem, parameterization in wave compressional and shear wave speeds is

better than a parameterization in Lamé parameters (Tarantola, 1986; Kohn et al., 2012).

By adopting the chain rule, the model perturbations obey the following relationships δρ

δλ

δµ

 =

 1 0 0

V 2
p − 2V 2

s 2ρVp − 4ρVs

V 2
s 0 2ρVs


 δ%

δVp

δVs

 , (5.20)

where m = (ρ, Vp, Vs)
T represents the background model and δm = (δ%, δVp, δVs)

T the

model perturbation. Equation 5.17, 5.18, 5.19 and 5.20 define the elastic Born modelling

(equation 5.16).

Adjoint of Fréchet derivative operator L†: The elastic RTM operator

The adjoint of the Fréchet derivative of the elastic FWI objective function is the elastic

RTM operator. The latter is the adjoint of the elastic Born modelling operator that maps

data perturbation to model perturbation.

δm∗ = L†δd, (5.21)
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where δm∗ is the adjoint model perturbation (δm∗ = (δ%∗, δV ∗p , δV
∗
s )T ). The adjoint-state

equation for state equation 5.1 can be derived using the adjoint-state method (Chen and

Sacchi, 2017a)

− ρ∂υx
∂t

+

(
∂ςxx
∂x

+
∂ςxz
∂z

)
= δdvx ,

− ρ∂υz
∂t

+

(
∂ςxz
∂x

+
∂ςzz
∂z

)
= δdvz ,

− ∂ςxx
∂t

+ (λ+ 2µ)
∂υx
∂x

+ λ
∂υz
∂z

= 0,

− ∂ςzz
∂t

+ (λ+ 2µ)
∂υz
∂z

+ λ
∂υx
∂x

= 0,

− ∂ςxz
∂t

+ µ

(
∂υx
∂z

+
∂υz
∂x

)
= 0,

(5.22)

where the vector p = (υx, υz, ςxx, ςzz, ςxz)
T is the adjoint-state wavefield, the vector δd =

(δdvx , δdvz )T represents data residuals. We assume that the observed data are two-component

vector particle velocity data. The adjoint-state wave equation represents the data residual

injected as an adjoint source and propagated in time-reversal mode. The adjoint-state

wavefield is the back-propagated wavefield or sometime called the receiver-side wavefield in

the migration jargon. The adjoint model perturbations (δm∗ = (δρ∗, δλ∗, δµ∗)
T

) can be

expressed as (Chen and Sacchi, 2017a)

δρ∗ = −
∫

(v̇xυx + v̇zυz)dt,

δλ∗ =

∫
(σ̇xx + σ̇zz)(ςxx + ςzz)

4(λ+ µ)2
dt,

δµ∗ =

∫ [
σ̇xzςxz
µ2

+
(σ̇xx + σ̇zz)(ςxx + ςzz)

4(λ+ µ)2
+

(σ̇xx − σ̇zz)(ςxx − ςzz)
4µ2

]
dt.

(5.23)

In elastic FWI, wave speeds are easier to resolve than Lamé parameters (Tarantola, 1986;

Forgues and Lambare, 1997). We use the following parameter transformation δ%∗

δV ∗p

δV ∗s

 =

 1 V 2
p − 2V 2

s V 2
s

0 2ρVp 0

0 − 4ρVs 2ρVs


 δρ∗

δλ∗

δµ∗

 , (5.24)

to transform the Lamé parameters perturbations to wave speeds perturbations. Equation

5.17, 5.22, 5.23 and 5.24 define the elastic RTM operator (equation 5.21).
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Solving for the Gauss-Newton step using preconditioned CGLS algorithm

It is important to precondition the linear system of equations to accelerate the convergence

of the CGLS algorithm of the Gauss-Newton step. We adopted the elastic pseudo-Hessian

for preconditioning the problem (Shin et al., 2001a; Chen and Sacchi, 2017a). The precon-

ditioned version of elastic LSRTM minimizes

Jgn(δm̃) =
1

2

Ns∑
i=1

‖LiPδm̃− δdi‖22, (5.25)

where P represents the pseudo-Hessian preconditioning. The preconditioned conjugate gra-

dient least squares (PCGLS) algorithm (Bjorck, 1996) is summarized in Algorithm 4. The

Algorithm 4 Preconditioned CGLS algorithm

Initialize
δm(0) = 0
r

(0)
i = δdi, i = 1, · · · , Ns

s(0) = P†
(∑Ns

i=1 L†ir
(0)
i

)
//compute the preconditioned gradient

p(0) = s(0)

γ(0) = ‖s(0)‖22
for l = 0, 1, · · · while not converge do

t(l) = Pp(l),

q
(l)
i = Lit

(l), i = 1, · · · , Ns //Born forward modeling

δ(l) =
∑Ns

i=1 ‖q
(l)
i ‖22

α(l) = γ(l)/δ(l) //calculate the step size

δm(l+1) = δm(l) + α(l)t(l) //update the model

r
(l+1)
i = r

(l)
i − α(l)q

(l)
i , i = 1, · · · , Ns //compute data residuals

s(l+1) = P†
(∑Ns

i=1 L†ir
(l+1)
i

)
//compute the preconditioned gradient

γ(l+1) = ‖s(l+1)‖22
β(l) = γ(l+1)/γ(l)

p(l+1) = s(l+1) + β(l)p(l) //compute the conjugate direction

end

output of Algorithm 4 is the inverted multiparameter model perturbation δm = Pδm̃ =

(δ%, δVp, δVs)
T . The latter is the Gauss-Newton search direction for elastic FWI.

5.2.4 Time-domain matrix-free elastic Gauss-Newton FWI

As discussed in the previous section, we propose a time-domain elastic Gauss-Newton FWI

using CGLS algorithm to solve the internal Gauss-Newton linear system of equations. We

stress that one does not need to formulate or invert the Hessian matrix explicitly. Instead,

the Hessian is iteratively inverted by the CGLS iterations. The CGLS only requires two
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operators L and L† that are applied “on the fly” to vectors. The operators L and L†

are efficiently applied to vectors via the adjoint-state method. We name this algorithm,

the time-domain matrix-free elastic Gauss-Newton FWI. The algorithm is summarized in

Algorithm 5.

Algorithm 5 Time-domain matrix-free elastic Gauss-Newton FWI

Initialize: m(0)

for k = 0, 1, · · · while it does not converge do

1. Forward modelling: d
(k)
i = di(m

(k)), i = 1, · · · , Ns
2. Compute data residual: δd

(k)
i = dobsi − d

(k)
i , i = 1, · · · , Ns

3. Compute Gauss-Newton search direction δm(k) by solving

min
δm̃(k)

1

2

Ns∑
i=1

‖L(k)
i P(k)δm̃(k) − δd(k)

i ‖
2
2

Apply the preconditioned CGLS algorithm 4.
4. Compute step size η(k) via parabolic fitting line search.
5. m(k+1) = m(k) + η(k)δm(k)

end
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5.3 Numerical Examples

Our software code was developed using the C language and parallelized via the Message

Passing Interface (MPI). The parallelization is implemented in shots. Our forward modelling

code adopts a time domain staggered-grid finite-difference (FD) scheme (Virieux, 1986) to

discretize the elastic wave equation. The algorithm also uses the unsplit Convolutional

Perfectly Matched Layer (C-PML) boundary condition (Komatitsch and Martin, 2007) to

absorb the artificial reflections arising from the computational boundaries. In our code, the

spatial FD order is selectable. The code automatically computes the FD coefficients from the

user-specified FD order (Liu and Sen, 2009). Our elastic Born code (L) and RTM code (L†)

pass the dot-product test (Mora, 1987a; Claerbout, 1992; Chen and Sacchi, 2017a). When

computing the FWI gradient, we do not save the source-side wavefield. Instead, we adopt

source-wavefield reconstruction method (Gauthier et al., 1986; Dussaud et al., 2008) that

allows us to only save wavefield on boundaries and the final time frame. The inversion code

follows the Algorithm 5. Note that, our elastic Gauss-Newton FWI utilize the multiscale

method (Kolb et al., 1986; Bunks et al., 1995). The time-domain data are filtered to form

sets of data with different frequency bands. Our FWI code inverts the low-frequency band

data first and then inverts high-frequency data. The inverted models from an early scale

are used as the initial model for inversion of higher scales. That is to say, there is another

extra loop over frequency bands outside the loops provided in Algorithm 5. There are in

total three loops of iterations for our elastic Gauss-Newton FWI algorithm.

The proposed time-domain matrix-free elastic FWI method was tested on the elastic inclu-

sion model and the elastic Marmousi2 model (Martin et al., 2006). The observed data are

simulated with a time-domain elastic staggered-grid finite-difference method. The C-PML

boundary condition was applied on four boundaries of the model. In other words, we do

not consider surface waves. The observed data are two-component particle velocity fields.

In this study, we simultaneously invert for P- and S- wave velocities and assume that the

density is known.

5.3.1 Elastic inclusion model

We design an elastic inclusion model to analyze the resolution of the proposed elastic Gauss-

Newton FWI. Figure 5.1 shows the true P- and S-wave velocity models. The square shape

velocity anomalies are embedded in a two-layer models. The P- and S-wave velocity models

are uncorrelated. Density is fixed at 2000 kg/m
3
. The model has a dimension of 2.0 km

in horizontal axis and 1.5 km in depth with 201 × 151 grid points. There are in total

51 shots and 201 receivers deployed along the surface that simulates a fixed-spread survey
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geometry. The shot interval is 40 m and receiver interval is 10 m. A 10 Hz central frequency

Ricker wavelet is used to simulate an explosive source. The multicomponent observed data

are simulated using our elastic staggered-grid finite-difference code. The forward modelling

is second-order accurate in time and eighth-order accurate in space (O(∆t2,∆x8)). The

observed multicomponent data cubes are shown in Figure 5.2. We compare the results of

conventional elastic FWI based on the nonlinear conjugate gradient method (hereafter, we

call it elastic NLCG FWI for short) and the proposed elastic Gauss-Newton FWI. In the

elastic NLCG FWI, we used the elastic pseudo-Hessian to precondition the gradient. The

line search is also based on parabolic fitting. Both the elastic NLCG FWI and the elastic

Gauss-Newton FWI utilize the multiscale method (Bunks et al., 1995). The four frequency

bands for the multiscale inversion are: 0-5 Hz, 0-10 Hz, 0-15 Hz and 0-30 Hz. Figure

5.3 shows the starting P- and S-wave velocity models for elastic NLCG FWI and elastic

Gauss-Newton FWI. The initial models contain two layers without the velocity anomalies.

The results of elastic NLCG FWI are shown in Figure 5.4 a and Figure 5.5 a. These results

were computed after 50 nonlinear conjugate gradient iterations. The elastic Gauss-Newton

FWI has iterated 10 times for the outer FWI loop and 20 times for inner CGLS loop (Figure

5.4 b and Figure 5.5 b). Both elastic NLCG FWI and the proposed elastic Gauss-Newton

obtain satisfactory results. The elastic Gauss-Newton FWI provides slightly better results

than the elastic NLCG FWI. The results of elastic Gauss-Newton FWI contain fewer artifacts

and crosstalk contamination. To show the details more clearly, we display the profiles of

the inverted P-wave velocity models in Figure 5.6 and the profiles of the inverted S-wave

velocity models in Figure 5.7. We can observe that the elastic Gauss-Newton FWI has fully

recovered the amplitude of the velocity anomalies and removed the crosstalk between the

P- and S-wave velocity models. We also examine the data fitting of the two elastic FWI

algorithms in Figure 5.8 and Figure 5.9. Figure 5.10 compares the converge curves of the

elastic NLCG FWI and the elastic Gauss-Newton FWI for four different frequency bands.

The relative data misfit for frequency band fb is defined as

misfit =

∑Ns

i=1 ‖d
fb
i − dobsi

fb‖22∑Ns

i=1 ‖dobsi
fb‖22

. (5.26)

The proposed elastic Gauss-Newton converges much faster than the elastic NLCG FWI.

5.3.2 Elastic Marmousi2 model

Figure 5.11 shows the true P- and S-wave velocity models of the elastic Marmousi2 model.

The P- and S-wave velocity models are uncorrelated in hydrocarbon reservoir areas (in-

dicated by the white triangles). Those areas are identified by the low P-wave velocities,
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(a)

(b)

Figure 1: Elastic inclusion model. (a) True P-wave velocity model. (b) True S-wave velocity

model.
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Figure 5.1: Elastic inclusion model. (a) True P-wave velocity model. (b) True S-wave
velocity model.
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(a)

(b)

Figure 2: Prestack multicomponent data for elastic inclusion model. (a) Horizontal particle

velocity data. (b) Vertical particle velocity data.
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Figure 5.2: Prestack multicomponent data. (a) Horizontal particle velocity data. (b) Ver-
tical partical velocity data.
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(a)

(b)

Figure 3: (a) Starting P-wave velocity model. (b) Starting S-wave velocity model.
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Figure 5.3: (a) Starting P-wave velocity model. (b) Starting S-wave velocity model.
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(a)

(b)

Figure 4: (a) Inverted P-wave velocity model by elastic NLCG FWI. (b) Inverted P-wave

velocity model by elastic Gauss-Newton FWI.
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Figure 5.4: (a) Inverted P-wave velocity model by elastic NLCG FWI. (b) Inverted P-wave
velocity model by elastic Gauss-Newton FWI.
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(a)

(b)

Figure 5: (a) Inverted S-wave velocity model by elastic NLCG FWI. (b) Inverted S-wave

velocity model by elastic Gauss-Newton FWI.
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Figure 5.5: (a) Inverted S-wave velocity model by elastic NLCG FWI. (b) Inverted S-wave
velocity model by elastic Gauss-Newton FWI.
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(a) (b)

Figure 6: Profiles of inverted P-wave velocity models at (a) x = 650 m and (b) x = 1520

m. Blue: true model; Red: starting model; Purple: inverted model by elastic NLCG FWI;

Green: inverted model by elastic Gauss-Newton FWI.
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Figure 5.6: Profiles of inverted P-wave velocity models at (a) x = 650 m and (b) x = 1450
m. Blue: true model; Red: starting model; Purple: inverted model by elastic NLCG FWI;
Green: inverted model by elastic Gauss-Newton FWI.
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(a) (b)

Figure 7: Profiles of inverted S-wave velocity models at (a) x = 1450 m and (b) x = 590

m. Blue: true model; Red: starting model; Purple: inverted model by elastic NLCG FWI;

Green: inverted model by elastic Gauss-Newton FWI.
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Figure 5.7: Profiles of inverted S-wave velocity models at (a) x = 650 m and (b) x = 1450
m. Blue: true model; Red: starting model; Purple: inverted model by elastic NLCG FWI;
Green: inverted model by elastic Gauss-Newton FWI.
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(a) (b) (c)

(d) (e) (f)

Figure 8: Data and residuals for elastic NLCG FWI. (a) Observed horizontal component

data of shot at x = 1000 m. (b) Horizontal component data modeled by elastic NLCG FWI

inverted models. (c) Horizontal component data residual. (d) Observed vertical component

data of shot at x = 1000 m. (e) Vertical component data modeled by elastic NLCG FWI

inverted models. (f) Vertical component data residual.
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Figure 5.8: Data and residuals for elastic NLCG FWI. (a) Observed horizontal component
data of shot at x = 1000 m. (b) Horizontal component data modeled by elastic NLCG FWI
inverted models. (c) Horizontal component data residual. (d) Observed vertical component
data of shot at x = 1000 m. (e) Vertical component data modeled by elastic NLCG FWI
inverted models. (f) Vertical component data residual.
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(a) (b) (c)

(d) (e) (f)

Figure 9: Data and residuals for elastic Gauss-Newton FWI. (a) Observed horizontal com-

ponent data of shot at x = 1000 m. (b) Horizontal component data modeled by elastic

Gauss-Newton FWI inverted models. (c) Horizontal component data residual. (d) Observed

vertical component data of shot at x = 1000 m. (e) Vertical component data modeled by

elastic Gauss-Newton FWI inverted models. (f) Vertical component data residual.
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Figure 5.9: Data and residuals for elastic Gauss-Newton FWI. (a) Observed horizontal
component data of shot at x = 1000 m. (b) Horizontal component data modeled by elastic
Gauss-Newton FWI inverted models. (c) Horizontal component data residual. (d) Observed
vertical component data of shot at x = 1000 m. (e) Vertical component data modeled by
elastic Gauss-Newton FWI inverted models. (f) Vertical component data residual.
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10-3 Convergence curves of 1st frequency scale
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10-5 Convergence curves of 2nd frequency scale
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10-5 Convergence curves of 3rd frequency scale
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10-5 Convergence curves of 4th frequency scale

(d)

Figure 10: Relative data misfit curves for elastic NLCG FWI and elastic Gauss-Newton

FWI in frequency band (a) 0 - 5 Hz, (b) 0 - 10 Hz, (c) 0 - 15 Hz, (d) 0 - 30 Hz. Blue:

data misfit curves for elastic NLCG FWI. Red: data misfit curves for elastic Gauss-Newton

FWI.
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Figure 5.10: Relative data misfit curves for elastic NLCG FWI and elastic Gauss-Newton
FWI in frequency band (a) 0 - 5 Hz, (b) 0 - 10 Hz, (c) 0 - 15 Hz, (d) 0 - 30 Hz. Blue: data
misfit curves for elastic NLCG FWI. Red: data misfit curves for elastic Gauss-Newton FWI.
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whereas their signature is much weaker in the S-wave velocity model. Density is assumed

to be constant (2000 kg/m
3
). The model has a dimension of 3.0 km in the horizontal axis

and 1.3 km in depth with 301 × 131 grid points. There are 61 shots and 301 receivers

deployed along the surface that simulates a fixed-spread survey geometry. The shot interval

is 50 m and receiver interval is 10.0 m. A 10 Hz central frequency Ricker wavelet is used

to simulate an explosive source. The multicomponent observed data are simulated using

our elastic finite-difference code. The forward modelling is second-order accurate in time

and twelfth-order accurate in space (O(∆t2,∆x12)). The observed data cubes are shown

in Figure 5.12. The four frequency bands for the multiscale inversion are: 0-2 Hz, 0-5 Hz,

0-10 Hz and 0-30 Hz. Figure 5.13 shows the starting P- and S-wave velocity models for

the elastic NLCG FWI and the elastic Gauss-Newton FWI. The initial models are 1D with

linearly increasing P and S-wave velocities.

The results of elastic NLCG FWI are shown in Figure 5.14 a and Figure 5.15 a. These

results were computed after 50 nonlinear conjugate gradient iterations. The elastic Gauss-

Newton FWI has iterated 10 times for outer FWI loop and 20 times for inner CGLS loop

(Figure 5.14 b and Figure 5.15 b). The results of elastic Gauss-Newton FWI are slightly

better than those of the elastic NLCG FWI. We display the profiles of the inverted P-wave

velocity models in Figure 5.16 and the profiles of the inverted S-wave velocity models in

Figure 5.17. We also examine the data fitting of the two elastic FWI algorithms in Figure

5.18 and Figure 5.19. Both NLCG and Gauss-Newton elastic FWI predict the observed data

well. Figure 5.20 compares the converge curves of the elastic NLCG FWI and the elastic

Gauss-Newton FWI for four different frequency bands. We can observe that the elastic

Gauss-Newton converges much faster than the elastic NLCG FWI.

5.4 Discussion

The developed time-domain matrix-free elastic Gauss-Newton FWI generates moderately

improved results comparing with elastic NLCG FWI. In addition, the elastic Gauss-Newton

FWI algorithm is more expensive than the elastic NLCG FWI. This is because the elastic

Gauss-Newton FWI algorithm has an additional inner CGLS loop to estimate the search

direction. For the numerical examples in this work, the computation time of elastic Gauss-

Newton FWI is about three times the computation time of elastic NLCG. There are several

strategies to reduce the computational cost of elastic Gauss-Newton FWI. First, one can

adopt data contraction strategies such as source encoding, plan-wave synthesis or stochastic

source subsampling to reduce the computational cost (Krebs et al., 2009; Vigh and Starr,

2008; van Leeuwen and Herrmann, 2013). Second, it is possible to design an early termi-

nation strategy for the inner CGLS iteration in the elastic Gauss-Newton FWI (Metivier



CHAPTER 5. TIME-DOMAIN MATRIX-FREE ELASTIC GAUSS-NEWTON FWI 111

(a)

(b)

Figure 11: Elastic Marmousi2 model. (a) True P-wave velocity model. (b) True S-wave

velocity model.
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Figure 5.11: Elastic Marmousi2 model. (a) True P-wave velocity model. (b) True S-wave
velocity model.
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(a)

(b)

Figure 12: Prestack multicomponent data for elastic Marmousi2 model. (a) Horizontal

particle velocity data. (b) Vertical particle velocity data.
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Figure 5.12: Prestack multicomponent data. (a) Horizontal particle velocity data. (b)
Vertical partical velocity data.
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(a)

(b)

Figure 13: (a) Starting P-wave velocity model. (b) Starting S-wave velocity model.
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Figure 5.13: (a) Starting P-wave velocity model. (b) Starting S-wave velocity model.
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(a)

(b)

Figure 14: (a) Inverted P-wave velocity model by elastic NLCG FWI. (b) Inverted P-wave

velocity model by elastic Gauss-Newton FWI.
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Figure 5.14: (a) Inverted P-wave velocity model by elastic NLCG FWI. (b) Inverted P-wave
velocity model by elastic Gauss-Newton FWI.
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(a)

(b)

Figure 15: (a) Inverted S-wave velocity model by elastic NLCG FWI. (b) Inverted S-wave

velocity model by elastic Gauss-Newton FWI.
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Figure 5.15: (a) Inverted S-wave velocity model by elastic NLCG FWI. (b) Inverted S-wave
velocity model by elastic Gauss-Newton FWI.
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(a) (b)

Figure 16: Profiles of inverted P-wave velocity models at (a) x = 650 m and (b) x = 1520

m. Blue: true model; Red: starting model; Purple: inverted model by elastic NLCG FWI;

Green: inverted model by elastic Gauss-Newton FWI.
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Figure 5.16: Profiles of inverted P-wave velocity models at (a) x = 1000 m and (b) x = 2050
m. Blue: true model; Red: starting model; Purple: inverted model by elastic NLCG FWI;
Green: inverted model by elastic Gauss-Newton FWI.
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(a) (b)

Figure 17: Profiles of inverted S-wave velocity models at (a) x = 1450 m and (b) x = 590

m. Blue: true model; Red: starting model; Purple: inverted model by elastic NLCG FWI;

Green: inverted model by elastic Gauss-Newton FWI.
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Figure 5.17: Profiles of inverted S-wave velocity models at (a) x = 1000 m and (b) x = 2050
m. Blue: true model; Red: starting model; Purple: inverted model by elastic NLCG FWI;
Green: inverted model by elastic Gauss-Newton FWI.
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et al., 2013). Third, the design of preconditioning operators to accelerate the convergence of

the inner CGLS iteration of the elastic Gauss-Newton FWI could lead to important savings

in computational time. Research in the area of preconditioning should be prioritized in the

future in order to make elastic Gauss-Newton FWI viable for practical applications.

5.5 Conclusions

A time-domain matrix-free elastic Gauss-Newton FWI based on the elastic LSRTM algo-

rithm was developed. We formulate the elastic Gauss-Newton FWI as an iterative elastic

LSRTM problem. The proposed algorithm consists of two loops of iterations: the outer

Gauss-Newton nonlinear iterations and the inner CGLS linear iterations. The outer nonlin-

ear iteration uses a parabolic fitting line search to estimate the step size. The Gauss-Newton

search direction in each outer FWI iteration is computed using the matrix-free CGLS algo-

rithm. We point out that this step is equivalent to apply an elastic LSRTM to data residuals

with the Fréchet derivative operator as an elastic Born modelling operator and the adjoint

of Fréchet derivative operator as the elastic RTM operator. The CGLS algorithm can be

safely used for solving the Gauss-Newton search direction because our discretized numerical

versions of elastic Born and RTM operators passed the dot-product test. In the inner CGLS

linear iterations, the step size is analytically calculated without the need of a line search.

The inner CGLS linear iterations are preconditioned using the elastic pseudo-Hessian op-

erator. Our algorithm is matrix-free that only requires the forward Fréchet derivative and

adjoint Fréchet derivative operators applied to vectors. The operators are applied on vectors

efficiently via the adjoint-state method. We use the proposed algorithm to simultaneously

invert for P- and S-wave velocities. The proposed elastic Gauss-Newton FWI generates

slightly better-inverted models than the NLCG method based elastic FWI.
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(a) (b) (c)

(d) (e) (f)

Figure 18: Data and residuals for elastic NLCG FWI. (a) Observed horizontal component

data of shot at x = 1000 m. (b) Horizontal component data modeled by elastic NLCG FWI

inverted models. (c) Horizontal component data residual. (d) Observed vertical component

data of shot at x = 1000 m. (e) Vertical component data modeled by elastic NLCG FWI

inverted models. (f) Vertical component data residual.

Chen & Sacchi – GEO-Example

51

Figure 5.18: Data and residuals for elastic NLCG FWI. (a) Observed horizontal component
data of shot at x = 1500 m. (b) Horizontal component data modeled by elastic NLCG FWI
inverted models. (c) Horizontal component data residual. (d) Observed vertical component
data of shot at x = 1500 m. (e) Vertical component data modelled by elastic NLCG FWI
inverted models. (f) Vertical component data residual.
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(a) (b) (c)

(d) (e) (f)

Figure 19: Data and residuals for elastic Gauss-Newton FWI. (a) Observed horizontal

component data of shot at x = 1000 m. (b) Horizontal component data modeled by elastic

Gauss-Newton FWI inverted models. (c) Horizontal component data residual. (d) Observed

vertical component data of shot at x = 1000 m. (e) Vertical component data modeled by

elastic Gauss-Newton FWI inverted models. (f) Vertical component data residual.
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Figure 5.19: Data and residuals for elastic Gauss-Newton FWI. (a) Observed horizontal
component data of shot at x = 1500 m. (b) Horizontal component data modeled by elastic
Gauss-Newton FWI inverted models. (c) Horizontal component data residual. (d) Observed
vertical component data of shot at x = 1500 m. (e) Vertical component data modelled by
elastic Gauss-Newton FWI inverted models. (f) Vertical component data residual.
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(d)

Figure 20: Relative data misfit curves for elastic NLCG FWI and elastic Gauss-Newton

FWI in frequency band (a) 0 - 2 Hz, (b) 0 - 5 Hz, (c) 0 - 10 Hz, (d) 0 - 30 Hz. Blue: data

misfit curves for elastic NLCG FWI. Red: data misfit curves for elastic Gauss-Newton FWI.
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Figure 5.20: Relative data misfit curves for elastic NLCG FWI and elastic Gauss-Newton
FWI in frequency band (a) 0 - 2 Hz, (b) 0 - 5 Hz, (c) 0 - 10 Hz, (d) 0 - 30 Hz. Blue: data
misfit curves for elastic NLCG FWI. Red: data misfit curves for elastic Gauss-Newton FWI.



CHAPTER 6

Conclusions

With the fast development of computer hardware, imaging and inversion techniques pro-

posed by the exploration geophysics community are moving from simplified methods to

more complex methods that honour as far as possible the physics of wave propagation. This

thesis deals with imaging techniques based on two-way wave-equation operators and elastic

physics. Multiparameter imaging and inversion often suffer from crosstalk artifacts of pa-

rameters. In this thesis, I investigate the role of Hessian for decoupling elastic parameters in

elastic imaging and inversion. Moreover, I develop a matrix-free elastic Gauss-Newton FWI

method based on elastic LSRTM code. It may be an alternative to popular gradient-based

elastic FWI methods.

In Chapter 1, I have reviewed the topics of seismic imaging and inversion.

In Chapter 2, I draw connections between migration, least-squares migration and full-

waveform inversion.

In Chapter 3, I formulate the elastic Born approximation and elastic reverse time migration

(RTM) operators with a first-order velocity-stress isotropic elastic wave-equation system. I

incorporate the two operators into a least-squares inversion scheme. I name this new method

as elastic least-squares reverse time migration. The forward modelling engine of my pro-

posed method adopts the time-domain staggered-grid finite-difference and the convolutional

perfectly matched layers boundary condition. My discretized computer codes of the elastic

Born operator and its adjoint (elastic RTM operator) pass the dot-product test. I use the

CGLS algorithm to solve the least-squares optimization problem. The Hessian operator for

elastic LSRTM is implicitly inverted via a matrix-free algorithm that only requires the ac-

tion of forward and adjoint operators on vectors. Note that I do not explicitly compute the

Hessian or store the Hessian in memory. I observe that the elastic LSRTM provides higher
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resolution images with fewer artifacts and a superior balance of amplitudes when compared

to elastic RTM. The elastic LSRTM can also mitigate cross-talk between the P-wave and

S-wave images.

In Chapter 4, I investigate the influence of including density in elastic LSRTM. In conven-

tional elastic LSRTM algorithms, density is either assumed to be constant or known. In

other words, the density perturbation is not part of the least-squares inversion formulation.

I find that neglecting density in elastic LSRTM may lead to crosstalk artifacts in the P-

and S-wave images. I introduce a time-domain three-parameter elastic LSRTM algorithm

to simultaneously invert for density, P- and S-wave images. The proposed three-parameter

elastic LSRTM is able to reduce the multiparameter crosstalk among density, P- and S-wave

images. It provides an estimation of the density perturbation image. Moreover, I observe

that including density image in the elastic LSRTM inversion can improve the convergence of

the least-squares inversion. The proposed three-parameter elastic LSRTM does not entirely

remove the multiparameter crosstalk from the images. The radiation patterns of the density

perturbation and velocity perturbations overlap which indicates that one has little hope in

precisely recovering density. The short wavelength of the density model may be resolved

only partially from P- and S-wave images. A prior information about the density contrast

should be be incorporated to compute reliable multiparameter estimates. One possibility is

to adopt a Bayesian approach to integrate information about correlations that might exist

between elastic parameters. This approach will entail having access to sufficient information

from well log data analysis, rock physics models and geostatistical information to estimate

covariance matrices that can help the recovery of the elastic parameters. The Bayesian ap-

proach is prevalent in linearized AVO analysis (Ulrych et al., 2001; Buland and Omre, 2003;

Alemie and Sacchi, 2011) and has also been used for poststack inversion by many researchers

(Bongajum et al., 2013), one could expect similar developments in multiparameter imaging

and inversion.

In Chapter 5, I introduce a time-domain matrix-free elastic Gauss-Newton FWI algorithm.

I point out that the elastic Gauss-Newton FWI is an iterative elastic LSRTM problem.

In this framework, different LSM methods can be used to design a matrix-free Gauss-

Newton FWI algorithm. My proposed algorithm consists of two loops of iterations: the

outer Gauss-Newton nonlinear iterations and the inner CGLS linear iterations. The Gauss-

Newton search direction in each outer FWI iteration is computed using the CGLS method,

which is equivalent to apply an elastic LSRTM on data residual. The advantage of my

proposed algorithm is that it is matrix-free and only requires the forward and adjoint Fréchet

derivative operators applied to vectors. Memory requirements are of the same order of the

elastic NLCG FWI method. I use the proposed algorithm to simultaneously invert for P-

and S-wave velocities. The proposed elastic Gauss-Newton FWI generates slightly better-

inverted models than the elastic NLCG FWI. The elastic Gauss-Newton FWI converges
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faster than the elastic NLCG FWI. The proposed matrix-free Gauss-Newton FWI has the

potential to be used to suppress crosstalk in multiparameter FWI. The disadvantage of

the matrix-free elastic Gauss-Newton FWI is that it is more expensive than the elastic

NLCG FWI. The elastic Gauss-Newton FWI algorithm has an additional inner loop for

CGLS iteration. For the numerical examples presented in this thesis, the run time of elastic

Gauss-Newton FWI is approximately three times of the run time of elastic NLCG. Future

research is needed to design algorithms that reduce the computational cost of the matrix-

free elastic Gauss-Newton FWI. For example, one can utilize data contraction strategies

such as source encoding, plan-wave synthesis or stochastic source subsampling to reduce the

computational cost. Another route to reduce computational cost of the time-domain elastic

Gauss-Newton FWI is to design an intelligent criterion for terminating the inner CGLS

iteration early. Moreover, preconditioning strategies need to be investigated to accelerate

the convergence of the inner CGLS loop in the elastic Gauss-Newton FWI algorithm. With

the advancement of the development of high-performance computing and the acceleration

strategies, the time-domain matrix-free elastic Gauss-Newton FWI will become a practical

alternative to conventional gradient-based optimization method. Last, it is important to

point out that adopting second-order optimization methods like the Gauss-Newton FWI

offers a significant challenge if one wishes to invert for large 3D subsurface models.
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APPENDIX A

Software developed for this thesis: Elastic least-squares

reverse time migration (ELSRTM)

My software for the proposed elastic LSRTM method is written in C programming language

and parallelized using the message passing interface (MPI). This section provide a brief

documentation of the main functions used to develop this thesis.

• elsrtm.c: Main function. It defines variables and allocate dynamic memory for arrays

used in elastic LSRTM. It calls the function elastic lsrtm.c.

• read par.c: Function reads input parameters from a text file.

• read model.c: Function reads background density, P- and S-wave velocity models

from hard drive.

• compute fdc.c: Function computes staggered-grid finite-difference (FD) stencil coef-

ficients from input FD order (Liu and Sen, 2009).

• check cfl.c: Function checks the stability condition (CFL condition) of the finite-

difference time stepping.

• check dispersion.c: Function checks the numerical dispersion of the FD modeling.

• pad model.c: Function pads the input models by the width of absorbing boundary

and the width of half the FD stencil length.

• vel to lame.c: Function calculates Lamé parameters from density, P- and S- wave

velocities.
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• extend rho mu.c: Function extends right and bottom sides of density and shear mod-

ulus model for one more layer to deal with the staggered pattern when calculating the

effective media parameters.

• effective par.c: Function calculates the effective media parameters on the staggered-

grids.

• initialize PML.c: Function constructs the damping profile in the unsplit Convolu-

tional Perfectly Matched Layer (C-PML) boundary (Komatitsch and Martin, 2007).

• split shots.c: Function divides the computational assignments by shots and dis-

tributes to different CPU cores.

• elastic lsrtm.c: Function conducts elastic LSRTM via the conjugate gradient least

squares (CGLS) algorithm (Paige and Saunders, 1982). It calls the function elastc born.c

as forward operator and the function elastic rtm.c as adjoint operator.

• read data.c: Function reads two-component observed data from hard drive.

• elastic rtm.c: Function conducts elastic RTM. It calls function wavefield simulation.c

twice for forward and adjoint (backward) wave propagations, and computing kernels

(elastic images).

• wavefield simulation.c: Function conducts forward and adjoint (backward) wave

propagation simulations using time domain elastic staggered-grid FD scheme (Virieux,

1986). The spatial FD order is selectable (can be an arbitrary order) and is an input pa-

rameter from read par.c. The corresponding FD stencil coefficients are automatically

calculated using function compute fdc.c. The computation of the elastic RTM kernels

requires access to the forward and backward wavefields at same time step. However,

these two wavefields are computed in the reverse time direction. I adopt the source

wavefield reconstruction method (Gauthier et al., 1986; Dussaud et al., 2008). Dur-

ing the forward simulation of the source-side wavefield, only the wavefield within the

depth of half of the spatial finite difference operator length on boundaries and the final

time snapshots are saved in memory. Then, the source-side wavefield is recomputed

from the saved wavefield by backward propagation while simultaneously computing

the backward receiver-side wavefield. In the source-side wavefield reconstruction, the

time-stepping runs in time-reversal direction and the source function (Ricker wavelet)

is subtracted from the wavefield. The function wavefield simulation.c is respon-

sible for forward simulation, adjoint simulation and source wavefield reconstruction.

The different modes of the function are controlled by a switcher int FORWARD (= 1 or

= 0). It calls the following functions.
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• update velocity interior.c: Function computes particle velocity fields using the

staggered-grid FD stencil (Virieux, 1986). It updates the wavefield in the interior of

the computational domain that excludes the C-PML boundaries.

• update stress interior.c: Function computes stress tensor fields using the staggered-

grid FD stencil. It updates the wavefield in the interior of the computational domain

that excludes the C-PML boundaries.

• update velocity boundary.c: Function computes particle velocity fields in the com-

putational boundaries using the staggered-grid FD stencil and C-PML boundary con-

dition (Komatitsch and Martin, 2007).

• update stress boundary.c: Function computes stress tensor fields in the computa-

tional boundaries using the staggered-grid FD stencil and C-PML boundary condition.

• explosive source.c: Function adds the source term into (during forward simula-

tion) or subtracts the source term from (during source-wavefield reconstruction) the

wavefield during FD time stepping. The two modes are controlled by a switcher int

DIRECTION (= 1 or = 0).

• wavelet.c: Source wavelet function.

• add adjoint src.c: Function adds the adjoint source term into the wavefield during

adjoint (backward) FD time stepping.

• store wavefield boundary.c: Function saves the particle velocity and stress tensor

wavefields along the computational boundaries within the depth of half of the spatial

FD stencil length during the forward simulation. The saved wavefields are used to

reconstruct the source-side wavefield during adjoint simulation (back propagation).

• store last snapshot.c: Function saves the particle velocity and stress tensor wave-

fields at the last time step during the forward simulation. The saved wavefields are

used to reconstruct the source-side wavefield during adjoint simulation (back propa-

gation).

• restore last snapshot.c: Function re-injects the saved wavefields for source wave-

field reconstruction.

• restore velocity boundary.c: Function re-injects the saved particle velocity wave-

fields along boundaries for source wavefield reconstruction.

• restore stress boundary.c: Function re-injects the saved stress tensor wavefields

along boundaries for source wavefield reconstruction.
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• compute gradients.c: Function computes the elastic RTM images via the interaction

of the forward and adjoint (backward) wavefields.

• elastic born.c: Function conducts the elastic Born approximation modeling. The

source-side wavefield modeling time stepping and the Born modeling time stepping

are put in the same time loop to avoid the need of saving source-side wavefield.

• add scatter source.c: Functions adds the Born secondary source into the wavefields

during the elastic Born modeling time stepping.



APPENDIX B

Software developed for this thesis: time-domain

matrix-free elastic Gauss-Newton FWI (EGNFWI)

The software of the proposed time-domain matrix-free elastic Gauss-Newton method is also

written in the C programming language and parallelized using the message passing interface

(MPI). The development of this software package is based on the elastic LSRTM software

package.

• efwi.c: Main function. It defines variables and allocate dynamic memory for ar-

rays used in elastic Gauss-Newton FWI. It calls the function elastic gn fwi.c for

computation.

• read par.c: Function reads input parameters from a text file.

• read frequencies.c: Function reads frequency bands used in multiscale method from

a text file.

• read model.c: Function reads background density, P- and S-wave velocity models

from hard drive.

• compute fdc.c: Function computes staggered-grid FD stencil coefficients from input

FD order (Liu and Sen, 2009).

• check cfl.c: Function checks the stability condition (CFL condition) of the FD time

stepping.

• check dispersion.c: Function checks the numerical dispersion of the FD modeling.

• initialize PML.c: Function constructs the damping profile in the unsplit C-PML

boundary (Komatitsch and Martin, 2007).
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• split shots.c: Function divides the computational assignments by shots and dis-

tributes to different CPU cores.

• elastic gn fwi.c: Function conducts elastic Gauss-Newton FWI. It calls function

forward modeling.c for simulating data, elastic lsrtm.c for computing Gauss-

Newton search direction, line search.c for estimating the step size, and

update model test.c for updating the model.

• forward modeling.c: Function simulates wavefield using current model and calcu-

lates data residuals. It calls function wavefield simulation.c.

• band pass filter 1d.c: Function filters the source wavelet using a time-domain But-

terworth filter.

• band pass filter 2d.c: Function filters the observed seismic data using a time-

domain Butterworth filter.

• wavefield simulation.c: Function conducts forward and adjoint (backward) wave

propagation simulations using time domain elastic staggered-grid FD scheme (Virieux,

1986). The spatial FD order is a user-defined parameter. During backward propaga-

tion, the function adopts the source wavefield reconstruction method (Gauthier et al.,

1986; Dussaud et al., 2008) to recompute the source-side wavefield. The function is

responsible for forward simulation, adjoint simulation and source wavefield reconstruc-

tion. The different modes of the function are controlled by a switcher int FORWARD

(= 1 or = 0).

• elastic lsrtm.c: Function computes Gauss-Newton search direction using elastic

LSRTM code. It uses the CGLS algorithm for solving a linear system of equations.

It calls functions elastic rtm.c and elastic born.c a forward and adjoint operator

pair.

• read data.c: Function reads two-component observed data from hard drive.

• elastic rtm.c: Function conducts elastic RTM. It calls function wavefield simulation.c

twice for forward and adjoint (backward) wave propagations, and computing FWI ker-

nels.

• update velocity interior.c: Function computes particle velocity fields in the inte-

rior of the computational domain using the staggered-grid FD stencil (Virieux, 1986).

• update stress interior.c: Function computes stress tensor fields in the interior of

the computational domain using the staggered-grid FD stencil.
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• update velocity boundary.c: Function computes particle velocity fields in the com-

putational boundaries using the staggered-grid FD stencil and C-PML boundary con-

dition (Komatitsch and Martin, 2007).

• update stress boundary.c: Function computes stress tensor fields in the computa-

tional boundaries using the staggered-grid FD stencil and C-PML boundary condition.

• explosive source.c: Function adds the source term into (during forward simula-

tion) or subtracts the source term from (during source-wavefield reconstruction) the

wavefield during FD time stepping. The two modes are controlled by a switcher int

DIRECTION (= 1 or = 0).

• wavelet.c: Source wavelet function.

• add adjoint src.c: Function adds the adjoint source term into the wavefield during

adjoint (backward) FD time stepping.

• store wavefield boundary.c: Function saves the particle velocity and stress tensor

wavefields along the computational boundaries within the depth of half of the spatial

FD stencil length during the forward simulation. The saved wavefields are used to

reconstruct the source-side wavefield during adjoint simulation (back propagation).

• store last snapshot.c: Function saves the particle velocity and stress tensor wave-

fields at the last time step during the forward simulation. The saved wavefields are

used to reconstruct the source-side wavefield during adjoint simulation (back propa-

gation).

• restore last snapshot.c: Function re-injects the saved wavefields for source wave-

field reconstruction.

• restore velocity boundary.c: Function re-injects the saved particle velocity wave-

fields along boundaries for source wavefield reconstruction.

• restore stress boundary.c: Function re-injects the saved stress tensor wavefields

along boundaries for source wavefield reconstruction.

• compute gradients.c: Function computes the elastic FWI gradient kernels via the

interaction of the forward and adjoint (backward) wavefields.

• elastic born.c: Function conducts the elastic Born approximation modeling. The

source-side wavefield modeling time stepping and the Born modeling time stepping

are put in the same time loop to avoid the need of saving source-side wavefield.

• add scatter source.c: Function adds the Born secondary source into the wavefields

during the elastic Born modeling time stepping.
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• line search.c: Function performs line search via parabola fitting approach. It alls

functions update model test.c, forward modeling.c and calculate step length.c.

• pad model.c: Function pads the input models by the width of absorbing boundary

and the width of half the FD stencil length.

• vel to lame.c: Function calculates Lamé parameters from density, P- and S- wave

velocities.

• extend rho mu.c: Function extends right and bottom sides of density and shear mod-

ulus model for one more layer to deal with the staggered pattern when calculating the

effective media parameters.

• effective par.c: Function calculates the effective media parameters on the staggered-

grids.

• calculate step length.c: Function solves coefficients of the parabola in parabola

fitting line search and returns the step size.

• update model test.c: Function updates the model in line search trial step or updates

the model using an estimated step size. The two modes are controlled by a switcher

int TEST (= 1 or = 0).



APPENDIX C

High-performance computing implementation

The numerical examples in this thesis are computed on the high-performance computing

infrastructure provided by Compute Canada. The main systems used are Jasper, Parallel,

Cedar (GP2) and Graham (GP3) of Compute Canada. Among them, Jasper and Paral-

lel adopt the Portable Batch System (PBS) job scheduler, Cedar and Graham adopt the

SLURM job scheduler. For the numerical examples of elastic LSRTM, I requested 101 CPU

cores. For numerical examples of elastic Gauss-Newton FWI, I requested 61 CPU cores.
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