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Abstract

Simultaneous-source acquisition is a seismic data acquisition technology that has become

quite popular in recent years due to its economic advantages. Contrary to conventional

seismic acquisition, where one records the seismic response of only one source at a time,

in simultaneous source acquisition, an array of receivers record the response of more than

one source. The latter leads to a saving in acquisition time, but it creates new problems

in subsequent data processing stages where each seismic record must correspond to the

response of one single source. The basic idea for simultaneous source data processing is

to separate the sources and thereby estimate the responses one would have acquired via a

conventional seismic data acquisition. Then one can adopt a traditional seismic workflow

to process and invert the seismic data.

This thesis focuses on developing inversion schemes for separating simultaneous-source data.

I pay particular attention to strategies based on the Projected Gradient Descent (PGD)

method with a projection synthesized via robust denoising algorithms. First, I propose

adopting a robust and sparse Radon transform to define a coherence pass projection operator

to guarantee solutions that honour simultaneous source records. I show that a critical

improvement in convergence is attainable when the coherence pass projection originates

from a robust and sparse Radon transform. The latter is a consequence of having an

iterative source separation algorithm that applies intense denoising to erratic blending noise

in its initial iterations.

In addition, I also propose an inversion scheme for simultaneous-source data separation based

on a robust low-rank approximation algorithm. A robust Multichannel Singular Spectrum
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Analysis (MSSA) filtering is adopted as the projection operator to suppress source inter-

ferences in the frequency-space domain. The MSSA method is reformulated as a robust

optimization problem that includes a low-rank Hankel matrix constraint, written as the

product of two matrices of lower dimension obtained by the bifactored gradient descent

(BFGD) method.

In the second part of my thesis, I explore an inversion scheme for source separation and

source reconstruction that honours actual source coordinates. The proposed method adopts

a projected gradient descent optimization with a reduced-rank MSSA projection operator.

I propose to adopt an Interpolated-MSSA (I-MSSA) to separate and reconstruct sources

in situations where the acquired simultaneous source data correspond to sources with ar-

bitrary irregular-grid coordinates. Additionally, a faster and computational-e�cient MSSA

(FMSSA) algorithm was applied to speed up the method.
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CHAPTER 1

Introduction

Geophysicists aim to develop techniques to quantitatively estimate subsurface geological

structures and properties. Moreover, they are also interested in understanding processes

occurring in the Earth’s interior (Fowler et al., 1990). Mainly, subsurface investigations

are carried out via indirect methods. In other words, subsurface properties are inferred

from measurements recorded on the surface of the Earth. Geophysicists adopt di↵erent

strategies for obtaining these properties. These methods could be divided into three main

categories. The first of these, the seismic method, uses traveltime and amplitude variations

of propagating waves to estimate the elastic properties of the subsurface (Yilmaz, 2001,

2021). Human-made explosive sources or vibratory disturbances are used to emit seismic

waves into the subsurface. Geological interfaces reflect these waves; they propagate upwards

and are finally recorded by arrays of receivers. After applying computationally intensive

signal processing and inversion techniques, the data (seismograms) are mapped to images

delineating geological structures.

Then we have the second class of methods that is entirely di↵erent in principle. They are

often called potential field methods because they depend on the distortion of a scalar or

vector potential field caused by some perturbation of a suitable physical property in the

subsurface (Telford et al., 1990; Blakely, 1996). Examples of the latter are the gravity

prospecting method which measures the distortion of the gravitational potential caused by

the variability of subsurface density distribution (Ander et al., 1989). Similarly, electric

and magnetic methods measure the distortion of the electric and magnetic fields due to

subsurface variations of resistivity and susceptibility (Reynolds, 2011).

Last, a large category of methods includes techniques that can be named electromag-

netic geophysical methods in which natural or artificially generated electric or magnetic

fields are measured on Earth’s surface or in boreholes to estimate electrical or magnetic

1
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properties variations. This group contains some popular techniques: induced polarization,

controlled-source electromagnetic, magnetotelluric (MT), and ground penetrating radar sur-

veying (Telford et al., 1990; Reynolds, 2011). In particular, the MT method uses naturally

occurring electromagnetic (EM) waves in Earth’s atmosphere and magnetosphere. These

fields induce currents into the Earth, which are measured at the surface and contain infor-

mation about subsurface resistivity structures. The MT method can image the electrical

resistivity structure of the earth with a depth range from a few 100 metres to several 100

kilometres (Tikhonov, 1950; Cagniard, 1953; Cantwell and Madden, 1960; Price, 1962; Bai

et al., 2010). The main applications of MT prospection include the study of active tectonics

and continental dynamics (Arora et al., 2007; Zhao et al., 2012), hydrocarbon exploration

(Unsworth, 2005), mine exploration, and geothermal exploration (Munoz, 2014).

My work centers on seismic exploration, particularly processing methods for simultaneous-

source seismic data. In the following sections, I briefly describe the seismic reflection method

and provide an overview of simultaneous-source acquisition seismic data processing methods.

1.1 The seismic exploration method

The seismic exploration method is essential for discovering, exploiting, and monitoring re-

sources, i.e., hydrocarbon reservoir. It is also adopted for environmental and geotechnical

studies of the near-surface (Yilmaz, 2021). The seismic method uses waves caused by a pas-

sive or active source to emit elastic waves down into the Earth. As they travel downwards,

these waves encounter interfaces separating materials (rocks) of di↵erent elastic properties

and densities. At these interfaces, part of the energy is transmitted downward and reflected

upwards. Waves reflected upwards are recorded by an array of receivers1. A multi-source

experiment permits illuminating a target area in the subsurface with waves and acquiring

data that are then numerically processed to obtain images. Customary, four stages are

associated with the seismic method:

• Data acquisition: In this stage, seismic data are acquired after selecting acqui-

sition parameters related to the depth of investigation and equipment availability.

These parameters are also associated with specific sampling requirements for time

and space discretization. These requirements are given by the Nyquist-Shannon sam-

pling theorem (Oppenheim et al., 1999) 2. The seismic acquisition can be carried out

1Sensors of seismic signals are electromagnetic transducers placed on the surface of the Earth or hy-
drophones placed just below the ocean surface. Sensors that measure particle velocity and pressure are also
placed on the sea-bed.

2Nyquist-Shannon sampling is a strict requirement for regular spatial sampling. Today, one could use
Compressive Sensing (Donoho, 2006) for random sub-sampling techniques and sample at less severe rates
than the Nyquist-Shannon sampling theorem.
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onshore or o↵shore, it can be a 2D or a 3D acquisition (Vermeer, 1990, 2002), and

receivers and sources can be deployed within these classes via di↵erent configurations.

These acquisition types can be carried out into two distinct modalities that we name

conventional and simultaneous-source acquisitions (Abma and Foster, 2020).

• Data preconditioning (often also called data processing): Data inaccuracies

due to sources and receivers’ spatial position are corrected. During this stage, we

also apply incoherent and coherent noise removal techniques and source equalization

methods (deconvolution) (Yilmaz, 2001). The main idea is to process the data so that

each common source approximates the acoustic or elastic Green function corresponding

to an experiment in which a point source is propagated in the subsurface. Included

in the preconditioning stage are methods for simultaneous-source separation as those

that I investigate in my doctorate.

• Imaging and inversion: Imaging and inversion are similar processes. In general,

imaging refers to methods to determine the boundaries of subsurface structures. Inver-

sion refers to approaches to estimate subsurface parameters such as elastic moduli or

propagation speed of compressional and shear waves. Both imaging and inversion are

based on solving classical math-physics problems associated with wave propagation

phenomena. Historically, imaging techniques are referred to as migration algorithms.

Early migration algorithms were based on the Huygens principle and Kirchho↵ inte-

gral theorem (Gray et al., 2001). Modern imaging and inversion algorithms operate

with one-way and two-way acoustic or elastic wave equations, often linearized via the

Born approximation (Sava and Hill, 2009).

• Seismic and geological interpretation: At this stage, subsurface images are inter-

preted with the help of regional geological information, core samples, and formation

properties estimated by well logging (Brown, 2011). In other words, images of the sub-

surface provide boundaries, and after inversion, one can also estimate material (rock)

properties. However, these images do not tell us how sediments have deposited during

a geological time or how structures (faults and folds) have emerged; neither they tell

us how fluids in the crust have migrated and accumulated in reservoirs. To discover

areas with an accumulation of hydrocarbons, geologists and geophysicists use seismic

images in conjunction with geological information for interpretation.

The acquisition stage of the seismic reflection method for the exploration of oil and gas

often takes a considerable part of the budget allocated for prospecting an area (Claerbout,

1992). Starting in the late 1980s and with the development of 3D seismology (Biondi, 2006)

to prospect for oil and gas in many regions of the world, many e↵orts to reduce acquisition

costs were propelled by large oil companies and geophysical contractors worldwide. As part
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of these e↵orts, the simultaneous-source acquisition has become essential to decrease acqui-

sition costs and obtains high-density seismic data (Rozemond, 1996; Krohn and Johnson,

2006; Krohn and Neelamani, 2008; Howe et al., 2008; Abma and Foster, 2020). The first

3D field trial of the simultaneous-source acquisition technology involving 8 vibrator sources

was conducted successfully in 2008 (Howe et al., 2008). Since then, the simultaneous-source

acquisition has become increasingly popular in the oil industry as a cost-e↵ective way to

record high-density seismic data. Simultaneous sourcing is a revolution in reflection seis-

mology that has changed seismic data acquisition. In spite of its success, developing and

improving processing algorithms to cope with simultaneous source data is still an active

field of research.

The significant advantage of simultaneous-source acquisition is that seismic exploration in

the data acquisition stage using simultaneous-source acquisition methods o↵ers substantial

economic advantages over conventional acquisition methods for both land and marine seis-

mic surveys. Compared to traditional seismic surveys, the simultaneous-source acquisition

allows more seismic data to be collected in less time. More data can enhance the view of

the subsurface, minimizing the survey time to lower survey costs and reduce HSSE (Health,

Safety, Security and Environment) exposure (Abma and Foster, 2020), such as lowering

exposure time in extreme environments (ice or barren desert). Most simultaneous source

surveys involve collecting more data, requiring less time, and gaining HSSE benefits. Many

intensive simultaneous source surveys are economically impractical using conventional ac-

quisitions. Acquiring these surveys with simultaneous sources reduces the cost to the point

where very dense surveys are now practical.

1.2 Simultaneous-source data acquisition: A review

In the seismic data acquisition stage, conventional seismic data acquisition uses arrays of

receivers deployed on the Earth’s surface to measure the response caused by one source.

The response is collected by an array of receivers in the form of a multichannel time series.

The latter is often called a common-source gather. The source is moved to a new position,

and the experiment is repeated to generate a new common-source gather. In general, the

process is repeated many times with sources at di↵erent places.

In a conventional survey, responses of individual sources are recorded separately. For in-

stance, let us consider a survey that consists of N sources activated at times T1, T2, . . . TN .

In general, the attenuation of seismic waves ensures that the energy reflected by subsur-

face interfaces and recorded by receivers is practically negligible after Lt seconds (record

length)3. Therefore if one chooses Tn+1 � Tn � Lt, the nth source will not contaminate

3For typical exploration targets in sedimentary basins, Lt is about 8 to 10s.
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the record corresponding to the n + 1 source. Nowadays, it has become customary to

ignore the requirement mentioned above. Instead, one can adopt a simultaneous-source

acquisition (also called blending acquisition) modality (Berkhout, 2008; Hampson et al.,

2008; Abma and Foster, 2020). In this case, receivers record the response of more than one

source simultaneously (Tn+1�Tn < Lt). One can significantly reduce acquisition time and,

consequently, the cost of acquiring dense seismic surveys via a simultaneous-source survey.

Unfortunately, seismic data processing and imaging techniques require access to individual

source responses. In recent years, significant e↵orts have been made in developing simul-

taneous source separation (also called deblending) methods (Akerberg et al., 2008; Moore

et al., 2008; Abma et al., 2010; Mahdad et al., 2011; Li et al., 2013; Abma et al., 2015; Li

et al., 2019). These methods aim to turn simultaneous source seismic data into the data one

would have obtained via a conventional acquisition. Simultaneous-source data processing

has become an exciting field for developing new data analysis tools. These tools are derived

from the theory of inverse problems, harmonic analysis, sparse representation theory, and

constrained-rank optimization.

Figure 1.1 illustrates the di↵erence between conventional and simultaneous-source acquisi-

tions. Sources in the figure are fired in the sequence 1, 2, 3, and 4; being 1 the source that

is fired first and 4 the last source fired. In Figure 1.1a, the sources are fired as indepen-

dent experiments with no contamination from previously fired sources. Figure 1.1b shows

the simultaneous-source experiment where one allows the measured responses to produce

overlapping in time. Figure 1.2 displays how the simultaneous-source acquisition works for

the land and marine acquisition. Six airguns are fired simultaneously with randomly dis-

tributed activation time delays for the marine acquisition (Figure 1.2a). The receiver lines

keep recording the responses from all six sources. In Figure 1.2b, twelve Vibroseis vehicles

work simultaneously for the land acquisition, and the geophones keep listening to all the

signal responses from the subsurface.

Many geophysical problems can be expressed as linear inverse problems. For instance,

denoising and source equalization problems are often written as linear inverse problems.

Non-linear problems associated with the inversion of, for example, elastic properties are

often linearized. Examples of the latter are amplitude versus o↵set inversion, inversion of

acoustic impedance, least-squares migration methods, etc. In this dissertation, I also view

the source separation problem as an inverse problem. More specifically, the data acquired by

a simultaneous source survey can be written by the following expression (Abma and Foster,

2020)

b(t, r) =
X

s2S

D(t� ⌧(s), r, s) (1.1)
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(b)

Figure 1.1: (a) Conventional survey. Each source is activated, the data are recorded
for a su�ciently large record length, and then the next source is activated. The
energy of the source n does not contaminate the response of the source n + 1. A
common receiver gather (CRG) shows the response from all the sources for one
particular receiver. (b) Simultaneous source acquisition with two sources (blending
factor is two) where sources’ responses overlap. The common receiver gather shows
the response for all the sources as in a conventional survey plus incoherent noise
caused by source interferences. Source firing times are random to yield incoherent
source interferences in the CRG. For illustrative purposes, we consider four sources
firing in the sequence T1 < T2 < T3 < T4 where Ti if the firing time of source i.
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sources

(a)

(b)

Figure 1.2: (a) Simultaneous-source marine acquisitiona. Six sources are fired si-
multaneously with randomly distributed time delays for the marine acquisition. (b)
Simultaneous-source land acquisitionb. For the land acquisition, twelve Vibroseis
vehicles work simultaneously.

aFigure from Dhelie et al. (2019).
bFigure from BGP Inc. China National Petroleum Corporation.
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where b(t, r) is the simultaneous source data, often called blended data. The variable r

denotes receiver or channel, and s denotes source. The random activation time of source

s is denoted by ⌧(s). Clearly, the goal is to recover D(t, s, r) from its compressed version

b(t, r). In a simultaneous, source survey, one directly measures b(t, r) and is tasked with

recovering D(t, r, s) from b(t, s). In essence, this is a linear inverse problem. Moreover, it is

clear that the problem is non-unique because of the number of observations (size of b(t, r))

which is much smaller than the size of the D(t, r, s).

We assume the recorded blended data are represented by b(tn, r) where tn = (n � 1)�t,

n = 1 . . . N denotes discrete time, �t is the sampling interval, N is the total number of

samples of the simultaneous source record and �t(N � 1) denotes the simultaneous source

record length. Therefore, for one receiver r, the blended data b(tn, r) can be expressed as

the vector b of size N ⇥ 1. Similarly, the unblended data is denoted by D(tn, si, r), with

tn = (n� 1)�t, n = 1 . . . Nt and si = s0 + (i� 1)�s, i = 1 . . . Ns. The unblended data can

written as the matrix D of size Nt⇥Ns. To simplify our approach, we assume Ns equidistant

sources with source spatial interval �s and the first source placed at position s0. The length

of the desired deblended data is �t(Nt � 1). Evidently, the acquisition turnaround time

saving requires Ns ⇥Nt � N . For completeness, we also define the blending factor

BF =
Ns �t(Nt � 1)

�t(N � 1)
(1.2)

which represents the ratio of the total acquisition time of Ns sources to the total length of

the simultaneous source record.

Equation 1.1 can be written in operator form as follows

b = BD, (1.3)

where B denotes the blending operator (See Figure 1.3), which contains the random activa-

tion time of sources, and b represents blended data, and D is the desired data cube that one

would have acquired via a conventional seismic survey. The blending operator is equivalent

to adding the di↵erent shots gathers into a long record also called a “super shot gather” but

with random jittering time from di↵erent sources. The adjoint operator4 of B, denoted by

B
⇤ (Figure 1.3), represents the so-called pseudo-deblending operator (Berkhout, 2008)

D̃ = B
⇤b . (1.4)

Pseudo-deblending is equivalent to applying time shifts and dividing long simultaneous-

source records onto the time length of the record one would have obtained via conventional

4The adjoint is the operator such that < Bx, y >=< B⇤y, x >. If B is a matrix B, then B⇤ ⌘ BT .



CHAPTER 1. INTRODUCTION 9

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

t(
s)

100 200 300
Trace Number

Shot gather

0

2

4

6

8

10

12

14

16

t(
s)

100 200 300
Trace Number

0

2

4

6

8

10

12

14

16

t(
s)

100 200 300
Trace Number

Shot gather

0

2

4

6

8

10

12

14

16

t(
s)

100 200 300
Trace Number

Shot gather

<latexit sha1_base64="aIGPdmr4G5knokznRKeh8Kk9hEs="></latexit>

b = BD

<latexit sha1_base64="UUTm/aSL1WG9iIUq+ho9qFDVxGs="></latexit>

D̃ = B⇤b

Pseudo-deblending

Blending

0

2

4

6

8

10

12

14

16

t(
s)

100 200 300
Trace Number

Receiver gather

CRG 

…
…

…
… …
…

…
…

Figure 1.3: Blending operator and pseudo-deblending operator.

seismic acquisition. However, pseudo-deblending does not remove interferences resulting

from overlapping sources. This is seen in Figures 1.1b and 1.3 where one Common Receiver

Gather (CRG) was extracted from the acquired data cube D̃ to show the incoherent blending

interferences. Usually, for visualization purposes, the pseudo-deblended data in CRG is

displayed in order to see the incoherent blending interferences.

The objective of simultaneous-source separation (deblending) is to estimate D from recorded

blended data b or pseudo-deblended data D̃ in order to obtain the separated shot gathers.

Two categories of methods have been proposed to achieve the goal mentioned above. The

first category of methods, often named deblending by denoising, treats deblending as a noise

filtering problem that operates on a domain where interferences are incoherent erratic signals

(Berkhout, 2008). The second category of methods, deblending via inversion, considers

deblending as a linear inverse problem where one seeks to synthesize the desired data D

honouring the simultaneously recorded data b.

Deblending via denoising operates directly on the pseudo-deblended data D̃ (Beasley, 2008;

Kim et al., 2009) by solving the following problem:

Dobs = D + n (1.5)

where Dobs = D̃ is the pseudo-deblended data, and n is called the blending interferences or

blending noise. The denoising-based deblending methods mainly rely on the incoherency of

blending noise in common receiver, common o↵set or common midpoint domains (Hampson
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et al., 2008; Mahdad et al., 2011). This incoherency in these domains (i.e., in the common

receiver gathers of Figure 1.1b ) is due to the random activation time of sources in equation

1.1. In general, filtering techniques are adopted to attenuate incoherent noise. Examples of

incoherent noise attenuation in blended data include f-k median filters (Huo et al., 2012), f-x

filters (Spitz et al., 2008; Peng et al., 2013), and techniques based on the Radon transform

(Moore, 2010; Ibrahim and Sacchi, 2013). These methods are commonly used in the early

stages of processing simultaneous-source data.

Another category of source separation or deblending comprises inversion-based methods, in

which one attempts to pose source separation and deblending as an inverse problem (Abma

et al., 2010; Mahdad et al., 2011; Li et al., 2013; Cheng and Sacchi, 2015, 2016). The main

goal is to find the solution D in equation 1.3 that minimizes the residuals b �BD while

imposing a coherence pass operator to reduce blending interferences. Normally, sparse in-

version methods are adopted to estimate transform domain coe�cients that synthesize the

ideal deblended data D. Examples include methods that adopt Fourier domain threshold-

ing algorithms (Abma et al., 2010; Mahdad et al., 2011; Abma et al., 2015; Song et al.,

2019; Bahia and Sacchi, 2019), sparse Radon transforms (Akerberg et al., 2008; Lin and

Sacchi, 2020a,b; Ibrahim and Trad, 2020), sparse Seislet transforms (Chen et al., 2014),

sparse Curvelet transform inversion (Wason et al., 2011; Wang and Geng, 2019), and sparse

inversion with migration operators (Cheng et al., 2016; Ibrahim and Trad, 2020). Alter-

natively, rather than applying sparse inversion methods on auxiliaries bases, one can also

adopt rank-constrained optimization to iteratively solve the deblending problem (Maraschini

et al., 2012b; Cheng and Sacchi, 2015, 2016; Jeong et al., 2020; Lin et al., 2021). Approaches

based on reduced-rank filtering iteratively apply denoising to small data windows extracted

from common-receiver gathers (Cheng and Sacchi, 2015). The reduced-rank filter adopted

in the projected gradient descent algorithm is the Multichannel Singular Spectrum Analy-

sis (MSSA) filter adapted for seismic data processing (Oropeza and Sacchi, 2011). MSSA

filtering, also denominated the Cazdow filter (Cadzow, 1988), has been used extensively for

prestack seismic denoising and reconstruction (Trickett, 2008; Trickett et al., 2012).

For conventional acquired seismic data, the seismic acquisition was considered somewhat

independent of processing, and processing was considered a separate topic from the seismic

acquisition. While for simultaneous-source data processing, compared with the processing

workflow for conventional acquisition data, we add another step, deblending, to continue

to follow the traditional processing workflow (See Figure 1.4). The connection between ac-

quisition and processing changed from the conventional approaches for simultaneous-source

data. Simultaneous sourcing forces a significantly stronger connection to be made between

the two. Even though we add one more step, deblending, inside the processing workflow,

the economic benefits of the simultaneous source approach are evident. The simultaneous

source approach significantly reduces acquisition time, reducing costs and, hence, less like-
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Figure 1.4: Schematic diagram of seismic processing workflow for conventional ac-
quisition data (a) and simultaneous-source acquisition data (b).

lihood of accidents or exposure to extreme weather conditions. At the same time, it could

enable considerably higher source density or a combination of higher source density and

faster surveys. For instance, for a field land trial of simultaneous source acquisition, the

number of vibrator source points acquired per day by the 8 vibrators was over 500 per unit,

4000 source points per day for the crew, compared with an ongoing Algeria survey produc-

tion numbers of around 100 to 150 source points per day using two alternating fleets of

vibrators (Abma and Foster, 2020). The simultaneous source method can achieve 40 times

improvement over conventional practices and in about one-fourth the time of the standard

production approach. The main cost of a land survey is related to the number of days it

takes to acquire the data. Therefore, the faster a survey can be obtained, the more inex-

pensive the survey cost and the lower the price per square kilometre for data acquisition.

(Abma and Foster, 2020). As I mentioned, safety considerations also make reducing the

number of days a seismic crew spends in the field more desirable.

1.3 Contribution of this thesis

The main contributions of this thesis are summarized as follows:

• I propose a new inversion scheme for separating simultaneous-source data. In this

scheme, I define a robust and sparse Radon transform that acts as a coherence pass

operator. The latter is used as a projection operator in a projected gradient descent

framework. The main idea is to estimate deblended data that honours the original

blended data and is free of source interferences. The proposed technique shows a
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significant improvement in convergence when the coherence pass projection is derived

from a robust and sparse Radon transform. This is a consequence of having an iterative

deblending algorithm that applies intense denoising to erratic blending noise in its

initial iterations. The coherence pass robust Radon operator acts as a data projection

operator that preserves coherent signals and annihilates incoherent blending noise right

from the start of the iterative process.

• I also propose a new inversion scheme for separating simultaneous-source data from

the perspective of a low-rank approximation constraint. I adopt a windowed robust

Multichannel Singular Spectrum Analysis (MSSA) filter in the frequency-space domain

as the projection operators in a projected gradient descent framework for suppress-

ing simultaneous source interferences. The MSSA filter is reformulated as a robust

optimization problem solved via a bifactored gradient descent (BFGD) algorithm,

and robustness becomes achievable by adopting Tukey’s biweight loss function for

the design of the robust MSSA filter. The proposed robust MSSA filter overcomes

the limitations of the non-robust (classical) MSSA filter that requires breaking down

common-receiver gathers into small overlapping windows, and the input rank param-

eter varies from window to window. Therefore, it is less sensitive to the rank selection

and makes it appealing for deblending applications that require windowing. Addition-

ally, the robust MSSA projection e↵ectively attenuates blending interferences during

the initial iterations of the projected gradient descent method. Compared to the clas-

sical non-robust MSSA filter, I also report an acceleration of the projected gradient

descent method convergence when we adopt the robust MSSA filter.

• I explicitly address simultaneous deblending and irregular-source reconstruction via

inversion using iterative rank-reduction with an irregular-grid geometry. In particular,

I adopt a new proposed interpolated-MSSA (I-MSSA) method that combines the pro-

jected gradient descent method to deblend and reconstruct sources in situations where

the acquired blended data correspond to sources with arbitrary irregular-grid coordi-

nates. The I-MSSA method adopts an interpolation operator and permits to honour

true spatial coordinates, overcoming the limitation of conventional MSSA filters re-

quiring data deployed on a regular grid. The proposed I-MSSA method can cope with

the real scenario of sources at quasi-regular or irregular coordinates, similar to Com-

pressive Sensing (CS) based surveys, to reduce acquisition time by blending sources

and using fewer sources, thereby improving the e�ciency of field data acquisition.

Overall my research centers on the seismic exploration method and, in particular, in the

subfields of simultaneous-source acquisition and processing with regular-grid and irregular-

grid geometry. My thesis contributes to developing algorithms for robust projections to

speed up the convergence of the projected gradient descent method, which is used for
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simultaneous-source separation. My thesis also contributes to separating and reconstruct-

ing simultaneous-source where the acquired blended data correspond to an irregular-grid

distribution geometry (honour true spatial coordinates).

1.4 Thesis overview

In Chapter 2, I illustrate a brief review of the linear inverse problem and provide a concise

tutorial that addresses solving linear inverse problems with the regularization (quadratic and

non-quadratic) methods and the Projected Gradient Descent (PGD) method. In addition,

a specific denoising technique (low-rank approximation with the one dimensional singular

spectrum analysis algorithm) is introduced, which can be interpreted as a projection oper-

ator in the PGD method.

In Chapter 3, I introduce an iterative method for simultaneous source separation (de-

blending) which adopts a denoiser based on the Radon transform. The proposed technique

adopts the robust and sparse Radon transform to define a coherence pass operator that is

used in conjunction with the PGD method to guarantee solutions that honour simultane-

ous source records. Coherence pass non-robust and robust Radon projection operators are

illustrated in this chapter. An important improvement in convergence is attainable when

the coherence pass projection is derived from a robust and sparse Radon transform. This

is a consequence of having an iterative deblending algorithm that applies intense denoising

to erratic blending noise in its initial iterations. The coherence pass robust Radon operator

acts as a data projection operator that preserves coherent signals and annihilates incoherent

blending noise right from the start of the iterative process. I compare the algorithm with

its non-robust version with synthetic and real data examples.

In Chapter 4, I introduce a robust MSSA filtering algorithm as the projection filter of

the PGD framework to solve the simultaneous source separation problem. Usually, the

MSSA filter requires breaking down common-receiver gathers, or common o↵set gathers into

small overlapping windows. This chapter provides two types of windowed projection filters

(windowed non-robust and robust MSSA filters). I reformulate the MSSA filter as a robust

optimization problem solved via the BFGD algorithm. Robustness becomes achievable by

adopting Tukey’s biweight loss function to design the robust MSSA filter. The traditional

MSSA projection filter method needs the filter rank as an input parameter, which can vary

from window to window. The proposed robust MSSA projection filter is less sensitive to

the rank selection, making it appealing for deblending applications that require windowing.

Additionally, the robust MSSA projection method e↵ectively attenuates random source

interferences during the initial iterations of the PGD method, resulting in an acceleration of
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the convergence. Finally, I provide synthetic and real data examples and discuss heuristic

strategies for parameter selection.

In Chapter 5, I propose to adopt an Interpolated-MSSA (I-MSSA) method to simulta-

neously deblend and reconstruct sources in situations where the acquired blended data

correspond to sources with arbitrary irregular-grid coordinates. In essence, I extend the it-

erative rank-reduction method implemented via MSSA filtering that can honour true source

coordinates to overcome the limitation of the traditional method, which requires data de-

ployed on a regular grid. The proposed I-MSSA method adopts Kaiser window tapered

sinc interpolation operator and permits to honour true source coordinates and avoiding er-

rors associated with allocating o↵-the-grid source coordinates to the desired output grid.

This work focuses on recovering unblended regular-grid data from irregular-grid compressive

simultaneous-source data and reducing acquisition time by blending sources and using fewer

sources.

Chapter 6 contains the conclusions of this thesis. I summarize the main contents and

identify the contributions and limitations of the algorithms developed in this thesis. I also

discuss potential research directions and provide recommendations for future work.



CHAPTER 2

Linear inverse problems: Regularization and Projected

Gradient Descent methods

This chapter aims to introduce tools and numerical algorithms I will use to develop meth-

ods for the simultaneous source separation presented in Chapters 3, 4 and 5. It intends to

be a concise tutorial addressing linear inverse problems, regularization (quadratic and non-

quadratic) methods, and Projected Gradient Descent (PGD) algorithm. I will also describe

a specific denoising technique (low-rank approximation) that I have used extensively in my

work. The latter is the Singular Spectrum Analysis (SSA) method and its multichannel

version, the multichannel SSA (MSSA) method. For this chapter, a simple one-dimensional

signal reconstruction example (linear inverse problem) is provided by adopting the regular-

ization method and the PGD method.

2.1 Linear inverse problems

Many seismic data processing problems can be written as the solution to an inverse problem.

Examples abound in seismic data processing of algorithms that have their roots in the

solution of inverse problems. A linear inverse problem arises when we have measurements

(data) related to a model of interest (e.g., a signal, an image, subsurface physical parameters,

etc.) via a linear system of equations. The latter can be written using standard matrix-

times-vector notation as follows

d = Lm (2.1)

where d is the N ⇥ 1 vector of observations. Similarly, L represents the matrix that maps

the model m into d. Equation 2.1 is the linear inverse problem in an explicit form where

15
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one has access to the N ⇥M matrix L and measurements d. In many situations, we do not

have access to the explicit form of the forward operator L. In this cases, we can write

d = L m (2.2)

where L is now the forward operator given in the implicit form. This formulation is often

called a matrix-free approach and is very useful when dealing with linear operators that

cannot be written in explicit form. In more practical words, one can think that we have a

computer program to which one gives an input vector of parameters m and the program

produces an output data vector d. The task of the inversion is to find an operator L
�1

that can be used to obtain an estimator of the model parameters m̂ = L
�1d.

We also assume the data is contaminated with noise. Therefore, one does not want to fit the

observations exactly. The latter can be indicated by rewriting the observations as follows

dobs = d + n

= L m + n .

(2.3)

The vector n is used to indicate errors or noise in the measurements d. The observations

are now called dobs to di↵erentiate them from error-free observations d. It is interesting to

note that when L is the identity operator; we have a classical denoising problem where one

wants to approximate dobs by d = m,

dobs = d + n

= m + n .

(2.4)

We interpret the equation 2.4 as finding m that approximates the ideal data without noise.

When L denotes the convolution operator such as in many problems in non-destructive

testing, astronomy, geophysics, and medical imaging, we have the so-called deconvolution

problem (Ulrych and Sacchi, 2005; Bertero et al., 2009). Similarly, when one is tackling a

data reconstruction problem (also named an inpainting problem), the operator L could be

the sampling matrix (Liu and Sacchi, 2004). Similarly, for the deblending problem that I

will address in Chapters 3, 4 and 5, L can be an implicit form of blending operator.

Many techniques have been proposed to solve linear inverse problems (Tarantola, 2005;

Menke, 2018). This chapter reviews two algorithms for solving the linear inverse problem:

regularization techniques (Tikhonov, 1943) and the PGD method (Piana and Bertero, 1997).

These are the techniques I have adopted for my research when investigating the deblending

problem.
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2.2 Regularization methods for solving inverse prob-

lems

Usually, inverse problems are ill-posed problems. An ill-posed problem is a mathematical

problem where either the solution does not exist, the solution is non-unique, or the solution

is unstable. Obviously, geophysical problems do have an answer as we can always obtain a

result according to limited observations. However, the solution is non-unique or unstable.

The operator L can have a non-trivial null space; therefore, more than one solution satisfies

the observations. More often, the noise in the data causes unsuitability in the solution and

makes the problem ill-posed. In other words, a slight amount of noise or errors contaminating

the data can produce large perturbations in the estimated model parameters. The latter is a

facet ubiquitous to geophysics. The solution of an inverse problem not only involves finding

(if it exists) the inverse L
�1, but one also must make assumptions about the regularity

of the signal or model parameters m that one is trying to estimate. The main goal of

inverse theory is to design ways to find stable and unique solutions to ill-posed problems

(Tarantola, 2005; Menke, 2018). When solving an inverse problem, one generally seeks a

solution that fits the data. The latter can be expressed by posing the problem as one

where one minimizes the distance between the observed data dobs and the predicted data

computed via the synthesis or forward operator L m. We can measure the distance as

mentioned earlier using, for instance, the `2 norm

M(m,dobs) = kdobs �L mk22 (2.5)

where the symbol k ·k2 indicates the `2 norm of a vector 1. The cost function in equation 2.5

does not have one minimum due to a limited number of observations available, resulting in

an undetermined problem in which there are more unknowns than observations (Tikhonov,

1943; Menke, 1989), or the solution arising from its direct minimization is unstable as the

limited observations usually contain the noise. Therefore, regularization methods involve

adding an additional term to the error norm, often called the regularization term. In other

words, we replace M by a new cost function given by

J = M(m,d) + µR(m) (2.6)

where R(m) denotes the regularization term. The scalar µ is the trade-o↵ parameter, which

controls the relative strength of the fitting term M and model regularization term R.

1If x is a vector of length M then, kxk22 =
P

k |xk|2, k = 1, · · · ,M .
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2.2.1 Quadratic regularization

Classical regularization theory (Tikhonov, 1943), often named Tikhonov regularization,

adopts quadratic regularization terms of the form

R(m) = kWmk22 , (2.7)

where W is a suitable matrix of weights. The associated cost function is now given by

J = kdobs �L mk22 + µ kWmk22 . (2.8)

At this point, an important comment is in order. Equation 2.8 states two goals. One is

to minimize the error norm. In other words, we would like to find a model m that fits

the observations. The second term represents a second goal; we are trying to minimize

a new variable called v = Wm. One can think that v is a new variable representing

bad features (i.e., oscillatory noise) of m that one would like to minimize2. For instance, in

tomographic inversion, W is a first or second-order discrete derivative operator emphasizing

high wavenumbers of m. Given that high wave-numbers (oscillatory features) are more

pronounced on v = Wm than on m, the minimization of kvk2 leads to spatially smooth

solutions. Discrete derivatives operators are often adopted as a regularization strategy to

estimate smooth slowness model in seismic tomography (Lizarralde and Swift, 1999).

When W = I (identity), the cost function reduces to

J = kdobs �L mk22 + µ kmk22 . (2.9)

A closed-form solution to the minimum of equations 2.8 and 2.9 exists when the operator L

can be written in explicit form matrix L = L. The model-weighed least-squares solution is

given by

m̂ = (LT L + µWT W)�1LT dobs
. (2.10)

Similarly, when W = I the minimum of J is given by the damped least-squares soltuion

m̂ = (LT L + µI)�1LT dobs
. (2.11)

In general, when the forward operator is given in the implicit form, one cannot form explicit

terms of the form L
T
L and their associated regularized inverses (equation 2.10 and 2.11).

In this case, the cost function J is a sum of two quadratic cost functions, and it can be

2Intuitively W amplifies bad features that one would like to eliminate.
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minimized by iterative methods (Golub and Van Loan, 1996) such as steepest descent or

conjugate gradients (Hestenes et al., 1952; Scales, 1987). In these methods, one does not

need to know operators in their explicit form. They only require the forward operator L and

its adjoint L
⇤. More precisely, both the steepest descent and conjugate gradient method

can find the minimum of the cost function J iteratively, where in each iteration, one needs

to know the action of the forward operator on a vector, for instance, v of size M ⇥ 1, L v

and the action of the adjoint on a vector v of size N ⇥1, L
⇤ v. Clearly, one needs to ensure

that numerically the operators L and L
⇤ behave in such a way that one is the adjoint

of the other. This seems trivial at first glance, but in reality, as I already mentioned, the

operators L and L
⇤ are numerical codes. Hence, one must ensure that they behave as a

forward-adjoint pair. To guarantee that L
⇤ is the adjoint of L , we can use the dot product

test (Claerbout, 1992).

2.2.2 Non-quadratic regularization and sparsity

The quadratic regularization `2 term can be replaced by a non-quadratic term such as

the `1 norm in order to achieve a sparse solution. The problem is often called an `2 � `1

optimization problem, and it has received tremendous attention in recent years since the

inception of Compressive Sensing (Donoho, 2006) in signal processing.

A typical `2 � `1 linear inverse problem entails finding models m that are sparse. This is

achieved by minimizing the following cost (Daubechies et al., 2004, 2009; Beck and Teboulle,

2009)

J = kdobs �L mk22 + µkmk1 (2.12)

where the regularization term is given by an `1 norm kmk1 =
P

i
|mi|. It can be shown that

the minimization of equation 2.12 leads to sparse solutions. This problem has been used

numerous times to solve, for instance, the sparse deconvolution problem (Oldenburg et al.,

1983; Sacchi, 1997) to obtain broad-band estimators of the seismic reflectivity. It has also

become the cornerstone of methods for seismic data processing, including reconstruction

methods for estimating missing observations (Sacchi et al., 1998; Zwartjes and Gisolf, 2007;

Herrmann, 2010; Mosher et al., 2014).

A simple example of a reconstruction problem is shown in Figure 2.1, where I used sparse in-

version to estimate the Fourier coe�cients that synthesize data. For a simple reconstruction

problem, the cost function based on equation 2.3 can be rewritten as

J = kdobs �T Fmk22 + µkmk1 , (2.13)

where T is the sampling operator and F denotes the inverse discrete Fourier transform.
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Figure 2.1: Illustration of a toy example for reconstruction based on sparse regular-
ization technique. (a) Ideal signal. (b) Observed signal. (c) Reconstructed signal
via sparse inversion of its Fourier coe�cients with resulting SNR = 22.16 dB. (d)
Estimated errors between (c) and (a).
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The observed data dobs has missing observations. In other words, one can say that the ideal

idea d is given by dobs = T d. Similarly one also can assume that the ideal data d can be

synthesized via the inverse Fournier transform via d = Fm. Clearly, the model parameters

for this example m now represent unknown Fourier coe�cients that model the ideal data.

In essence, one assumes that the distribution of Fourier coe�cients that model the data is

sparse. Evidently, we have two operators that could be expressed as one L = T F . The

associated adjoint operator is given by L
⇤ = F

⇤
T

⇤ where F
⇤ and T

⇤ are the adjoint of

the Fourier synthesis operator and sampling operator, respectively.

Figure 2.1a shows the ideal data before decimation. Similarly, Figure 2.1b shows the deci-

mated data dobs = T d. Finally, Figure 2.1c shows the reconstructed data obtained via the

Fourier synthesis Fm̂ where m̂ are the Fourier coe�cients estimated by minimizing expres-

sion 2.13. The missing samples have been fully reconstructed with the non-quadratic sparse

inversion. Figure 2.1d is the estimated error between the ideal data and the reconstructed

data. The signal-to-noise ratio of the reconstruction quality is measured by the following

equation:

SNR = 10 log
kdtruek2

F

kdtrue � dreck2
F

, (2.14)

where dtrue is the ideal data without decimation and drec is the reconstructed data. The

symbol k · kF denotes the Frobenius norm.

2.3 Projected Gradient Descent (PGD) method

Alternatively, the projected gradient method can also be used for solving linear inverse

problems described in preceding sections (Piana and Bertero, 1997). To incorporate such

constraints, one can reformulate equation 2.3 as a constrained least-squares problem

minimize J = kdobs �L mk22
subject to m 2 S.

(2.15)

where the solution m must belong to a class of solutions that belong to the set S.

For this constrained least-squares problem, the PGD method is a simple algorithm to solve

equation 2.15 and, in the next chapters, I will use similar ideas to solve the simultaneous-

source separation problems.

In our context of this chapter, we will declare that there is a projection operator P such

that for any arbitrary signal x, there is a new signal y = P[x] such that y 2 S. I describe

the PGD method in the following paragraphs. First, one performs an update via a step in

the negative direction of the gradient without considering the projection. Then we apply
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the projection. The following iteration gives the solution to equation 2.15.

m⌫ = P
⇥
m⌫�1 � �rJ

�
m⌫�1

�⇤

= P
⇥
m⌫�1 � �L

⇤(L m⌫�1 � dobs)
⇤ (2.16)

where rJ is the gradient of the cost function J , and ⌫ denotes the iteration number.

Parameter � is the length of step-size which must be chosen to guarantee the convergence

of the PGD method (Cheng and Sacchi, 2015; Bolduc et al., 2017). It is clear from the

above expression that PGD entails one step of the steepest descent method followed by the

projection operator P.

2.3.1 Step-size � selection

Classical convergence proofs of PGD rely on assuming a convex projection, but, in general,

convexity can be ignored for practical applications, and numerical experiments can be used

instead of analytical methods for the analysis of convergence. As I mentioned, convexity

helps to obtain convergence proofs (Cheng, 2017). However, it is important to point out

that, in general, one can apply the PGD method even in situations where the projection is

non-convex (Peters et al., 2019). In this case, the step-size � needs to be selected carefully

to guarantee the convergence of the PGD method (Cheng and Sacchi, 2015; Bolduc et al.,

2017). In equation 2.16, the initial step-size can be properly selected (Fazel, 2002) to ensure

that the iterative algorithm convergences. For a convex projection, the convergence can be

guaranteed when the initial step-size is given by

0 < �0 <
2

emax

, (2.17)

where emax is the maximum eigenvalue of the operator L
⇤
L . This eigenvalue can be

computed by the power iteration method by starting with an initial random guess for the

eigenvector associated with the maximum eigenvalue (Ma et al., 2011; Cheng and Sacchi,

2015). We use the same starting value for non-convex projections, but then we exponentially

decreased the step length with iteration to converge to the solution. Another strategy is

to optimally find each iteration’s step length via a backtracking line search (Bolduc et al.,

2017). In the following chapters, more details about step-length selection are discussed in

the particular examples for the deblending problem.

2.3.2 A projection operator based on a low-rank approximation

My thesis uses the Multichannel Singular Spectrum Analysis (MSSA) filter as a projec-

tion operator. In other words, P in equation 2.16 is given by an MSSA filter. The one-
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dimensional version, SSA filter, was proposed to analyze one-dimensional time series analysis

and extended to a multichannel case (MSSA) for signals that depend on time and space,

such as the case of seismic signals. Here I briefly review the simple SSA filter in the way

it is applied for time series or one-dimensional signals (Vautard and Ghil, 1989; Vautard

et al., 1992). We can use an arbitrary signal x to indicate the input signal to the SSA filter.

Similarly, the projected or filtered signal is indicated by y = P[x]. The SSA filter entails

the following steps;

1. Hankelization

First, the Hankel matrix is formed. The data x, of length N , x = [x(1), x(2), . . . x(N)]T

is embedded into a Hankel matrix

H = H [x]

=

0

BBBBBBB@

x(1) x(2) . . . x(Nc)

x(2) x(3) . . . x(Nc + 1)

x(3) x(4) . . . x(Nc + 2)
...

...
...

...

x(Nr) x(Nr + 1) . . . x(N)

1

CCCCCCCA

(2.18)

with Nr = [N/2] + 1 and Nc = N �Nr. The Hankel H is square for N odd or almost

square for N even. The symbol H denotes the Hankelization operator.

2. Rank-reduction

Then, we apply rank reduction via the Singular Value Decomposition (SVD) to esti-

mate the rank p matrix Hp that minimizes the Frobenius norm kH �HpkF (Eckart

and Young, 1936). The SVD decomposition yields the orthonormal matrices Up and

Vp of size Nr ⇥ p and Nc ⇥ p, respectively, and the p⇥ p diagonal matrix of singular

values ⌃p. The reduced-rank approximation is given by Hp = Up⌃pVH

p
, and this

process is called rank-reduction, which can be denoted as R. Clearly, p is the desired

rank of the approximation supplied by the user.

3. Anti-diagonal averaging

The filtered signal is recovered via anti-diagonal averaging of the elements of the matrix

Hp

y = A [Hp] (2.19)

where A is the anti-diagonal averaging operator, which can be expressed as the fol-
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lowing equation:

yi =

8
>>>>><

>>>>>:

1
i

P
i

j=1 Ĥj,i�j+1 1  i  Nc

1
Nc

P
Nc

j=1 Ĥj,i�j+1, Nc  i  Nr,

1
N�i+1

P
Nc

j=i�Nr+1 Ĥj,i�j+1, Nr  i  N,

(2.20)

Therefore, the operator P contains three steps, Hankelization, Rank-reduction, Anti-diagonal

averaging, which can be summarized as a single opertor

y = P[x] ⌘ A RH [x] . (2.21)

In Figure 2.2, I adopted PGD in conjunction with the SSA filter to reconstruct a series.

As in comparing Figure 2.1, we have a signal that has been decimated, and the task is to

estimate the whole signal. The underlying assumption is that the ideal complete signal can

be represented via the rank p Hankel matrix. It is possible to show that signals consisting

of p complex sinusoids lead to Hankel matrices of rank p (Oropeza, 2010). In essence, our

problem is given by

minimize J = kdobs �T mk22
subject to m 2 S.

(2.22)

where the solution m is now the desired signal and, as before, T is the sampling operator.

If an arbitrary signal x is filtered by the SSA filter, y = P[x] , then we say that y belongs

to the set S. The problem is solved via the following iterative algorithm

m⌫ = P
⇥
m⌫�1 � �rJ

�
m⌫�1

�⇤

= P
⇥
m⌫�1 � �T

⇤(T m⌫�1 � dobs)
⇤

.

(2.23)

Figure 2.2a shows the ideal signal, Figure 2.2b shows the signal with missing data, and

Figure 2.2c shows the reconstructed data via PGD with the SSA filter. Figure 2.2d shows

the estimated errors between the ideal signal and the reconstructed signal. The results are

equivalent to those we obtained with sparse inversion (Figure 2.1). However, it is essential

to stress the di↵erence between adopting sparse inversion (discussed in section 2.2.2) and

the PGD method. We adopted the regularization method in the sparse inversion approach

to finding sparse Fourier coe�cients that synthesize the ideal observed data. In the PGD

approach, we use the steepest descent method followed by a projection that directly acts

on the data. In other words, in the PGD method, we do not require to operate on an

auxiliary domain as in the case of sparse inversion. Another compelling feature of PGD
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Figure 2.2: Illustration of a toy example for reconstruction based on projection
with constrained low-rank optimization. (a) Ideal signal. (b) Observed signal. (c)
Reconstructed signal via PGD method based on constrained low-rank optimization
with resulting SNR = 24.95 dB. (d) Estimated errors between (c) and (a).
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is that the projection can be any filters or denoisers capable of forcing desired features

on the signal to recover, and eliminate the bad features. The approach is not restricted

to the SSA filter; other denoisers such as median or prediction error filters could be used

as projections. In the following chapters, I will show how I adopt di↵erent denoisers for

separating simultaneous-source data.



CHAPTER 3

Deblending via a coherence pass robust Radon projection

operator
1

3.1 Introduction

In simultaneous source separation, in the category of inversion-based methods, sparse, non-

robust inversion methods are generally adopted for iteratively deblending (Abma et al., 2010;

Song et al., 2019; Lin and Sacchi, 2020a; Chen et al., 2014; Wang and Geng, 2019). The

deblending algorithm is developed by minimizing a cost function with a data fidelity `2 error

function and a sparse model `1 norm regularization. I expand these ideas by developing a

new sparsity-driven and robust inversion algorithm acting as the coherence pass projection

operator for deblending.

This chapter proposes an iterative method for simultaneous source separation suitable for

data acquired with a high blending factor. The proposed technique adopts the robust and

sparse Radon transform to define a coherence pass operator used in conjunction with the

steepest descent method to guarantee solutions that honour simultaneous source records.

We show that an essential improvement in convergence is attainable when the coherence pass

projection is derived from a robust sparse Radon transform. This is a consequence of having

an iterative deblending algorithm that applies intense denoising to erratic blending noise in

its initial iterations. The coherence pass robust Radon operator acts as a data projection

operator that preserves coherent signals and annihilates incoherent blending noise right from

the start of the iterative process. We compare the algorithm with its non-robust version

1A version of this chapter is published in Lin, R., and M. D. Sacchi, 2020, Separation of simultaneous
sources acquired with a high blending factor via coherence pass robust Radon operators: Geophysics, 85,
no. 3, V269-V282.

27
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and show that a coherence-pass non-robust Radon operator will only achieve high-quality

results for acquisitions with a moderate blending factor.

This chapter follows the subsequent structure. First, I introduce the notation adopted and

provide preliminary definitions of deblending via inversion with a coherence pass projection.

I continue with a description of a comparison of the coherence pass non-robust and robust

Radon projection operators. Finally, I test the proposed method via synthetic and field

data with a high blending factor.

3.2 Theory

3.2.1 Deblending via inversion with a coherence pass projection

We minimize two objective functions simultaneously, one associated with data fidelity, and

the other with a coherence pass operator that permits eliminating blending noise in common

receiver gathers or in common channel gathers (Peng et al., 2013; Abma et al., 2015). We

first consider the data fidelity constraint, which is given by the following cost function

Jd = kb�BDk22 + µ1kDk22 . (3.1)

The expression above simply states that the unknown deblended data must be able to

reproduce simultaneous source records. Notice we have also added a quadratic regularization

term controlled by a trade-o↵ parameter µ1. The second cost function ensures that the

deblended common receiver gathers can be represented in terms of Radon domain coe�cients

Ji = kDi �Rmikpp + µ2kmik11 , i = 1 . . . Nr , (3.2)

where mi denotes the Radon coe�cients representing the common receiver i. Similarly, R

represents the forward Radon transform which in our case is a time-domain linear Radon

transform (Trad et al., 2001). Equation 3.2 is also equipped with a regularization term that

promotes sparse Radon coe�cients. The parameter µ2 controls the level of the sparsity of

the solution and the fit between synthesized data Rmi and Di.

When p = 1, equation 3.2 denotes the robust Radon transform with a constraint to encourage

sparse Radon coe�cients. The case corresponding to p = 2 in equation 3.2 denotes the non-

robust sparse Radon transform. Robust and non-robust Radon transforms can be used as

coherence pass operators. The coherence pass operator cannot be written in a closed-form

solution and, therefore, it will be indicated via the data projection operator Pc that results

from estimating the Radon coe�cients and synthesizing data for each common receiver
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gather

m̂i = argmin
mi

kDi �Rmikpp + µ2kmik11 (3.3)

D̂i = R m̂i

= Pc {Di} . (3.4)

Without losing generality, we also define the coherence pass operator D̂ = Pc {D} to

indicate the process of computing Radon coe�cients and synthesizing data for all common

receiver gathers i = 1 . . . Nr.

The coherence pass operator can be computed via the sparse non-robust Radon transform

(p = 2) or the sparse robust Radon transform (p = 1). We will demonstrate that the sparse

robust Radon transform (p = 1) yields an algorithm that can ensure a high-quality source

separation for acquisitions with a high blending factor. Both operators produce similar

results for a moderate blending factor (e.g., a blending factor of two). Interestingly, the

solution via the coherence pass non-robust sparse Radon operator is very similar to the

solution one can estimate using deblending via sparse inversion (Abma et al., 2010; Chen

et al., 2014).

The problem stated by equations 3.1 and 3.3 can be solved iteratively

Z = Dk � �
⇥
B

⇤(BDk � b) + µ1D
k
⇤

(3.5)

Dk+1 = Pc {Z} , (3.6)

where the supra-index k denotes iteration. Equation 3.5 corresponds to a steepest descent

update with step size � (Bertsekas, 1997). The parameter � is chosen to ensure conver-

gence via the expression � < 2/emax where emax is the maximum eigenvalue of the operator

B
⇤
B (Ma et al., 2011). The power method is used to iteratively estimate emax (Golub

and Van Loan, 1996). As already stated, the coherence pass operator Pc entails comput-

ing Radon coe�cients and synthesizing data for each common receiver gather. Algorithm

1 summarizes the proposed deblending procedure. For all our numerical tests, we set a

maximum number of iterations Max Outer Iter= 40. Stopping criteria could have been

added to limit the number of iterations. We have preferred, however, to evaluate results for

a fixed number of iterations to study convergence di↵erences between the coherence pass

non-robust and robust Radon operators.
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Algorithm 1 Deblending via inversion

1: Inputs:
b, µ1, �.

2: Initialization:
k = 0,Dk = B

⇤ b.
3: for k = 1 : Max Outer Iter do
4: J

k

d
= kBDk�bk22+µ1kDkk22 Calculate cost function to check convergence

5: Z = Dk � �[B⇤(BDk � b) + µ1Dk ] Steepest descent update

6: Dk+1 = PcZ Coherence pass operator (Algorithm 2)
7: end for

3.2.2 Coherence pass non-robust and robust Radon projection op-

erators

This section describes the methodology to compute the Radon transform coe�cients used to

define coherence pass operators. For simplicity, we consider one common receiver gather Di

and ignore the subindex i with the understanding that the procedure must be applied to all

common receiver gathers. We use the method described by Ibrahim and Sacchi (2013) who

adopted the iterative reweighed least-squares (IRLS) method. (A more e�cient framework

named the Alternating Direction Method of Multipliers (ADMM) is described in Appendix

A. Also, a comparative study of IRLS and ADMM algorithms is described in Appendix A.)

We again state the problem of estimating sparse Radon coe�cients under a `p measure of

error. The Radon coe�cients are estimated by minimizing the cost function

J = kD�Rmkp
p

+ µ2kmk1 . (3.7)

The minimum of equation 3.7 can be computed by sequential minimization of the following

quadratic cost function (Trad et al., 2003)

Jq = kWr � (D�Rm)k22 + µ2kWm �mk22 , (3.8)

where the symbol � indicates element-wise multiplication. The matrix Wr is given by

[Wr]ij =

8
<

:

1
|rij |2�p+✏r

, if p < 2 Robust

1, if p = 2 Non-robust
(3.9)

where rij denotes the element i j of the residual r = D�Rm.

Significant errors are down-weighed when p < 2, leading to solutions that emphasize sparse

residuals consistent with erratic blending noise. The synthesis of the common receiver
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gather from sparse Radon coe�cients will produce coherent events. Hence, the error at each

iteration should contain blending noise. When adopting a norm with p = 2, the method

will incorporate the blending noise into the Radon solution, and therefore, the algorithm

will be less e�cient in reducing blending noise. On the other hand, with p = 1 the blending

noise is modelled correctly; therefore, the algorithm requires less e↵ort (iterations) to reach

an adequately deblended solution. The matrix Wm is given by

[Wm]ij =
1

|mij | + ✏m

(3.10)

where mij denotes the element i j of m. The elements of the matrix Wm represent weights

that, during the iterative inversion, are responsible for producing sparse Radon coe�cients

(Trad et al., 2003). We clarify that small numbers ✏r and ✏m are needed to avoid division

by zero. For our tests we have adopted ✏r = ✏m = 10�6. We stress that the robust case

with p = 1 corresponds to assuming that the residuals r = D�Rm are sparse.

To further simplify the problem, we reduce the cost function to its standard form by the

following change of variables u = Wm �m

Jq = kWr � (D�R Pm � u)k22 + µ2kuk22 , (3.11)

where [Pm]ij = 1/[Wm]ij and m = Pm�u. The cost function given by equation 3.11 is min-

imized via the method of Conjugate Gradient for Least Squares (CGLS) (Scales, 1987). We

remind the reader that the time-domain Radon operator R and its adjoint R
⇤ are provided

via numerical algorithms (implicit operators) rather than explicit matrices. Therefore, one

can only evaluate their action on Radon coe�cients (Rx) or data (R⇤y) where x and y

symbolize arrays of dimensions Dim(m) and Dim(D), respectively. Fortunately, the CGLS

algorithm does not require matrices in explicit form, and it directly works with implicit

operators R and R
⇤ (Claerbout, 1992). The solution u is used to compute m = Pm � u

and the residuals r which then update the weights Wr and Pm (Ibrahim and Sacchi, 2013).

Algorithm 2 shows the coherence-pass Radon operator. Similarly, we also provide the IRLS

solver in Algorithm 3. The whole workflow can be found in Figure 3.1.

Trad et al. (2003) pointed out that one can ignore the trade-o↵ parameter µ2 in equation 3.11

and utilize the number of iterations of the conjugate gradient method to avoid overfitting the

data. Our experience with various numerical tests indicates that regularization by iteration

is not always advisable. Regularization by iteration can lead to an unstable update of the

weights, preventing the IRLS algorithm’s convergence. Therefore, we have preferred to run

the conjugate gradient algorithm with a predefined value of µ2 until a convergence criterion

is satisfied. The norm of the gradient of Jq at a given iteration relative to its initial value

(|rJ
k

q
|/|rJ

0
q
| < ⌘cgls) is adopted as a stopping criterion for CGLS. The external iteration
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Algorithm 2 Coherence pass Radon Operator Pc

1: Inputs:
D, µ2, p.

2: Initialization:
k = 0,Dk = B

⇤ b.
3: for i = 1 : Nr do
4: Di = D[:, i, :] Extract one CRG

5: m = irls(Di, R, R
⇤
, p, µ2) Radon coe�cients (Algorithm 3)

6: D̂i = R m Synthesize the CRG

7: D̂[:, i, :] = D̂i Reinsert CRG in data volume

8: end for

Algorithm 3 Sparse robust and non-robust Radon via IRLS

1: Inputs:
D, ⌘, µ2.

2: Initialization:
k = 0,Wm = ones,Wm = ones.

3: while |Jk+1 � J
k|/|Jk| � ⌘irls & k  Max IRLS Iter do

4: u = cgls(D, R, R
⇤
,Wr,Pm, µ2) Solve equation 3.11

5: m = Pm � u
6: r = D�Rm Compute residuals

7: Pm = Model weights(m) Weights for Radon coe�cients

8: Wr = Residual weights(r, p) Weights for residuals

9: J
k = krkp

p
+ µ2kmk1 Cost function

10: end while

of the IRLS algorithm (iteration to update the weights) stops when a maximum number of

updates is reached (typically five or six iterations) or when |Jk � J
k�1|/|Jk|  ⌘irls.

3.3 Examples

In this section, we test the proposed algorithm with one numerically blended synthetic

example with varying blending factors and a real seismic data example. We will use the

following expression to measure the signal-to-noise ratio of the reconstruction

SNR = 10 log
kDtruek2

F

kDtrue �Dreck2
F

, (3.12)

where Dtrue is the true data prior to blending and Drec is the recovered data after deblend-

ing. The symbol k · kF denotes the Frobenius norm.
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Figure 3.1: The workflow of the whole deblending process based on coherence pass
Radon projection operators.

3.3.1 Synthetic example

Our first example uses synthetic data modelled to test the proposed deblending method.

We first synthesize an example containing five linear events to mimic a small patch of a

noise-free common receiver gather. In this example, we committed the so-called “inverse

problem crime” because we have synthesized the linear events in the common receiver gathers

by forward modelling Radon domain coe�cients. Then, the synthesized common receiver

gathers were organized in shot gathers and blended. Firing times correspond to uniformly

distributed random numbers scaled to produce a desired blending factor. The numerical

example consists of Nr = 60 receivers and Ns = 80 shots. For each common receiver gather,

we extract every second shot from the 80 shots for display purposes. The source wavelet was

synthesized with a Ricker wavelet of central frequency 30 Hz. We also point out that we have

adopted a time-domain linear Radon transform that operates on the full aperture of each

common receiver gather. In our next example, we adopt a local time-domain linear Radon

transform. This type of unusual synthetic has as its main goal testing the algorithm and

tuning trade-o↵ parameters. Bear in mind that similar synthetic tests have been proposed

by several authors (Akerberg et al., 2008; Ibrahim and Sacchi, 2013; Chen et al., 2014;

Cheng and Sacchi, 2015). The trade-o↵ parameters of the problem were set to µ1 = 0.1

and µ2 = 1. The maximum number of iterations of IRLS was set to 5 and ⌘irls = 1.0�6.

Similarly, the maximum number of iterations for the CGLS solver was set to 30 and the

parameter ⌘cgls = 1.0�6.

Figure 3.2a shows the original unblended common receiver gather. The pseudo-deblended

data with a blending factor (defined with equation 1.2) of two is shown in Figure 3.2b.

The deblended result obtained via iterative inversion with the non-robust sparse Radon

transform as coherence pass operator can be found in Figure 3.2c. The deblended result
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with the coherence-pass robust sparse Radon operator can be found in Figure 3.2d. Figure

3.2e shows the level of blending noise in common receiver gather. Figure 3.2f and 3.2g shows

the di↵erence between 3.2c and 3.2a and 3.2d and 3.2a, respectively. In this case, Figure 3.2e

represents the blending noise for a blending factor of two. In Figure 3.2f and 3.2g, we observe

that the blending noise is properly suppressed, and the error panel contans almost no signal,

which is almost the same as the unblended data. This is true for the proposed deblending

algorithm for both the coherence pass robust and non-robust Radon operators. In other

words, both methods produce similar results for moderate levels of blending noise. Figure

3.3 shows the SNR of the deblending process versus the outer iteration of the algorithm for

the coherence pass non-robust and robust Radon operators, and the 0-th iteration denotes

the initial level of blending noise. It is clear that both algorithms achieve identical results for

a blending factor of two. One can point out that the coherence-pass robust Radon operator

eliminates more blending noise early in the iterative process and achieves convergence to

SNR = 45 dB earlier than the iterative inversion that uses the coherence pass non-robust

Radon operator. The di↵erence is insignificant for this case but yet relevant to be mentioned.

We also tested the proposed algorithm with a higher blending factor of six, which conse-

quently yields higher contamination with blending noise. Figure 3.4a presents one clean

unblended common receiver gather, and Figure 3.4b shows the pseudo-deblended common

receiver gather. Figure 3.4c and 3.4d shows the deblended results by adopting coherence

pass non-robust and robust Radon operators, respectively. The estimation error sections

can be found in Figure 3.4e-3.4g. In Figure 3.4e, we notice that the blending noise is more

energetic than that in Figure 3.2e. Figure 3.4f and 3.4g shows the coherence-pass robust

Radon operator outperforms its non-robust counterpart. The error in Figure 3.4g shows

no signal, while in Figure 3.4f, a moderate residual error is visible. In Figure 3.5, we can

observe that the coherence pass robust Radon operator achieves an SNR = 40 dB after 40

iterations. The non-robust operator has achieved an SNR = 20 dB for the same number

of iterations. Again, it is evident that the robust operator is more e�cient at removing

blending noise at early iterations than the non-robust operator.

Our last test considers an unusual level of blending of a blending factor of ten (Figure

3.6). This is a challenging problem, as one can observe from the pseudo-deblended common

receiver gather in Figure 3.6b. In Figure 3.6f and 3.6g, we observe that the coherence pass

robust Radon operator generates a more accurate deblending than the coherence pass non-

robust Radon operator. Figure 3.7 shows values of the SNR versus the outer iteration of

our algorithm for coherence-pass non-robust and robust Radon operators. Evidently, the

robust operator can eliminate blending noise during initial iterations and almost reaches an

SNR = 40 dB after 40 iterations.

Our last figure for this example (Figure 3.8) displays the SNR versus blending factor for



CHAPTER 3. COHERENCE PASS ROBUST RADON PROJECTION OPERATOR 35

0 20 40
Trace

0

0.2

0.4

0.6

0.8

1

1.2

Ti
m

e 
(s

)

!"

0 20 40
Trace

0

0.2

0.4

0.6

0.8

1

1.2

Ti
m

e 
(s

)

!"

0 20 40
Trace

0

0.2

0.4

0.6

0.8

1

1.2

Ti
m

e 
(s

)

!"

0 20 40
Trace

0

0.2

0.4

0.6

0.8

1

1.2

Ti
m

e 
(s

)

!"

0 20 40
Trace

0

0.2

0.4

0.6

0.8

1

1.2

Ti
m

e 
(s

)

!"

0 20 40
Trace

0

0.2

0.4

0.6

0.8

1

1.2

Ti
m

e 
(s

)

!"

0 20 40
Trace

0

0.2

0.4

0.6

0.8

1

1.2

Ti
m

e 
(s

)
!"

Figure 3.2: Deblending of synthetic data in common receiver gather with blending
factor of two. (a) Unblended data. (b) Pseudo-deblended data. (c) The deblending
result with the coherence-pass non-robust sparse Radon operator method. (d) The
deblending result with the coherence-pass robust sparse Radon operator method.
(e) Blending noise and the di↵erence between (b) and (a). (f) The di↵erence between
(c) and (a) gives the estimation error. (g) The estimation error is given by the
di↵erence between (d) and (a).



CHAPTER 3. COHERENCE PASS ROBUST RADON PROJECTION OPERATOR 36

0 10 20 30 40
Iteration Number

0

5

10

15

20

25

30

35

40

45

50

S
N

R
 (

d
B

)

Non-robust
Robust

Figure 3.3: Synthetic data example. SNR versus iteration number for blending
factor of two.
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Figure 3.4: Deblending of synthetic data in common receiver gather with blending
factor of six. (a) Unblended data. (b) Pseudo-deblended data. (c) The deblending
result with the coherence-pass non-robust sparse Radon operator method. (d) The
deblending result with the coherence-pass robust sparse Radon operator method.
(e) Blending noise and the di↵erence between (b) and (a). (f) The di↵erence between
(c) and (a) gives the estimation error. (g) The estimation error is given by the
di↵erence between (d) and (a).
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Figure 3.5: Synthetic data example. SNR versus iteration number for blending
factor of six.
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the coherence pass robust and non-robust Radon operators. All our results correspond

to a fixed final number of iterations Max Outer Iter= 40 (Algorithm 1). We emphasize

that we could have improved the results corresponding to the coherence-pass non-robust

operator by increasing the number of iterations at the cost of augmenting computational

time. Our examples, including convergence curves, confirm that the coherence pass robust

Radon operator has an early action on the deblending process leading to faster convergence

to solutions with a high SNR figure of merit.

3.3.2 Real data example

We also test our method with a marine dataset from the Gulf of Mexico (Mississippi Canyon

data). The data were numerically blended with varying blending factors = 2, 4, 6, 8, 10 to

extract SNR figures of quality.

We selected Ns = 33 shot gathers to simulate streamer data acquired via a simultaneous

source acquisition with Nr = 92 receivers extracted from every second trace of gathers

with 183 receivers. In this case, the coherence pass operator is applied in common channel

gathers (Peng et al., 2013). Contrary to our previous example, where we adopted a linear

Radon transform operating on the full aperture of the gather, we use a local linear Radon

transform instead. Common channel gathers have events that cannot be modelled with a

linear Radon transform that operates on the whole common channel gather. Therefore, we

adopted a local linear Radon transform that uses 11 consecutive traces with an overlap of

three traces. The results are patched back with proper tapering in the areas of overlap to

avoid artifacts. In other words, the coherence pass Radon operator Pc corresponds to a

sparse local linear Radon transform with non-robust or robust data fidelity term followed

by data synthesis with proper superposition of spatially overlapping windows. For the field

data example, we set µ2 = 0.5 for the coherence pass robust Radon operator and µ2 = 0.01

for the non-robust one. The other parameters were kept unchanged. Parameter selection

was carried out heuristically by selecting values of µ2 that lead to a minimum amount of

signal leakage in the final error panel. We assigned µ1 = 0.1 to both non-robust and robust

cases, and we found that it does not appear to play a significant role in the final result.

The unblended and pseudo-deblended data for blending factor of two are shown in Figure

3.9a and 3.9b. The latter correspond to a common channel gather. Figure 3.9c and 3.9d

shows the deblending results computed via the coherence pass non-robust and robust Radon

operators, respectively. Figure 3.9e, 3.9f and 3.9g is the estimated error sections obtained via

the di↵erence between 3.9b and 3.9a, 3.9c and 3.9a, 3.9d and 3.9a, respectively. Comparing

Figure 3.9c and 3.9d, we can observe that the coherence pass robust Radon method is

more e↵ective for suppressing blending noise and produces less signal leakage. Moreover,
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Figure 3.6: Deblending of synthetic data in common receiver gather with blending
factor of ten. (a) Unblended data. (b) Pseudo-deblended data. (c) The deblending
result with the coherence-pass non-robust sparse Radon operator method. (d) The
deblending result with the coherence-pass robust sparse Radon operator method.
(e) Blending noise and the di↵erence between (b) and (a). (f) The di↵erence between
(c) and (a) gives the estimation error. (g) The estimation error is given by the
di↵erence between (d) and (a).
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Figure 3.7: Synthetic data example. SNR versus iteration number for blending
factor of ten.
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Figure 3.8: Synthetic data example. SNR versus blending factor.
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the error estimation section of the robust coherence pass operator (Figure 3.9g) is almost

negligible. Comparisons for one common shot gather can be found in Figure 3.10. We notice

that adopting a coherence pass robust Radon operator can generate cleaner deblended data

(Figure 3.10d). In Figure 3.10c, we still can observe some blending noise left. By comparing

Figure 3.10f and 3.10g, we observe signal leakage and residual blending noise in the non-

robust solution. The error panel of the solution obtained via the robust coherence pass

operator (Figure 3.10g) has a negligible amount of coherent signal. Figure 3.11 shows the

diagram portraying SNR versus iteration.

We repeated tests for blending factor of six (Figures 3.12, 3.13 and 3.14) and for blending

factor of ten (Figure 3.15, 3.16 and 3.17). Again, similar to the previous example, we observe

less signal leakage and a higher SNR value when a coherence-pass robust Radon operator

is adopted (Figures 13 and 16).

Finally, Figure 3.18 shows the SNR versus the blending factor. As expected, the SNR

decreases for both methods as more blending noise is included. We also conclude that the

coherence pass robust Radon operator outperforms the non-robust Radon operator, with

di↵erences becoming more noticeable for increasing blending factor.

3.4 Conclusions

This chapter illustrates an inversion scheme for separating simultaneous source data. The

proposed method adopts a robust Radon transform as a coherence pass operator used to

clean common receiver (or channel) gathers in a typical iterative deblending by inversion

process. We also compare the inversion with the classical coherence pass non-robust Radon

operator. Our main conclusion is that deblending by inversion methods requires many it-

erations to obtain high-quality results if one does not aggressively remove incoherent noise

during initial iterations. The latter can be achieved systematically by developing robust

coherence pass operators like the one described in this chapter. It is important to stress

that the coherence pass robust and non-robust Radon operators have similar computational

costs when implemented via the IRLS algorithm. Given that in both cases, we have con-

sidered a sparsity constraint to estimate the Radon coe�cients, the iterative updates of the

IRLS algorithm are roughly cost-wise equivalent for coherence pass non-robust and robust

operators.
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Figure 3.9: Deblending example of a real dataset with blending factor of two (Com-
mon channel gather). (a) Unblended data. (b) Pseudo-deblended data. (c) De-
blended data via the coherence pass non-robust sparse Radon operator method.
(d) Deblended data via the coherence pass robust sparse Radon operator method.
(e) Blending interferences given by the di↵erence between (b) and (a). (f) The
di↵erence between (c) and (a) gives the estimation error. (g) The estimation error
is given by the di↵erence between (d) and (a).
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Figure 3.10: Results corresponding to one common shot gather for blending factor
of two. (a) Unblended data. (b) Pseudo-deblended data. (c) Deblended data via
the coherence pass non-robust sparse Radon operator method. (d) Deblended data
via the coherence pass robust sparse Radon operator. (e) Blending interferences in
common shot gather given by the di↵erence between (b) and (a). (f) The di↵erence
between (c) and (a) gives the estimation error. (g) The estimation error is given by
the di↵erence between (d) and (a).
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Figure 3.11: Real data example. SNR versus iteration number for blending factor
of two.
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Figure 3.12: Deblending example of a real dataset with blending factor of six (com-
mon channel gather). (a) Unblended data. (b) Pseudo-deblended data. (c) De-
blended data via the coherence pass non-robust sparse Radon operator method.
(d) Deblended data via the coherence pass robust sparse Radon operator method.
(e) Blending interferences given by the di↵erence between (b) and (a). (f) The
di↵erence between (c) and (a) gives the estimation error. (g) The estimation error
is given by the di↵erence between (d) and (a).



CHAPTER 3. COHERENCE PASS ROBUST RADON PROJECTION OPERATOR 48

!"

0 20 40 60 80
Trace

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Ti
m

e 
(s

)

!"

0 20 40 60 80
Trace

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Ti
m

e 
(s

)

!"

0 20 40 60 80
Trace

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Ti
m

e 
(s

)

!"

0 20 40 60 80
Trace

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Ti
m

e 
(s

)

!"

0 20 40 60 80
Trace

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Ti
m

e 
(s

)

!"

0 20 40 60 80
Trace

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Ti
m

e 
(s

)

!"

0 20 40 60 80
Trace

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Ti
m

e 
(s

)

Figure 3.13: Results corresponding to one common shot gather for a blending factor
of six. (a) Unblended data. (b) Pseudo-deblended data. (c) Deblended data via
the coherence pass non-robust sparse Radon operator method. (d) Deblended data
via the coherence pass robust sparse Radon operator method. (e) Blending inter-
ferences in common shot gather given by the di↵erence between (b) and (a). (f)
The di↵erence between (c) and (a) gives the estimation error. (g) The estimation
error is given by the di↵erence between (d) and (a).
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Figure 3.14: Real data example. SNR versus iteration number for blending factor
of six.
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Figure 3.15: Deblending example of a real dataset with blending factor of ten
(common channel gather). (a) Unblended data. (b) Pseudo-deblended data. (c)
Deblended data via the coherence pass non-robust sparse Radon operator method.
(d) Deblended data via the coherence pass robust sparse Radon operator method.
(e) Blending interferences given by the di↵erence between (b) and (a). (f) The
di↵erence between (c) and (a) gives the estimation error. (g) The estimation error
is given by the di↵erence between (d) and (a).
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Figure 3.16: Results corresponding to one common shot gather for a blending factor
of ten. (a) Unblended data. (b) Pseudo-deblended data. (c) Deblended data via the
coherence pass non-robust sparse Radon operator method. (d) Deblended data via
the coherence pass robust sparse Radon operator method. (e) Blending interferences
in the common shot are also the di↵erence between (b) and (a). (f) The di↵erence
between (c) and (a) gives the estimation error. (g) The estimation error is given by
the di↵erence between (d) and (a).



CHAPTER 3. COHERENCE PASS ROBUST RADON PROJECTION OPERATOR 52

0 10 20 30 40
Iteration Number

-6

-4

-2

0

2

4

6

8

S
N

R
(d

B
)

Non-robust
Robust

Figure 3.17: Real data example. SNR versus iteration number for blending factor
of ten.
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Figure 3.18: Real data example. SNR versus blending factor.



CHAPTER 4

Deblending via a robust Multichannel Singular Spectrum

Analysis filter
1

4.1 Introduction

For simultaneous source separation, in the category of inversion-based methods, rather than

applying sparse inversion methods on auxiliaries bases, one can also adopt rank-constrained

optimization to iteratively solve the deblending problem (Maraschini et al., 2012b; Cheng

and Sacchi, 2015, 2016; Jeong et al., 2020).

Approaches based on reduced-rank filtering iteratively apply denoising to small data win-

dows extracted from common-receiver gathers or common channel gathers (Cheng and

Sacchi, 2015). The latter could be problematic because, in general, reduced-rank filter-

ing techniques require rank as a user-supplied parameter. The optimal rank could vary

from window to window. The reduced-rank filters adopted in the projected gradient de-

scent algorithm could be the one-dimensional Singular Spectrum Analysis (SSA) filter or its

multichannel version (MSSA) filter (Ghil et al., 2002) adapted for seismic data processing

(Oropeza and Sacchi, 2011). The SSA/MSSA filtering, also denominated the Cazdow filter

(Cadzow, 1988), has been used extensively for prestack seismic denoising and reconstruction

(Trickett, 2008; Trickett et al., 2012). The MSSA/Cadzow filter is non-robust and generally

yields suboptimal results when bursts of erratic noise contaminate observations. Attempts

to improve the robustness of the MSSA filter include methods that replace the Singular

Value Decomposition with a robust matrix factorization (Cheng and Sacchi, 2015; Bahia

and Sacchi, 2019), or with a robust iterative reweighting scheme (Trickett et al., 2012).

1A version of this chapter is published in Lin, R., B. Bahia, and M. D. Sacchi, 2021, Iterative deblending
of simultaneous-source seismic data via a robust singular spectrum analysis filter: IEEE Transactions on
Geoscience and Remote Sensing, 60, 1-10.

54
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In this chapter, we solve the simultaneous source separation problem by adopting the pro-

jected gradient descent (PGD) method to iteratively estimate the data one would acquire

via a conventional seismic acquisition. The projection operator is a windowed robust MSSA

filter that suppresses source interferences in the frequency-space domain. We reformulate

the MSSA filter as a robust optimization problem solved via a bifactored gradient descent

(BFGD) algorithm. The MSSA filter requires breaking down common-receiver gathers,

common channel gathers or common o↵set gathers into small overlapping windows. The

traditional MSSA method needs the filter rank as an input parameter, which can vary from

window to window. The latter has been a shortcoming for applying classical MSSA filtering

to complex seismic data processing. The proposed robust MSSA filter is less sensitive to

the rank selection, making it appealing for deblending applications that require windowing.

Additionally, the robust MSSA projection e↵ectively attenuates random source interferences

during the initial iterations of the projected gradient descent method. Comparing classical

and robust MSSA filters, we also report an acceleration of the projected gradient descent

method convergence when we adopt the robust MSSA filter. Finally, we provide synthetic

and real data examples and discuss heuristic strategies for parameter selection.

This chapter follows the subsequent structure. First, I briefly introduce the projected gra-

dient method for simultaneous-source separation with low-rank constraints. I continue with

a description of windowed MSSA to guarantee the linear-event assumption with the MSSA

filtering. Next, I compare the classical non-robust MSSA filter with the robust MSSA filter

as the projection operators. Finally, I test the two projection operators via synthetic and

field data.

4.2 Theory

4.2.1 Separation of simultaneous-source data via the PGD method

For simultaneous-source separation based on rank-constrained optimization, one can esti-

mate D by solving an inverse problem with the following cost function

min J = kb�BDk22
s.t. rank(D)  k.

(4.1)

With the PGD method (Cheng and Sacchi, 2016; Bolduc et al., 2017; Peters et al., 2019;

Lin et al., 2021), one can solve equation 4.1 by defining the gradient-descent step followed

by a projection:
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D⌫ = P
⇥
D⌫�1 � �rJ

�
D⌫�1

�⇤

= P
⇥
D⌫�1 � �B

⇤(BD⌫�1 � b)
⇤

,

(4.2)

where rJ is the gradient of the error function J . The scalar � is a step-size, and P indi-

cates the projection operator. In our work, P is a denoising algorithm based on the f � x

MSSA filter (Oropeza and Sacchi, 2011; Cheng and Sacchi, 2015). The MSSA filter works

on small overlapping spatio-temporal windows to iteratively remove blending erratic noise.

The latter is the basis of the Iterative Rank Reduction (IRR) deblending method (Cheng

and Sacchi, 2015). The IRR process and its robust version are part of our discussion in

subsequent sections. The filtering is applied to one common receiver/channel gather simul-

taneously, but we stress that the process repeats for all receivers/channels. Then, filtered

common-receiver/channel gathers are organized in common source gathers to continue with

the standard seismic data processing flow. Algorithm 4 provides the PGD method for de-

blending with low-rank constraint optimization. Notice that the step length needs to be

estimated to guarantee the convergence of the PGD method (Iusem, 2003; Bolduc et al.,

2017). We describe a strategy for prescribing the step length when discussing our examples.

Algorithm 4 Deblending by the Projected Gradient Descent Method

1: Inputs:
Blended data b, step size �, and tolerance ✏.

2: Outputs:
Deblended data D.

3: Initialization:
k = 0, D = B

⇤b, e = BD� b, J = kek22.
4: while k  kmax | J � ✏ do

5: bD Dk � �B
⇤e

6: Dk+1  P[bD] Algorithm 5
7: e = BDk+1 � b
8: J = kek22
9: k  k + 1

10: end while

4.2.2 Windowed MSSA filter

For simplicity, we designate the projection operator in equation 4.2 as follows

bD = P[D] (4.3)

where D and bD are input and filtered data after the projection P, respectively. The pro-

jector operator entails several operators described below. First, we describe the windowing
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operator we have adopted to validate an important assumption made by MSSA filtering.

In general, the MSSA filter is optimal for waveforms represented by linear events in the

t� x domains. These events correspond to complex exponentials in the f � x domain. It is

easy to show that P linear events in the t� x domain correspond to the superposition of P

complex exponentials in the f � x domain where the exponentials are a function of space x

(Oropeza and Sacchi, 2011). The assumption mentioned above is the essence of prediction

error filtering methods adopted by exploration seismologists for denoising and the main

driving principle of the f�x MSSA filter for seismic signal enhancement and reconstruction

(Ulrych and Sacchi, 2005). A linear moveout is a good approximation for seismic reflections

in small spatio-temporal windows. Therefore, it is crucial to emphasize that MSSA filtering

acts on small overlapping windows where one can model reflections as a superposition of

events with linear moveout. The proposed windowing approach is summarized as follows

1. First step of the windowed MSSA filter is to break the data into small overlapping

data patches to limit the number of events (dips)

Sk = Wk[D], k = 1 . . . Nw (4.4)

where Nw is the number of windows, and W represents the windowing operator with

the action of extracting a spatio-temporal window with proper tapering (Figure 4.1).

We call Wk the k-th analysis window. The extracted k-th data Sk is a matrix of size

Lt ⇥Lx where Lt is the number of time samples and Lx the number of seismic traces

in the window.

2. We then apply the MSSA filter or the robust MSSA filter to each window. Both filters

are described in the next subsections

bSk = SF [Sk] k = 1 . . . Nw , (4.5)

where SF symbolizes the action of applying MSSA or robust MSSA to a data window.

3. Then, the filtered data patches are properly moved back to their position and summed

up to yield the filtered data

bD =
NwX

k=1

W⇤
k

[bSk] (4.6)

where W⇤ is the synthesis window operator for data patch k (See Figure 4.1).

Combining equations 4.4, 4.5 and 4.6 leads to

bD =
X

k

W⇤
k

[SF [ Wk[D]]] . (4.7)
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Figure 4.1: The windowing operator and its associated adjoint operator. The win-
dowing operator Wk extracts small patches of data from a whole gather. The
adjoint operator W⇤

k
synthesizes all the filtered small patches back into a gather.

A linear taper is adopted for overlaps processing. Data D denotes the whole data
gather, and s1, s2, s3, · · · , sk represent small patches of data.

The operators for analysis and synthesis are chosen such that if SF = I (no filtering is

applied),
P

k
W⇤

k
Wk = 1. The latter guarantees that in the absence of filtering bD = D. In

other words, the windowing process does not introduce any distortion. See also Algorithm

5.

4.2.3 Denoiser based on the classical non-robust MSSA filter

We now concentrate on applying the MSSA filter to one data patch Sk by equation 4.5.

We can safely ignore the window subindex k and understand that the MSSA filter is ap-

plied to all data patches. The MSSA filter is applied in the frequency domain and con-

stitutes a multi-level block-Hankel matrix for each frequency. We first transform the data

patch to the frequency-space domain which accounts to s(t, x) $ s(f, x). We use the

vector s(f) to also designate the spatial data for frequency f , in other words, s(f) =

[s(f, 1), s(f, 2), . . . s(f, Lx)]T . The classical MSSA filter can be summarized by the following

steps:
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Algorithm 5 Windowed MSSA: D̂ = P[D]

1: Inputs:
Number of windows Nw and parameters prescribing analysis and synthesis windows.
D is Nt ⇥Nx common-receiver gather.

2: Outputs:
D̂ is filtered Nt ⇥Nx common-receiver gather.

3: for k = 1 : Nw do
4: Sk = Wk[D] Extract a t-x data patch

5: Ŝk = SF [Sk] MSSA filter (Algorithm 6)
6: D̂ = D̂ + W⇤

k
[Ŝk] Synthesize data from filtered data patches

7: end for

1. For each frequency f , the spatial data s(f) is embedded into a Hankel matrix

H(f) = H [s(f)]

=

0

BBBBBBB@

s(f, 1) s(f, 2) . . . s(f, Nc)

s(f, 2) s(f, 3) . . . s(f, Nc + 1)

s(f, 3) s(f, 4) . . . s(f, Nc + 2)
...

...
...

...

s(f, Nr) s(f, Nr + 1) . . . s(f, Lx)

1

CCCCCCCA

(4.8)

with Nr = [Lx/2] + 1 and Nc = Lx � Nr. The Hankel H(f) is square for Lx odd or

almost square for Lx even. The symbol H is the Hankelization operator.

2. Then, we apply rank reduction via the Singular Value Decomposition (SVD) to esti-

mate the rank p matrix Hp(f) that minimizes the Frobenius norm kH(f)�Hp(f)kF
(Eckart and Young, 1936). The SVD decomposition yields the orthonormal matri-

ces Up(f) and Vp(f) of size Nr ⇥ p and Nc ⇥ p, respectively, and the p ⇥ p di-

agonal matrix of singular values ⌃p. The reduced-rank approximation is given by

Hp(f) = Up(f)⌃p(f)V(f)H

p
. Clearly, p is the desired rank of the approximation

supplied by the user.

3. The filtered signal is recovered via antidiagonal averaging the elements of the matrix

Hp(f)

bs(f) = A [Hp(f)] (4.9)

where A is the antidiagonal averaging operator.

4. Finally, once bs(f) is estimated for all frequencies, one can use the inverse DFT to

transform back the signal to the t� x to obtain the filtered data bs(t, x).

Algorithm 6 shows the classical MSSA filter in its non-robust option.
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Algorithm 6 Classical MSSA filter via SVD and robust MSSA via BFGD, Ŝ = SF [S]

1: Inputs:
Small patch of data S of size Lt ⇥ Lx and frequency
band B where denoising is carried out.

2: Outputs:
Filtered patch of data Ŝ of size Lt ⇥ Lx.

3: S fft(S) 1D column-wise DFT (t-x! f -x)

4: for all f 2 B do
5: s(f) = S(f, :) Extract spatial data at frequency f

6: if robust==true then
7: [Up,Vp] = BFGD(s(f), p) Algorithm 7
8: Hp = UpVH

p

9: else
10: H = H [s(f)] Hankelization

11: [Up,⌃p,Vp] = SVD(H, p) Rank-reduction

12: Hp = Up⌃pVH

p

13: end if
14: ŝ(f) = A [Hp] Antidiagonal average

15: Ŝ(f, :) = ŝ(f)
16: end for
17: Ŝ ifft(Ŝ) 1D column-wise IDFT (f -x! t-x)

4.2.4 Denoiser based on the robust MSSA filter

The SVD provides the least-squares solution to the matrix low-rank approximation problem

(Eckart and Young, 1936). Deblending algorithms must cope with intense erratic noise,

usually responsible for their slow convergence (Lin and Sacchi, 2020a). The proposition is

that an MSSA filter designed via a robust procedure, rather than the SVD, will act as a more

e↵ective means to eliminate source interferences in early iterations of the PGD algorithm.

We make the MSSA filter robust by reformulating it as an optimization problem. We

represent again the observed spatial data at a given frequency f by s(f) and assume that

the observed data can be approximated by the antidiagonal averaging operator applied to

an unknown matrix Hp(f) of rank p. Therefore, the proposed cost function to estimate the

robust MSSA filter is given by

J(f) = ks(f)�A [Hp(f)]k⇢ (4.10)

where k · k⇢ is used to indicate Tukey’s biweight loss function (Ji, 2012; Belagiannis et al.,
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2015). If the scaled error is given by r(f) = (s(f)�A [H(f)])/� then

J(f) = kr(f)k⇢ (4.11)

=
X

i

⇢(ri(f)) , (4.12)

where

⇢(x) =

8
<

:

�
2

6 [1� (1� ( |x|
�

)2)3], for |x|  �

�
2

6 , for |x| > � .

(4.13)

We can ignore the symbol f from our notation and understand that the process is carried

out for all frequencies as in the classical f � x MSSA filter. Furthermore, we include the

low-rank constraint by expressing the unknown matrix of desired rank p via Hp = UVH

where U and V are matrices of size Nr⇥p and Nc⇥p, respectively. Rather than optimizing

the loss function with respect to the unknown matrix Hp, we adopt the BFGD algorithm

(Park et al., 2018) and solve

bU, bV = argmin
U ,V

ks�A [UVH ]k⇢ . (4.14)

The BFGD algorithm is a first-order optimization method that operates directly with factors

U and V. The gradients of equation 4.14 with respect to U and V lead to the classical

steepest descent update

Ui+1 = Ui � ⌘rUJ
i (4.15)

Vi+1 = Vi � ⌘rVJ
i (4.16)

The index i indicates iteration, and ⌘ denotes suitable step lengths. The gradients are given

by

rUJ = (rHJ)V (4.17)

rVJ = (rHJ)HU (4.18)

where

rHJ = �A
⇤W(s�A [H]) . (4.19)

The elements of the diagonal matrix of weights W for Tukey’s biweight loss function are

given by the following expression:

Wii =

8
><

>:


1�

⇣
|ri|
�

⌘2
�2

, |ri|  �

0, |ri| > � .

(4.20)
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where ri indicates an element of the vector of scaled residuals r and � is a user-defined

tuneable parameter that controls the level of robustness of the denoiser. A common way to

obtain the scale parameter � is by adopting normalized median absolute deviation (MAD)

(Holland and Welsch, 1977)

� = 1.4826 MAD , (4.21)

where MAD = median(|e � median(|e|)|) and e denotes the unscaled vector of residuals

e = s � A [Hp]. Because the solution is not known a priori, we cannot estimate the scale

parameter �. We prefer not to iterate the scale parameter proposed by Chen and Sacchi

(2014). We simply start with a non-robust factorization computed by the SVD to determine

the initial residuals from where we estimate � and keep this value constant for the remaining

iterations of Algorithm 7.

The reader can refer to Park et al. (2018) for the details of the selection of appropriate step-

size ⌘ and initial factor matrices that lead to linear convergence. Last, it is important to

mention that the operator A
⇤ is the adjoint of the antidiagonal averaging operator A . It can

be shown that A
⇤ is a scaled version of the Hankelization operator H (Wang et al., 2021),

and therefore, we safely replace A
⇤ by H which was defined in equation 4.8. Replacing

A
⇤ by H is equivalent to using the pseudo-inverse of A rather than its adjoint operator.

The latter provides an improved descent direction in equations 4.15 and 4.16.

A point worth mentioning is that the final resulting factors computed by BFGD lead to a

low-rank matrix bHp = bU bVH . However, the resulting bHp matrix is not guaranteed to be

a Hankel matrix. The latter is not a problem because the final denoised signal is A [ bHp]

and the associated Hankel matrix could be re-estimated by applying the Hankelization

operator H to the final denoised signal ŝ. One could iteratively refine the estimator of

the signal by repeating BFGD until the final factors form a Hankel matrix. However,

our numerical experiments show that such a procedure does not significantly improve the

deblending performance.

4.3 Examples

This section tests the proposed algorithm with synthetic and numerically blended field data.

We will use the following expression to measure the signal-to-noise ratio of the recovered

data after deblending

SNR = 10 log
kDtruek2

F

kDtrue �Drk2
F

, (4.22)

where Dtrue is the true data before blending, and Dr is the recovered data after deblending.
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Algorithm 7 Robust MSSA filter via BFGD

1: Inputs:
Data vector s of size Lx ⇥ 1, step length ⌘, and tolerance ⌫;
Initial factors U of size Nr ⇥ p and V of size Nc ⇥ p;
Initial diagonal matrix of weighs W = I of size Lx ⇥ Lx.

2: while k  kmax | krk2 > ⌫ do
3: rHJ = �A

⇤(W(s�A [H])
4: rUJ = (rHJ)V
5: rVJ = (rHJ)HU
6: U U� ⌘rUJ

7: V V � ⌘rVJ

8: H = UVH

9: r = (s�A [H])/�

10: update W
11: k  k + 1
12: end while
13: Return ŝ = A [UVH ]

4.3.1 Synthetic example

We synthesize our first example using a finite-di↵erence modelling algorithm that simulates

prestack seismic data with a blending factor of two (BF = 2). The simulation corresponds

to two vessels firing about two sources per pseudo-deblended record. The numerical example

consists of 200 receivers and 120 shots. The source is modelled with a Ricker wavelet of

a central frequency of 30 Hz. The maximum iteration number is 30 and the stopping

parameter ✏ = 1 ⇥ 10�4 (Algorithm 4). We adopted an exponential schedule to decrease

the select step length � of Algorithm 4. The initial step length is computed via 2/(emax),

where emax is the maximum eigenvalue of the operator B
⇤
B (Cheng and Sacchi, 2015).

Deblending experiments via the projected gradient descent method were tested with the

projection given by the classical MSSA (non-robust) (Cheng and Sacchi, 2015) and the

projection introduced in this chapter via the robust MSSA filter. We first run numerical

tests with windowing operators W of di↵erent sizes. In our first example, we adopted

windows of of size Lt = 350 time samples and Lx = 15 traces. The overlap comprises

70 samples in time and 5 traces in space with linear tapering in time and space. We use

the same window size to conduct tests using non-robust and robust MSSA filter projection

methods. For the non-robust MSSA filter, heuristically, we also decided to increase the

rank of the MSSA filter by one at every five iterations with an initial rank value of two.

For the robust MSSA filter, we set the rank constant to a value of p = 2 and allow the

parameter � of Tukey’s biweight loss function to vary with the iteration number. At initial

iterations, we adopt a small � value to apply harsh robust denoising of strong interferences

and then gradually increase the value of � to allow retrieving weak signals. A strategy that
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works for us entails using an initial value � = 2.0 and then increasing it by 0.1 in each

iteration. Deblending results can be found in Figure 4.2. Figure 4.2a and 4.2d shows the

initially clean data and the pseudo-deblended data for one common-receiver gather. Many

incoherent blending interferences can be observed from the pseudo-deblended data (Figure

4.2d). Figure 4.2b and 4.2c shows the deblending results with the robust and non-robust

MSSA filter used as the projection method, respectively. Figure 4.2e and 4.2f corresponds

to the error estimation sections. There is one strong event at the top of the seismic gather.

Also, the red box displays the actual window size in the seismic gather. We expect to

capture a few strong blending interferences in such a small window. The SNR values for

PGD with robust and non-robust MSSA filter projections are very similar. For instance, in

Figure 4.2c the SNR is 19.6 dB while in Figure 4.2d is 19.2 dB.

We also increase the size of the window to Lt = 1000 time samples and Lx = 50 traces

with an overlap of 200 samples in time and 10 traces in space. This setup shows significant

di↵erences in Figure 4.3. Figure 4.3a and 4.3d shows the initially clean data and the pseudo-

deblended data for one common-receiver gather. Figure 4.3b and 4.3c shows the deblending

results with the robust and non-robust MSSA filter used as the projection method, respec-

tively. Figure 4.3e and 4.3f corresponds to the error estimation sections. For the non-robust

MSSA filter, we still increase the rank of the MSSA filter by one at every ten iterations to

a maximum where the rank is never larger than 0.5⇥max(Nr, Nc) where Nr and Nc define

the size of the Hankel matrix in Algorithm 6. For the robust MSSA filter, we set the rank

constant to p = 10 and increase parameter � by 0.4 in each iteration with an initial value

of � = 2.0. Now, SNR for PGD with robust MSSA filtering projecting is 21.9 dB, while

the classical non-robust MSSA projection yields a lower SNR of 12.6 dB. More blending

interferences and signals are included in such a large red rectangular window. The blending

noise behaves in this rectangular window like high-amplitude erratic noise. The robust al-

gorithm is more e↵ective for erratic noise attenuation (Chen and Sacchi, 2014). Moreover,

in the rectangular window, the events are slightly curved. Therefore, the data violates the

linear event assumption made by MSSA. In Figure 4.3d, we observe significant blending in-

terferences unseparated from the data. This phenomenon also can be found in other articles

(Maraschini et al., 2012a; Cheng and Sacchi, 2015). On the contrary, the robust MSSA filter

projection method yields a cleaner deblending output. The strong blending interferences

are attenuated e↵ectively with a large window. Comparing Figure 4.3e and 4.3f, we also can

conclude that adopting a robust MSSA denoising projection outperforms the non-robust

MSSA filter. Also, when comparing Figure 4.2b with Figure 4.3b, we conclude that using a

large window size to contain more information can achieve better deblending results via the

robust MSSA projection method. The computational time and SNR comparison of Figure

4.2 and 4.3 can be found in Table 4.1.

Figure 4.4 shows deblending outputs for a zoomed rectangular zone of the data in Figure
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Figure 4.2: Synthetic data example with small window size 350 ⇥ 15. (a) Clean
unblended data in common-receiver gather. (b) Deblending via the PGD method
with robust MSSA filtering (SNR = 19.6 dB). (c) Deblending via the PGD method
with non-robust MSSA filtering (SNR = 19.2 dB). (d) Pseudo-deblended data in
common-receiver gather. (e) Estimated errors between (b) and (a), corresponding
to PGD with robust MSSA. (f) Estimated errors between (c) and (a), corresponding
to PGD with non-robust MSSA.
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Figure 4.3: Synthetic data example with large window size 1000⇥50. (a) The clean,
ideal unblended common-receiver gather data. (b) Deblending via the PGD method
with robust MSSA filtering (SNR = 21.9 dB). (c) Deblending via the PGD method
with non-robust MSSA filtering (SNR = 12.6 dB). (d) Pseudo-deblended common-
receiver gather data. (e) Estimated errors between (b) and (a), corresponding to
PGD with robust MSSA. (f) Estimated errors between (c) and (a), corresponding
to PGD with non-robust MSSA.
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4.3. In Figure 4.4d, we observe significant blending interferences resulting from applying

the non-robust MSSA filter in the PGD algorithm. We find fewer interferences for the PGD

algorithm with robust MSSA filtering in Figure 4.4c. The final singular value distribution

of the Hankel matrix at a specific 30 Hz frequency slice can be found in Figure 4.5. We

observe highly amplified singular values for the pseudo-deblended data. The singular values

are much larger than those of the clean one. It is clear that the spectra of singular values

for this particular window after deblending is similar to the spectrum of the clean data.

We also tested the influence of rank selection in our results; we conducted experiments where

we varied the rank value. The rank for the PGD algorithm with robust MSSA filtering is

fixed for each run, going from p = 8 to 15. For the PGD algorithm with non-robust MSSA

filtering, the rank reported in Figure 4.6 corresponds to the initial rank. In other words, we

increase the rank with the iteration number of PGD as described above. We find that the

PGD algorithm with the robust MSSA denoising projection method is not as sensitive to

rank selection as PGD with the non-robust filter. The insensitivity of rank selection for the

robust MSSA projection makes the technique suitable for window-based processing, where

variations of optimal rank from window to window are highly likely to occur.

Figure 4.7 also verifies our conclusion. We generated 20 di↵erent random firing time source

schedules for each rank value. We numerically blended the synthetic data for each ran-

dom schedule and used robust and non-robust MSSA projections in the PGD algorithm to

separate the blended data. Figure 4.7 shows the average SNR value of the 20 di↵erent

realizations versus rank.

For the synthetic example, we find that adopting the PGD algorithm with robust MSSA

filtering yields accurate and stable deblending results with less sensitivity of rank selection

for relatively large window sizes. Moreover, the convergence of PGD is improved when we

adopt the robust MSSA filter. The latter has a simple explanation. Denoising is more

aggressive in early iterations of PGD when one adopts the robust MSSA filter. We also ob-

served that the PGD algorithm with robust MSSA filtering requires more oversized windows

than its non-robust counterpart. More specifically, if we choose a small window, the robust

algorithm cannot decide whether erratic noise or signal is present. Therefore, we advocate

adopting relatively large window sizes when applying PGD with a robust MSSA projection.

4.3.2 Real data example

This section applies the proposed method to real seismic data from the Gulf of Mexico

(Mississippi Canyon data) with ocean bottom cable acquisition design (Figure 4.8). The

data were numerically blended with a blending factor of two (BF = 2) to simulate a si-

multaneous source marine acquisition. We select a part of the data containing the complex
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Figure 4.4: Zoomed area corresponding to the rectangle in Figure 4.3. (a) The clean,
ideal unblended common-receiver gather data. (b) Pseudo-deblended common-
receiver gather data. (c) Deblending via the PGD method with robust MSSA
filtering. (d) Deblending via the PGD method with non-robust MSSA filtering.
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Figure 4.5: Spectra of singular values extracted from the data in Figure 4.4. The
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which is increased by one every ten iterations.
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Figure 4.7: Synthetic data example. The average SNR versus rank value for 20
realizations of di↵erent random source firing times.
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Cases Methods Time(sec) SNR(dB)

Synthetic example
(W : 350⇥15)

RMSSA 846.31 19.62

MSSA 393.38 19.23

Synthetic example
(W : 1000⇥50)

RMSSA 811.77 21.69

MSSA 164.97 11.81

Real example
(W : 100⇥50)

RMSSA 272.44 10.54

MSSA 152.43 8.06

Table 4.1: Computational time and SNR comparison for synthetic and real exam-
ples. The computational time listed here is only for one common receiver gather or
one common o↵set gather.

subsurface structures to compare the e↵ectiveness of our algorithms. The data includes 250

shot gathers with 183 receivers each. We use this data to simulate streamer data acquired

via a simultaneous-source acquisition; therefore, the robust and non-robust algorithms are

applied in common-channel gathers (Peng et al., 2013), which is equivalent to common o↵-

set gather as the streamers (receivers) and sources move together. The maximum iteration

number was set to 30 and ✏ = 1⇥ 10�3 (Algorithm 4). Again, We adopt the strategy used

for the previous example to step lengths and rank for the non-robust MSSA filter. For the

robust MSSA filter, we also increase the tuneable parameter � by 0.4 in each iteration with

an initial value of 2.5. The operator W extracts relatively large windows of size 100 samples

in time and 50 traces. The overlap is of 20 samples in time and 10 traces in space with a

linear tapering in time and space.

The original unblended data and pseudo-deblended data for a common-channel gather are

shown in Figure 4.9a and 4.9d, respectively. Di↵erent from the common shot gather, there

exists incoherent blending interferences in the common channel gather. In Figure 4.9d,

it is easy to identify that windows A, B, and C should be processed with MSSA filters,

likely with a di↵erent rank parameter. Figure 4.9b and 4.9c shows the deblending results

with a moderate rank value of p = 10 for the PGD algorithm with robust and non-robust

MSSA filters, respectively. Figure 4.3e and 4.3f portrays the corresponding error estimation

sections. We observe signal leakage for PGD with the non-robust projection (Figure 4.9c

and 4.9f); this is particularly evident in windows B and C. The non-robust filter has left

significant interferences in the deblended data. It is noticeable in window A. In contrast,

the robust MSSA filter generates a more accurate deblending result. For instance, if one

observes window A, the result is almost equal to the original unblended data. Table 4.1

shows the detailed computational time and SNR comparison of Figure 4.9.
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Figure 4.8: Schematic diagram display of ocean bottom cable acquisition of the real
data2.

To test the influence of rank selection in our results, we vary the rank value from 8 to 20.

Again, for the non-robust MSSA filter, the rank 8 to 20 corresponds to initial ranks. In

Figure 4.10, we observe that the robust MSSA filter generates higher SNR values and, as

discussed before, is less sensitive to rank selection than the non-robust MSSA filter.

4.4 Conclusions

This chapter illustrates an inversion scheme for separating simultaneous source data. We

adopted the PGD algorithm with projection given by two flavours of the MSSA filter that

we named non-robust (classical) MSSA and robust MSSA. We show the benefit of adopting

the robust MSSA filter with a relatively large window size to formulate the window-based

projection required by the PGD algorithm. Investigation with numerical experiments shows

improved deblending results when one adopts the robust MSSA filter.

The robust MSSA filter described in the chapter is computed via the BFGD approach.

We adopted Tukey’s biweight loss function to robustize the error in the MSSA filter. It

is interesting to clarify that other robust measures of error could have been used. But

in general, results using Cauchy or Huber norms are similar to those we can obtain with

2From FishSAFE. Source: https://fishsafe.org/en/offshore-structures/seismic-surveys/

https://fishsafe.org/en/offshore-structures/seismic-surveys/
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Figure 4.9: Common-channel gather of a Gulf of Mexico survey. (a) Clean un-
blended data in common channel gather. (b) Deblending via PGD with robust
MSSA filtering (SNR = 10.5 dB). (c) Deblending via PGD with non-robust MSSA
filtering (SNR = 8.1 dB). (d) Pseudo-deblended data in common channel gather.
(e) Estimated error corresponding to (b). (f) Estimated error corresponding to (c).
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Figure 4.10: Real data example. SNR plot versus rank. We vary the rank value
from 6 to 20, and we observe that the robust MSSA filter generates higher SNR

values and is less sensitive to rank selection than the non-robust MSSA filter
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Tukey’s biweight loss. We also discussed a few heuristic considerations that add practicality

to our research, such as keeping rank value constant and varying Tukey’s biweight parameter

� with iteration to avoid erasing weak reflections during the deblending iterative process.

The PGD method can be an expensive algorithm; deblending via PGD is generally time-

consuming. The robust version of our algorithm is substantially more costly than the non-

robust version. The algorithm with the non-robust MSSA filter requires one SVD per

window and per frequency for each PDG iteration. On the other hand, the robust MSSA

algorithm is iterative and adds extra cost to the optimization problem. Typical processing

times for medium size data sets such as the one from the Gulf of Mexico double when one

adopts the robust MSSA projection. This negative facet is counterbalanced by the gain in

the denoising power of the robust MSSA filter.



CHAPTER 5

Compressive blended acquisition with irregular-grid

geometry
1

5.1 Introduction

In the category of inversion-based methods for simultaneous source separation, iterative

rank-reduction implemented via Multichannel Singular Spectrum Analysis (MSSA) filtering

has been proposed for data deblending (Cheng and Sacchi, 2015, 2016; Lin et al., 2021).

However, the original algorithm based on the MSSA filter is suitable for solving deblend-

ing problems assuming that sources and receivers are deployed on a regular-grid coordinate

system. Due to topography or obstacles e↵ects, i.e., mountains, rivers, highways or build-

ings, and logistic considerations, seismic surveys are generally not perfectly regular. This

unavoidable irregularity occurs naturally and is exploited by classical prestack interpolation

methods (Liu and Sacchi, 2004; Trad, 2009). Recent research in the field of compressive

sensing (CS) relies on purposely constructed irregular grids to enable accurate seismic data

reconstruction (Li et al., 2012; Mosher et al., 2012). In other words, CS-based methods

rely on designed random sampling schemes that permit reconstruction of the irregular-grid

seismic data onto a regular and dense grid (Hennenfent and Herrmann, 2008).

In this chapter, we propose to adopt a recently proposed Interpolated-MSSA (I-MSSA)

method to deblend and reconstruct sources in situations where the acquired blended data

correspond to sources with arbitrary irregular-grid coordinates. The I-MSSA method per-

mits applying Hankel-based rank-reduction filtering to data consisting of traces with ar-

bitrary spatial coordinates. The presented method solves the problem of deblending and
1A version of the work in chapter 5 of this thesis has been published in a journal paper: Lin R., Y. Guo,

F. Carozzi and M. D. Sacchi, 2022, Simultaneous deblending and source reconstruction for compressive 3D
simultaneous-source acquisition data via Interpolated MSSA (I-MSSA): Geophysics, 87, no. 6, 1-53.

77
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source reconstruction/interpolation by one single algorithm. In essence, we propose an

iterative rank-reduction deblending method that can honour true source coordinates. In

addition, we show how the technique can also be used for source regularization and inter-

polation. This work focuses on recovering unblended regular-grid data from irregular-grid

compressive simultaneous-source data. This work applies to the case where survey irregular-

ities happen due to obstacles and mispositioning of source and when the survey is randomly

designed deliberately. Like CS-based surveys, we attempt to reduce acquisition time further

by blending sources and using fewer sources, thereby improving the e�ciency of field data

acquisition (Mosher et al., 2017).

The contribution of this chapter is twofold. First, we study deblending via the projected gra-

dient method with the I-MSSA filter (projection) to cope with irregularly deployed sources.

Secondly, we investigate the possibility of conducting compressive source acquisition by ana-

lyzing how our algorithm can simultaneously perform deblending and source reconstruction

as we decrease the number of simultaneous sources.

This chapter follows the subsequent structure. First, I introduce di↵erent grids used in

this chapter. Next, I describe the conventional 3D deblending and source reconstruction

via MSSA with an extracting operator. I continue with a description of the new proposed

I-MSSA method for 3d deblending and source reconstruction. The Kaiser window tapered

sinc interpolation operator is introduced in the following section. Finally, I test the two

methods (MSSA and I-MSSA) via synthetic and field data.

5.2 Theory

5.2.1 Preliminaries

Our deblending method operates with a denoiser (MSSA) originally devised for data de-

ployed on a regular grid. The MSSA was adopted with an iterative data imputation al-

gorithm where traces are allocated to a regular grid for reconstruction purposes. Not all

grid points contain traces during the allocation process, and therefore, the imputation al-

gorithm is used to denoise and reconstruct unobserved traces (Oropeza and Sacchi, 2011).

The denoiser was modified to cope with cases where we would like to honour the actual data

positions (Carozzi and Sacchi, 2021) via the so-called I-MSSA method.

Our first task, to avoid confusion, is to define the di↵erent grids clearly we will use in this

chapter:

• The desired regular grid (Figure 5.1a) is the grid with constant spacing where we
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assign the reconstructed and deblended seismic data. In other words, this is also the

output grid.

• The initial irregular grid (Figure 5.1b) is generated by adding a perturbation to the

regular grid. Notice that the number of grid points in the initial irregular grid and

desired regular grid are the same. We use this intermediate grid to generate synthetic

data in general.

• The observed data (irregular) grid (Figure 5.1c) which is also the grid where the

observations are deployed, considered a subset of the initial irregular grid or decimated

initial irregular grid (Figure 5.1b).

• Finally, we have the grid associated with data undergoing binning (also called nearest-

neighbour assignment). In other words, sources are assigned to grid points from their

true spatial location to their nearest grid point of the desired regular grid. The data

in binned coordinates correspond to the grid portrayed in Figure 5.1d.

Now that we have defined what we meant by the di↵erent grids, we stress that many proposed

reduced-rank filtering methods operated on binned regular-grid data. The recently proposed

I-MSSA works directly on the observation grid, such as the one portrayed in Figure 5.1c.

Our main goal is to study if iterative reduced-rank deblending based on I-MSSA can si-

multaneously deblend and reconstruct seismic data acquired on a configuration similar to

the one portrayed in Figure 5.1c. More specifically, we would like to record blended data

with sources in the format given by Figure 5.1c and develop an algorithm to simultaneously

deblend and reconstruct new sources into the grid portrayed in Figure 5.1a. The latter

allows algorithms to compress the seismic acquisition by blending and shot decimation.

In a simultaneous-source acquisition, receivers continuously record the response of more

than one source at a time (Beasley et al., 1998). For instance, for a conventional seismic

acquisition, the acquired survey can be denoted by u(t, s, r) where t, r, and s indicate time,

receiver, channel, and source, respectively. For a simultaneous-source acquisition, the trace

recorded by one receiver r can be expressed via the following equation

b(t, r) =
NsX

i=1

u(t� ⌧i, si, r) , (5.1)

where b(t, r) represents the recorded blended trace acquired by receiver r. Similarly, si is

the ith source, and ⌧i is the random firing time of the ith source.

A compact form of equation 5.1 can be written as follows:

b = B U (5.2)
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Figure 5.1: (a) Desired regular grid. This is also the output grid of the proposed
reconstruction. (b) The irregular grid is formed by perturbing source coordinates
of the desired regular grid in (a). (c) For instance, a subset of the irregular grid can
be obtained by random decimation of (b). (d) Observations in (c) after assignment
to the nearest-neighbour grid point.

where B denotes the blending operator, including the random jittering time for all sources,

and U represents the unblended individual source responses in true spatial coordinates,

and b is the continuous recorded blended data. The adjoint operator B
⇤ represents the

pseudo-deblended operator (Berkhout, 2008)

Ũ = B
⇤b . (5.3)

Pseudo-deblending is equivalent to applying time shifts and separating the blended data

records into records of the same time length Nt that correspond to conventional seismic

records. The data created via pseudo-deblending, also called combed data (Abma and Fos-

ter, 2020), is designated by Ũ. Clearly, pseudo-deblending does not eliminate interferences

resulting from responses of di↵erent sources (Abma and Foster, 2020). Pseudo-deblended

records contain many interferences, frequently called blending noise or blending interfer-

ences.

5.2.2 3D deblending and source reconstruction via MSSA with an

extracting operator

We consider the case where sources are irregularly or quasi-irregularly distributed on the

earth’s surface during simultaneous source acquisition. First, we consider a deblending and

reconstruction scenario where one adopts a simple sampling operator based on data binning,

which can be expressed with the following equation

U = T D (5.4)
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where U denotes the unblended data (in equation 5.2) honoring true observed irregular-

grid coordinates (Figure 5.1c), and D represents unblended data with desired regular-grid

coordinates (Figure 5.1a). We define T as the extraction operator, which symbolizes two

processes: binning and sampling. The binning process means assigning arbitrary irregular-

grid source coordinates to nearest-neighbour regular-grid points. The sampling process

means multiplying by 1 all regular grid points with data and by 0 all regular grid points

that are empty (Liu and Sacchi, 2004). Figure 5.2a illustrates how the extraction operator

maps data from observed arbitrary irregular-grid points to the desired regular-grid points.

Specifically, the binning process in Figure 5.2a shows assignment regular grid points back

to their correct arbitrary irregular-grid coordinates.

After combining equations 5.2 and 5.4, we get

b = BT D . (5.5)

We now pose the deblending and reconstruction as the solution that minimizes the following

cost function

J = kb�BT Dk22 . (5.6)

Equation 5.6 is an underdetermined problem and does not have a unique solution. Typically,

adding a regularization term can guarantee a unique and stable solution. Alternatively, the

projected gradient-descent (PGD) method (Cheng and Sacchi, 2016; Lin et al., 2021) can

also be adopted to minimize equation 5.6 subject to the application of a projection or

filtering operator. The PGD entails a step toward the steepest descent direction followed by

a projection. In our work, the projection operator is a denoiser. To summarize, the iterative

PGD algorithm (Cheng and Sacchi, 2016; Bolduc et al., 2017; Peters et al., 2019; Lin et al.,

2021) is given by

Y = D⌫�1 � �T
⇤
B

⇤(BT D⌫�1 � b)

D⌫ = P[Y] .
(5.7)

Notice that the step length � needs to be estimated to guarantee the convergence of the

PGD method (Cheng and Sacchi, 2015; Bolduc et al., 2017). It is also worth mentioning that

the PGD method can converge to the global optimal if the projection operator is convex.

Rank-reduction is not a convex projection; hence, convergence to the global minimum is not

guaranteed. However, as pointed out by many researchers (Cheng and Sacchi, 2015; Peters

et al., 2019), PGD still o↵ers a practical means to carry out constrained optimization even

when the projection is non-convex. Our algorithm adopts a strategy where the step length

is decreased exponentially. This strategy is also discussed in Cheng and Sacchi (2015).

Moreover, the initial step size also needs to be properly selected (Fazel, 2002) to ensure that

the iterative algorithm will not be trapped in the local minima. The convergence can be
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guaranteed when the initial step size

�0 < 2/emax, (5.8)

For this specific problem, emax is the maximum eigenvalue of the operator (BT )⇤(BT )

(Ma et al., 2011; Cheng and Sacchi, 2015).

As we mentioned early, P indicates the projection operator, which in our case is a denoising

algorithm based on the MSSA filter (Trickett, 2008; Oropeza and Sacchi, 2011; Cheng and

Sacchi, 2015; Lin et al., 2021). In general, the MSSA filter optimally removes noise when

the waveforms in the data are represented by linear events in the t � x domains, and it is

easy to prove that P linear events in t � x space which correspond to the superposition

of P complex exponentials in f � x domain (Oropeza and Sacchi, 2011). Seismic gathers

consist of a superposition of waveforms with spatially varying dips. Hence, it is crucial

to emphasize that the MSSA filter must be applied on small overlapping windows where

one can approximately model reflections as a superposition of events with linear moveout

(Cheng and Sacchi, 2015; Lin et al., 2021). Hence, the projection P indicates applying

MSSA filtering on overlapping windows.

We call the whole process conventional MSSA deblending and reconstruction method or

simply the MSSA method. In essence, inside the extraction operator, the binning step

aims to deploy the observed o↵-the-grid data into a regular grid where one can easily apply

the MSSA projection operator as shown by equation 5.7. This binning strategy introduces

errors in the amplitude and phase of the traces, which, as we will show, could deteriorate

the reconstruction.

5.2.3 3D deblending and source reconstruction via interpolated-

MSSA (I-MSSA)

We now consider the scenario where one would like to deblend and reconstruct sources,

but we also require that true source positions be honoured. In other words, the goal is

to avoid binning errors, yet we want to apply the MSSA filter. Again, we use the grids

illustrated in Figure 5.1 to describe the problem. We consider U represents unblended

data at irregular source positions (Figure 5.1c), and D denotes the desired unblended data

located on the regular-grid coordinates (Figure 5.1a). This time, we connect U and D via

a local interpolation operator of the form

U = W D , (5.9)
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where W describes, in operator form, a 2D Kaiser window tapered sinc interpolation oper-

ator (Jiang et al., 2017; Carozzi and Sacchi, 2021; Wang et al., 2022) that maps the sought

data on their regular coordinates to the data in irregular coordinates (Figure 5.2b). See the

next section for a detailed description. Algorithm 8 provides the pseudocode defining the

forward W interpolation operator and its adjoint counterpart W
⇤.

Following the rationale used in the previous section, we can recover the positions of the

unblended and reconstructed shots by minimizing

J = kb�BW Dk22 . (5.10)

Adopting the PGD method with the MSSA projection leads to

Z = D⌫�1 � �W
⇤
B

⇤(BW D⌫�1 � b)

D⌫ = P[Z]
(5.11)

The term BW D⌫�1 � b defines a perturbation in the direction of steepest descent. Next,

the adjoint interpolator B
⇤ maps the error into data in the irregular observation grid.

Finally, the operator W
⇤ distributes the data onto the desired regular grid. The fitting goal

guarantees data fidelity. In other words, the algorithm honours the actual coordinates of the

sources without introducing binning errors. The parameter � is also decreased exponentially

with initial value determined via equation 5.8 with the maximum eigenvalue emax of the

operator W
⇤
B

⇤
BW . Again, the projection operator in equation 5.11 is the MSSA filter.

However, we call the whole filtering process I-MSSA to stress the inclusion of the operator

W that permits the adaptation of the MSSA method on data that is not deployed on a

regular grid (Carozzi and Sacchi, 2021). In our examples, we refer to this method as the

I-MSSA method.

5.2.4 The Kaiser window tapered sinc interpolation operator

For the description of the Kaiser window tapered sinc interpolation operator in equation

5.9, we first define the coordinates for the observed irregular-grid source position (red points

in Figure 5.2) as

⇠k = ⇠
�
xk, yk

�
(5.12)

where ⇠k corresponds to the spatial coordinate of the kth source with k = 1, . . . , Ns, where

Ns is the total number of acquired sources, and ⇠k 2 U.

Similarly, we define the coordinate of the desired regular-grid source positions (blue points

in Figure 5.2) as

⌘(i,j) = ⌘
�
x̂i, ŷj

�
(5.13)
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where x̂i = x̂o + i�x, ŷj = ŷo + j�y, and (x̂o, ŷo) represents the coordinates of the first

regular-grid point and �x and �y are the x and y grid intervals, i = 1, . . . , Nsx, j =

1, . . . , Nsy, and the total number of reconstructed sources is Nsx ⇥Nsy, and ⌘(i,j) 2 D.

Algorithm 8 provides pseudocodes for forward and adjoint interpolation operators that are

required by the PGD solver. In algorithm 8, W (t) are the coe�cients of the Kaiser window

tapered sinc interpolator (Fomel, 2001; Carozzi and Sacchi, 2021), which can be expressed

as

W (t) = sinc(⇡t)
I0

⇣
a

p
1� (t/(N + 1))2

⌘

I0(a)
(5.14)

where t is the distance from the irregular grid point to the regular grid point, with either

argument tx or ty given in algorithm 8. The length of the interpolator is 2N + 1.

Algorithm 8 The Kaiser window tapered sinc interpolator operator

1: Inputs:
⌘i,j = ⌘

�
x̂i, ŷj

�
, ⇠k = ⇠

�
xk, yk

�
.

2: for k = 1 : Ns do
3: i =

⌅
(xk � x̂o)/�x

⇧
+ 1

4: j =
⌅
(yk � ŷo)/�y

⇧
+ 1

5: for i = i�N : i + N do
6: for j = j �N : j + N do
7: tx = (xk � x̂i)/�x

8: ty = (yk � ŷj)/�y

9: if adj = true then
10: Input = U, output = D̃
11: D̃

�
⌘i,j

�
+ = W (tx)W (ty)U(⇠k)

12: else
13: Input = D, output = U
14: U(⇠k)+ = W (tx)W (ty)D

�
⌘i,j

�

15: end if
16: end for
17: end for
18: end for

5.2.5 E�cient rank reduction via Randomized SVD

The MSSA and I-MSSA filters typically adopt the SVD for its rank reduction step. A

faster algorithm is attainable when the SVD is replaced by the Randomized SVD (R-SVD)

(Oropeza, 2010; Halko et al., 2011). Algorithm 9 provides the summary of the MSSA

algorithm with the option of either using SVD or R-SVD. We assume that operator P

acts on a 3D cube (a CRG) as presented in the PGD algorithm in equations 5.7 and 5.11.

(Appendix B introduces a faster and more computational-e�cient Multidimensional Singular
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Spectrum Analysis (FMSSA) algorithm. Also, a comparative study between I-MSSA and

I-FMSSA is provided in Appendix B.)

Algorithm 9 MSSA filter: d̂ = P[d]

1: Inputs:
CRG: d(t, x, y), rank: p.

2: Outputs:
Filtered CRG: d̂(t, x, y).

3: Initialization:
D(!, x, y) fft [d(t, x, y)]

4: for ! = !min : !max do
5: H = H [D(!, :, :)] Hankelization

6: if Randomized SVD==true then
7: Y = (HH⇤)2H⌦ Shrink columns of H by multiplication

8: with random matrix ⌦
9: [Q,R] = qr(Y) qr decomposition

10: B = Q⇤H
11: [Up,⌃p,Vp] = SVD(B, p)
12: Bp = Up⌃pV⇤

p

13: Hp = QBp

14: else
15: [Up,⌃p,Vp] = SVD(H, p)
16: Hp = Up⌃pV⇤

p

17: end if
18: D̂(!, :, :) = A [Hp] Anti-diagonal averaging

19: end for
20: d̂(t, x, y) ifft [D̂(!, x, y)]

5.3 Examples

This section tests the proposed algorithm with synthetic and field data. We will use the

following expression to measure the signal-to-noise ratio of the recovered data

SNR = 10 log10
kDtruek2

F

kDtrue �Drk2
F

, (5.15)

where Dtrue is the true data before sampling and blending. Similarly, Dr is the recovered

data after deblending and reconstruction. The symbol k · kF denotes the Frobenius norm.

5.3.1 Synthetic example

In this chapter, our first example uses modelled synthetic data to test the proposed de-
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Figure 5.2: Illustration of di↵erent sampling operators used in this chapter. (a) The
extraction operator, includes binning and sampling. In red we indicate the given
observed true source coordinates. In green we indicate the observed source coordi-
nates after binning. In blue we indicate the desired regular-grid source coordinates.
Red ! Green entails binning. Similarly, Green ! Blue represents sampling. (b) In
this case, a local interpolation operator maps the observed irregular grid points as
a weighted summation of desired data on regular grid points. The weights depend
on the distances between observed and desired source positions and are computed
via truncated sinc interpolation operator.
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Figure 5.3: The slice display with di↵erent grids distribution in Figure 5.1. The blue
arrows in Figure 5.1 indicate the positions of selected slices. (a) Clean regular data
based on coordinates in Figure 5.1a. (b) Initial irregular data based on coordinates
in Figure 5.1b. (c) Observed irregular data, obtained by 50% random decimation of
(b), based on coordinates in Figure 5.1c. (d) Observations in (c) after the binning
process and corresponding coordinates are displayed in Figure 5.1d.

blending and source reconstruction method. We first synthesize an example containing

three dipping linear events to mimic a small 3D patch of a common receiver gather. This

assumes that only one receiver keeps recording during the simultaneous-source acquisition

experiment with a blending factor BF = 2. The regular grid consists of 30 ⇥ 30 source

points with interval �x = �y = 20m in the x� and y� directions. Then, the synthesized

common receiver gather was organized in shot gathers and numerically blended. A Ricker

wavelet of central frequency 20 Hz was adopted for this synthetic example.

We added a perturbation to the regular grid to obtain an irregular source distribution.

Specifically, to avoid the generation of significant gaps, source x and y coordinates were

perturbed via random deviates drawn from a uniform distribution in the range [��x, �x]

and [��y, �y]. The geometry of the observed source coordinates is displayed in Figure 5.1c.

Similarly, Figure 5.1a is our desired regular-grid source distribution. For completeness, we

also show the di↵erent stages used for generating the observed irregular data in Figure 5.3

(Blue arrows in Figure 5.1 indicate the selected positions). We first generate the regular-

grid data (Figure 5.3a). Next, we add random perturbations to the regular-grid points to

account for the initial irregular data (Figure 5.3b). Then, we randomly decimate the initial

irregular data to generate the decimated observed irregular-grid data (Figure 5.3c). Finally,

we assign the irregular-grid points to the nearest-neighbour regular grid points to obtain

the binned decimated irregular data for data display only (Figure 5.3d).
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Figure 5.4: Reconstruction and deblending results for a clean synthetic data exam-
ple with a randomly 50% decimated volume for one common receiver gather. (a)
Clean regular data volume. (b) Pseudo-deblended data volume after binning. (c)
Result of the conventional 3D MSSA reconstruction and deblending. (d) Residuals
between the clean volume (a) and (c). (e) Deblended and reconstructed data via the
I-MSSA algorithm with sinc interpolation. (f) Residuals between the clean volume
(a) and (e).
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We first consider noise-free 3D data. For this synthetic example, the selected rank for the

MSSA filter is p = 3 (which equals the number of linear events in t � x domains). The

step size is exponentially decreased to guarantee the algorithm convergence, and the power

method (Golub and Van Loan, 1996) is used to estimate emax iteratively in equation 5.8.

Figure 5.4 is the 3D volume corresponding to the first test. Figure 5.4a shows the noise-free

regular-grid data used as a reference. Figure 5.4b shows the observed irregular-grid pseudo-

deblended data after binning. Figure 5.4c and 5.4d show deblending and reconstruction

results via the MSSA method and its corresponding error, respectively. Figure 5.4e and

5.4f illustrates deblending and reconstruction results by the proposed I-MSSA method and

the corresponding error, respectively. Comparing Figure 5.4d with 5.4f, we observe signif-

icant signal leakage when one adopts the MSSA method (SNR = 15.90 dB). Conversely,

deblending and reconstruction via the I-MSSA method produce negligible signal leakage

(SNR = 43.56 dB). Also, the blending interferences are e↵ectively eliminated, and the

missing seismic events are fully recovered. The di↵erence in quality results from the in-

troduction of small-time shifts introduced by binning, which could compromise the lateral

coherence of signals when adopting the MSSA algorithm.

Figure 5.5 shows 2D slices of the data in Figure 5.4. Figure 5.5b displays the observed

irregular-grid pseudo-deblended data after binning. We can observe the random decimation

of the traces and the blending interferences in the pseudo-deblended common receiver gather.

Figure 5.5c-5.5f presents a slice of the data after deblending and reconstruction. The I-

MSSA method can e↵ectively eliminate the blending interferences and fully recover the

seismic events with negligible leakage. We conclude that the I-MSSA method outperforms

the MSSA method when processing data with irregular source positions.

Figure 5.6 shows the quality of the reconstruction in terms of SNR versus the iteration

number of PGD. In our numerical experiments, we set a maximum number of iterations as a

large fixed number to verify the convergence performance of PGD methods. The step length

of PGD decreased exponentially, starting with an initial step length that was sophisticatedly

estimated according to equation 5.8. To be specific, the following examples are tested with

appropriate following stopping criterion, either krJ
⌫k /

��rJ
1
�� < ⌘ (⌘ = 10�2) or the

maximum iteration number is reached.

To complete our tests, we also add Gaussian noise with SNRi = 1 dB to the clean 3D data

in Figure 5.4b. The input signal-to-noise is given by SNRi = 10 log10 (kDck2
F
/kNk2

F
) where

N represents Gaussian additive noise and Dc is the noise-free data. The deblending and

reconstruction results can be found in Figure 5.7 and the corresponding slices are displayed

in Figure 5.8. Similarly, Figure 5.9 shows the SNR versus iteration for this example. As

expected, for data contaminated with noise, the achievable SNR is lower than in the noise-

free case (Figure 5.6).
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Figure 5.5: An x-slice showing reconstruction and deblending results for the syn-
thetic example in Figure 5.4. (a) Clean regular data. (b) Pseudo-deblended data
after binning. (c) Result of the conventional 3D MSSA reconstruction and deblend-
ing. (d) Residuals between (a) and (c). (e) Reconstruction and deblending results
were calculated via the I-MSSA algorithm with sinc interpolation. (f) Residuals
between (a) and (e).
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Figure 5.6: Convergence curves showing SNR versus iteration for PGD using MSSA
and I-MSSA filters for reconstruction and deblending.

5.3.2 Behaviour of our algorithms versus decimation and rank-

reduction solver

In Figure 5.10, we display the average SNR versus decimation for deblending and source

reconstruction via MSSA and I-MSSA. The error bars were obtained by running the al-

gorithm for 50 realization associated with di↵erent simple synthetics composed of linear

events (similar to those in Figure 5.4). At this point, we also would like to mention that the

rank-reduction step of the MSSA filter P in equations 5.7 and 5.11 (PGD solver) can be im-

plemented via di↵erent means. The original MSSA reconstruction and denoising article by

Oropeza and Sacchi (2011) adopted the Singular Value Decomposition (SVD) and the Ran-

domized Singular Value Decomposition (R-SVD) (Liberty et al., 2007). Results obtained

via the SVD and R-SVD are incredibly similar. However, the computational cost decreases

when one adopts the R-SVD to perform rank-reduction inside the MSSA filter P. Table 5.1

shows a comparison of computational time and the SNR figure of merit for MSSA (SVD)

and MSSA (R-SVD) algorithms for deblending and reconstruction. In this case, we used

CRG of size 200 time samples with a 30⇥ 30 source pattern perturbed and decimated as in

the previous examples. We observed no significant di↵erences in the reconstruction quality

between these two rank-reduction solvers. However, MSSA and I-MSSA are faster when

the rank-reduction step is implemented via the R-SVD algorithm. Algorithm 9 provides
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Figure 5.7: Reconstruction and deblending results for synthetic data example con-
taminated with noise. The data was decimated randomly at a level of 50%. (a)
Clean regular data volume. (b) Pseudo-deblended noisy data volume after binning.
(c) MSSA reconstruction and deblending. (d) Residuals between the clean volume
(a) and (c). (e) Reconstruction and deblending are calculated via the I-MSSA al-
gorithm with sinc interpolation. (f) Residuals between the clean volume (a) and
(e).
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Figure 5.8: One x-slice display of reconstruction and deblending results for noisy
synthetic example in Figure 5.7. (a) Clean regular data. (b) Pseudo-deblended data
after binning. (c) Result of the conventional 3D MSSA reconstruction and deblend-
ing. (d) Residuals between (a) and (c). (e) Reconstruction and deblending results
were calculated via the I-MSSA algorithm with sinc interpolation. (f) Residuals
between (a) and (e).
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Figure 5.9: Convergence curves showing SNR versus PGD iteration with MSSA
and I-MSSA filters. These results correspond to the data in Figure 5.7.

pseudocodes for the MSSA (SVD) and MSSA (R-SVD) algorithms.

The following tests are based on the MSSA (R-SVD) algorithm as a projection operator

to avoid ambiguity. To test the stability and robustness of the methods, we generated

50 di↵erent random decimation schedules for each percentage of decimation. Figure 5.10

shows the average SNR value of the 50 realizations versus the decimation level. Through

this figure, up to 60% decimation, the I-MSSA algorithm can obtain a much higher SNR

figure of quality (above 40 dB). When the percentage of decimation increases to 80%, both

MSSA and I-MSSA methods result in a deterioration of SNR. This can be explained by

insu�cient input signal information to MSSA for fully recovering the data.

Our last synthetic test adopts a complex 3D synthetic data example with a blending factor

BF = 2. Figure 5.11 shows the 3D velocity model we adopt for generating the synthetic

data. Figure 5.12 delineates the observed irregular-grid coordinates system, including 2500

source points. Figure 5.12b shows the desired output in a regular-grid coordinate system,

which includes 50⇥100=5000 source points. We adopt a local window strategy (Cheng and

Sacchi, 2015; Lin et al., 2021) to satisfy the linear event assumption made by the MSSA

filter. The size of the local windows is 200 time samples and Lx = 20 traces in the x direction

and Ly = 20 traces in the y direction. The overlap is of 50 samples in time and 8 traces

in x and y directions with linear tapering in time and space. The step side of the PGD
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Figure 5.10: The average SNR comparison of MSSA and I-MSSA methods for
reconstruction and deblending with di↵erent percentages of decimation. For each
decimation percentage example, the SNR values are calculated via 50 realizations.

Cases Methods Time (sec) SNR (dB)

Original
method

MSSA(SVD) 38.04 15.90

MSSA(R-SVD) 17.18 15.89

Proposed
method

I-MSSA(SVD) 40.56 43.61

I-MSSA(R-SVD) 22.58 43.56

Table 5.1: Computational time and SNR comparison for deblending and source
reconstruction with di↵erent rank-reduction solvers.
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Figure 5.11: Velocity model used for the synthetic example.

method was exponentially decreased, and the power method is also used to estimate emax in

equation 5.8. We set the rank of the MSSA filter to p = 5 for each window. The deblending

and reconstruction results can be found in Figure 5.13. Figure 5.13d shows the observed

irregular-grid pseudo-deblended data after binning. Figure 5.13b shows deblending and

reconstruction result via the proposed I-MSSA method (SNR = 14.32 dB). Figure 5.13e

displays deblending and reconstruction result by the MSSA method (SNR = 11.56 dB).

The I-MSSA method can eliminate the blending interferences and fully recover the seismic

events. Comparing the di↵erence plots in Figure 5.13c with 5.13f, we observe additional

coherent signal leakage when adopting the MSSA method. We also plot the di↵erence

between the two methods (Figure 5.13g), which means that even without access to ground-

truth data (Figure 5.13a) as a reference, which is a common problem for field data, we can

still conclude that the I-MSSA method outperforms the MSSA method as I-MSSA shows

less signal leakage than MSSA.

5.3.3 Real data example

We also test our methods with a field 3D blended-acquisition data from Oman (Song et al.,

2019). Again, we also only use one receiver to test our algorithm. The survey area contains
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Figure 5.12: Coordinate systems for synthetic example. (a) Observed irregular-
grid coordinates system including 2500 source points. (b) The desired regular-grid
coordinate system with 50⇥100=5000 source points.

22408 source points operated by 12 Vibroseis vehicles simultaneously. Figure 5.14 delineates

the coordinates of sources. The mean interval between sources and source lines is 25 m.

Figure 5.14a shows the field source coordinate distribution. Figure 5.14b shows the source

coordinate distribution after 20% random decimation, resulting in 17927 source points. Fig-

ure 5.14c displays the desired output with a regular-grid coordinate system, which includes

398 ⇥ 62 = 24676 source points. For this real data example, again, windowing is adopted

when applying the MSSA filter. The size of the windows is 200 time samples and Lx = 45

traces in the x direction and Ly = 25 traces in the y direction. The overlap comprises 80

samples in time, 20 traces in the x direction, and 10 traces in the y direction. The step

size of the PGD method, as described in previous examples, is decreased exponentially with

iteration. We also consider an initial rank value p = 60 for the MSSA filter. Heuristically,

we found that increasing the rank of the MSSA filter with iteration leads to solutions with

reduced signal leakage (Cheng and Sacchi, 2014). Specifically, we increase the rank every

five iterations by one. The process uses about 10 � 15 iterations to converge. Hence, the

rank is always less than the minimum size of the block Hankel matrix. The spatial window

size in this example leads to block Hankel matrices of size 299⇥ 299.

Our test aims to compare the I-MSSA method with the MSSA method for deblending

and reconstruction from the observed decimated irregular-grid data (Figure 5.14b). The

results can be found in Figure 5.15. Figure 5.15a is the observed decimated data based on
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Figure 5.13: Deblending and reconstruction of the synthetic data with the source
distribution in Figure 5.12a. (a) Ground truth based on regular-grid distribu-
tion. (b) Deblending and reconstruction via the I-MSSA method with a result-
ing SNR = 14.32 dB. (c) Di↵erence between (a) and (b). (d) Observed pseudo-
deblended irregular-grid data after binning. (e) Deblending and reconstruction re-
sult via the MSSA method with a resulting SNR = 11.56 dB. (f) Di↵erence between
(a) and (e). (g) Di↵erence between (b) and (e).
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the source coordinates distribution in Figure 5.14b. Figure 5.15b presents the deblending

and reconstruction results via the I-MSSA method. Similarly, Figure 5.15c displays the

deblending and reconstruction results via the MSSA method. Figures 5.16 and 5.17 show

zoomed sections of Figure 5.15. We observe that the blending noise has been e↵ectively

eliminated, and the decimated sources have been fully reconstructed.

Due to the lack of ground truth data as a reference, it is hard to evaluate signal leakage for

I-MSSA precisely (Figure 5.15b) and MSSA (Figure 5.15c). For this dataset, the di↵erence

between true source coordinates and desired regular coordinates is not significant, which

causes the evaluation to be much more di�cult to be carried out. In these circumstances,

we calculate the di↵erence between I-MSSA and MSSA methods (Figure 5.15d) and evaluate

their di↵erence and quality visually, as what we did for the synthetic example in Figure 5.13g.

In Figure 5.15d, we observe coherent signals (same as Figure 5.13g), and we conclude that

these events are a consequence of the errors introduced by data binning when one adopts the

MSSA method. Given that binning assigns coordinates to grid points via a crude nearest-

point interpolation, one expects some amplitude distortion. When sources are not deployed

on a perfectly regular grid, one should adopt I-MSSA rather than MSSA despite the minor

di↵erences we might obtain.

We also compare the deblending and reconstruction results obtained via the I-MSSA method

when the algorithm is run with the full data (from Figure 5.14a to 5.14c) and decimated

data (from Figure 5.14b to 5.14c). The results are shown in Figure 5.18 and, clearly, not

knowing the ground truth makes it di�cult to guarantee that we can safely decimate source

positions. However, the results are pretty similar, providing encouraging confidence in them.

Figure 5.18a displays the deblending and reconstruction results obtained via the I-MSSA

method when the full-field data (Figure 5.14a) is used. Figure 5.18b shows the deblending

and reconstruction results with the I-MSSA method when the field data is decimated (Figure

5.14b). The corresponding di↵erence can be found in Figure 5.18c. Even though we manually

decimate 4481 source points from our survey area, we still can fully recover the unblended

data associated with the desired regular grid.

5.4 Conclusions

This chapter illustrates an inversion scheme for deblending and source reconstruction that

honours actual source coordinates. For this purpose, I have adopted Projected Gradient

Descent optimization with a projection operator given by a reduced-rank MSSA filter. I

have examined two cases. In one case, we use an extraction operator that assigns true source

position to grid points via nearest-neighbour assignment (binning process). This process
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Figure 5.14: Coordinate systems for the real data example. (a) True data coordi-
nates, including 22408 source points. (b) The source coordinate distribution after
20% random decimation contains 17927 source points. (c) The desired output on a
regular-grid coordinate system with 398⇥62=24676 source points.
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Figure 5.15: Deblending and reconstruction of the data with the source distribution
in Figure 5.14b. The red arrows in Figure 5.14 indicate the selected slices. (a)
Observed decimated irregular-grid data. (b) Deblending and reconstruction via the
I-MSSA method. (c) The result was obtained via the MSSA method. (d) Di↵erence
between (b) and (c).
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Figure 5.16: Zoomed area corresponding to the red rectangle (left part) in Figure
5.15. (a) Observed decimated irregular-grid data. (b) Deblending and reconstruc-
tion via the I-MSSA method. (c) Results were obtained via the MSSA method. (d)
Di↵erence between (b) and (c).
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Figure 5.17: Zoomed area corresponding to the blue rectangle (center part) in Figure
5.15. (a) Observed decimated irregular-grid data. (b) Deblending and reconstruc-
tion via the I-MSSA method. (c) Results were obtained via the MSSA method. (d)
Di↵erence between (b) and (c).
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Figure 5.18: Deblending and reconstruction of field data with source distribution
in Figure 5.14c. (a) Reconstruction and deblending result of observed data with
I-MSSA method based on source coordinates distribution in Figure 5.14a. (b) Re-
construction and deblending result according to 20% decimated data with I-MSSA
method based on coordinates distribution in Figure 5.14b. (c) Di↵erence between
(a) and (b).
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introduces time shifts that account for significant reconstruction errors in our synthetic

examples. The second case is inspired by the recently proposed reconstruction method

called I-MSSA, which, in this chapter, was adapted to carry out source deblending and

reconstruction simultaneously.

The I-MSSA method adopts Kaiser window tapered sinc interpolation operator and permits

to honour true source coordinates. Computationally, there is no high extra cost in running

deblending and reconstruction via MSSA or I-MSSA; hence, it is always advisable to adopt

I-MSSA, which can cope with the real scenario of sources at quasi-regular or irregular

coordinates.



CHAPTER 6

Conclusions

6.1 Conclusions and Summary

Simultaneous-source acquisition has become a standard method for collecting seismic data.

Its popularity relies on its ability to decrease seismic acquisition turnaround time in high-

density surveys. The simultaneous source approach allows a huge reduction in the time

needed to acquire data which reduces costs as well as reduces exposure to work-related acci-

dents. At the same time, the acquired higher density data can improve pre- and post-stack

seismic data quality and increase the resolution of seismic images. Contrary to conventional

seismic acquisitions, where only one single source is recorded and stored for each com-

mon source gather, simultaneous-source acquisition entails firing more than one source at a

close interval and requires random firing times. Therefore, simultaneous-source data sorted

in common-receiver gathers, common-channel gathers, common o↵set gathers, or common

midpoint gathers, contain source interferences that manifest as erratic noise. This feature

leads to various separation/deblending algorithms based on denoising and inversion meth-

ods. Meanwhile, for the simultaneous-source data processing, only adding another step,

deblending, into the conventional seismic data processing workflow, no extra e↵orts are re-

quired in the stage of seismic data processing, which makes it attractive and increasingly

popular.

This dissertation aims to introduce an inversion scheme with the projected gradient de-

scent (PGD) method for simultaneous-source data separation. The PGD method is an

optimization technique for solving constrained inverse problems. The denoising algorithms

are implemented as the projection operator to iteratively minimize the objective function.

Chapter 2 provides a concise review that addresses solving linear inverse problems with

regularization (quadratic and non-quadratic) methods and the PGD methods.

104
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Chapter 3 defines the separation of simultaneous-source data as a coherence-pass constrained

inverse problem. A robust sparse Radon transform is adopted as a coherence pass projection

operator that cleans common receiver (or channel) gathers in a typical iterative deblending

by inversion process. I also compare the inversion with the classical coherence pass non-

robust Radon operator. The main conclusion of this chapter is that deblending by inversion

methods requires a large number of iterations to obtain high-quality results if one does not

aggressively remove incoherent noise during initial iterations. The latter can be achieved

systematically by developing robust coherence pass operators like the one described in this

chapter. In addition, it is also important to stress that the coherence pass robust and

non-robust Radon operators have similar computational costs when implemented via the

IRLS algorithm. Given that in both cases, I have considered a sparsity constraint to focus

on the Radon coe�cients, the iterative updates of the IRLS algorithm are roughly cost-

wise equivalent for coherence pass non-robust and robust operators. I compared these two

methods using numerically blended synthetic and real data examples with di↵erent blending

factors and showed that a coherence pass non-robust Radon operator would only achieve

high-quality results for acquisitions with a moderate blending factor.

Chapter 4 illustrates another inversion scheme with a rank-constrained optimization to it-

eratively solve the deblending problem. I adopted the PGD algorithm with the projection

given by two flavours of the MSSA filter named non-robust (classical) MSSA and robust

MSSA, operated at small overlapping windows by breaking down common-receiver or com-

mon o↵set gathers. The robust MSSA filter described in the chapter is reformulated as a

robust optimization problem solved via a bifactored gradient descent (BFGD) algorithm.

A Tukey’s biweight loss function is adopted to robustize the error in the MSSA filter. For

small overlapping windows, the traditional MSSA method needs the filter rank as an input

parameter, which can vary from window to window. The latter has been a shortcoming

for applying classical MSSA filtering to complex seismic data processing. The proposed

robust MSSA filter is less sensitive to the rank selection, making it appealing for deblending

applications that require windowing. Additionally, the robust MSSA projection e↵ectively

attenuates random source interferences during the initial iterations of the projected gradi-

ent descent method. We also show the benefit of adopting the robust MSSA filter with a

relatively large window size to formulate the window-based projection required by the PGD

algorithm. Comparing classical and robust MSSA filters, we also report an acceleration of

the projected gradient descent method convergence when we adopt the robust MSSA filter.

We use synthetic and real data examples to test our algorithms.

Chapter 5 proposed an inversion scheme for simultaneous deblending and source recon-

struction for compressive simultaneous-source data by honouring actual source coordinates.

I adopt PGD optimization with a projection operator given by a reduced-rank MSSA filter.

In this chapter, I have examined two cases. In one case, I use an extraction operator that as-
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signs true source position to grid points via nearest-neighbour assignment (binning process).

This process introduces time shifts that account for significant reconstruction errors in our

synthetic examples. The second case is inspired by the recently proposed reconstruction

method called I-MSSA, which, in this chapter, was adapted to carry out source deblending

and reconstruction simultaneously. In essence, the proposed I-MSSA method can handle

simultaneous-source acquisition with an irregular-grid geometry based on compressive sens-

ing design. With the I-MSSA algorithm, we can reduce acquisition time further by blending

sources and using fewer sources, thereby improving the e�ciency of field data acquisition.

The I-MSSA method adopts Kaiser window tapered sinc interpolation operator and permits

to honour of true source coordinates. Computationally, there is no high extra cost in run-

ning deblending and reconstruction via MSSA or I-MSSA; hence, it is always advisable to

adopt I-MSSA, which can cope with the real scenario of sources at quasi-regular or irregular

coordinates. We compare the proposed algorithm with traditional iterative rank reduction

that adopts a regular source grid and ignores errors associated with allocating o↵-the-grid

source coordinates to the desired output grid. Synthetic and field data examples show how

the proposed method can deblend and reconstruct sources simultaneously.

Appendix A provides a comparative study between the IRLS algorithm (described in chapter

3) and the ADMM algorithm to solve robust sparse Radon transform for handling di↵erent

kinds of noise, including blending noise, high-amplitude erratic ambient noise, and random

noise. The IRLS is a classical and common-used method for solving nonquadratic (`1�`1) op-

timization problems. However, its computational cost has always been a concern due to two

loops requirement. The ADMM is a simple but powerful framework that is flexible in solving

many high-dimensional optimization (quadratic or nonquadratic) problems. The procedure

of ADMM normally decouples one original problem into several subproblems, which can

be solved in an alternating minimization manner. Synthetic and field data examples show

that the robust (ADMM and robust IRLS) methods outperform the non-robust (FISTA and

non-robust IRLS) methods when existing erratic ambient noise. Also, the ADMM method

shows a remarkable superiority in computational time-consuming, which could be a suitable

replacement for the IRLS method when dealing with the `1 � `1 optimization problem.

In Appendix B, a faster and more computational-e�cient algorithm, FMSSA, is proposed

for low-rank estimation, acting as the projection operator in chapter 5 for separating and

reconstructing compressive simultaneous-source data deployed on an irregular acquisition

grid. The FMSSA method adopts a fast Fourier transform for Hankel matrix-vector products

to avoid building explicit form Hankel matrices and using randomized QR decomposition to

replace the SVD procedure. Also, the final anti-diagonal averaging of the Hankel matrix is

computed e�ciently via a convolution algorithm. Therefore, it is a suitable substitution for

conventional MSSA when dealing with low-rank optimization problems. The synthetic and

field data examples display a comparative study of the I-MSSA and the I-FMMSA methods
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for simultaneous deblending and source reconstruction.

6.2 Future recommendations

The content of my dissertation relies on developing new algorithms/methods for process-

ing simultaneous-source acquisition data. During my research, I also found some prob-

lems/limitations that can be considered in future research directions. First, to solve the

Radon transform, whether adopting the IRLS algorithm or ADMM algorithm, I have only

considered Radon operators in the time domain. Solving the robust sparse Radon transform

in a mixed time-frequency domain could be an alternative option. The Radon operator can

be written in an explicit matrix format in the frequency domain, and the optimization pro-

cess can be solved in the time domain. In the mixed time-frequency domain, the products

of adjoint Radon matrix (R⇤) and forward Radon matrix (R) times a vector can be com-

puted e�ciently by exploiting the Toeplitz structure of frequency domain Radon operators

(Beylkin, 1987; Kostov, 1990; Sacchi and Porsani, 1999). This could lead to more e�cient

Radon coherence-pass operators for the PGD deblending method.

Second, for the rank-constrained optimization problem, due to the projection being non-

convex, even though I have tested some strategies for selecting the step length based on

Bolduc et al. (2017), I believe interesting work can be conducted to improve the PGD

algorithm. During my tests, the strategy of exponentially decreasing the step length is

an e↵ective way to achieve algorithm convergence. However, I believe a more sophisticated

approach to selecting the step length � can be tested to obtain a more e�cient PGD method

when the projection is non-convex.

Third, with the recent development of machine learning, deblending based on machine

learning methods could be exploited. We have obtained encouraging deblending results via

a Convolutional Neural Network (CNN) approach (Matharu et al., 2020). However, access

to su�cient and diverse data for training the network seems to be still a significant obstacle.

I suggest incorporating machine learning methods in conjunction with traditional signal pro-

cessing methods, i.e., adopting a trained CNN as a projection operator in conjunction with

a PGD method to avoid a purely example-based (end-to-end) machine learning approach.

The approach can follow the steps initiated by Torres and Sacchi (2022) for seismic imaging

problems.

Fourth, with the increasing debate focusing on reducing the environmental impact of fossil

resources and transitioning away from a hydrocarbon-based economy, the simultaneous-

source acquisition method could be beneficial for CO2 Capture Utilization and Storage

(CCUS) projects (Metz et al., 2005; Liu et al., 2017). In particular, geophysical monitoring
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of CO2 injected back into the earth is essential to secure its correct storage and containment

in reservoirs. 3D reflection seismology in the time-lapse modality (4D seismic method) is

necessary for CCUS projects. In this case, simultaneous-source methods could be used to

obtain high-density surveys in a repeated fashion in an economical manner. Similarly, a low-

cost 4D seismic method assisted by a simultaneous-source acquisition method could benefit

the development of programs to monitor geothermal fields (Weemstra et al., 2016), which

could be a possible energy substitute for the future economic transition to energy sources

with lower greenhouse gas emission.
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APPENDIX A

Deblending via ADMM and IRLS
1

A.1 Introduction

In the category of inversion-based methods for simultaneous-source separation, Chapter 3

provides a new deblending strategy by adopting a robust sparse Radon transform to define

a coherence pass projection operator in conjunction with the steepest descent method to

separate the simultaneous-source data iteratively. The robust sparse Radon transform is

computed with the IRLS algorithm by transforming the nonquadratic (`1�`1) problem into a

sequence of quadratic (`2�`2) minimization problems by introducing weighting matrices for

data misfit term and model term. However, even though the IRLS is a classical and common-

used method for solving nonquadratic (`1�`1) optimization problems, its computational cost

has always been a concern due to two loops requirement. In this appendix, a more e�cient

and flexible algorithm named Alternating Direction Method of Multipliers method (ADMM)

(Boyd et al., 2011) is introduced for e�cient computation of the nonquadratic robust sparse

Radon optimization problem. The ADMM is a flexible and powerful framework for solving

many optimization problems by decoupling one original problem into several subproblems,

translated in an alternating minimization manner (Wen et al., 2017), to achieve an e�cient

and faster algorithm.

This appendix solves the robust and sparse Radon transform with two di↵erent algorithms

and is an extended part of Chapter 3 and follows the subsequent structure. First, I briefly

review the definition of Radon transform. I continue with a description of the IRLS and

ADMM methods for solving nonquadratic (`1 � `1) optimization problems. Finally, I com-

1A version of this appendix is published in Lin, R., and M. D. Sacchi, 2020, Deblending via ADMM and
IRLS: A comparative study, GeoConvention 2020.
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pare the IRLS method with the ADMM method for blending interferences and random and

high-amplitude erratic noise attenuation via synthetic and field data examples.

A.2 Theory

A.2.1 Review of the Radon transform

We denote the common receiver gather data as d(t, h) or in matrix form d, and the variable

h and t represent time and o↵set, respectively. The forward and its adjoint Radon transform

can be expressed in the following equations for the discrete form:

m̃(q, ⇠) =
X

h

d(t = �̃(⌧, h, ⇠), h), (A.1)

d(t, h) =
X

⇠

m(⌧ = �(t, h, ⇠), ⇠) , (A.2)

where m̃(q, ⇠) are Radon coe�cients that one can obtain by adjoint Radon operator. In

operator form, the adjoint Radon transform and forward Radon transform can be expressed

as the following

m̃ = R
⇤d, (A.3)

d = Rm. (A.4)

Unlike the Fourier or wavelet transform, the Radon transform is not orthogonal. We cannot

obtain the Radon coe�cients from the adjoint Radon transform directly. Normally we

need to adopt an inversion method (Thorson and Claerbout, 1985) to recover the Radon

coe�cient by minimizing the following cost function:

J = kd�Rmk22 + µkmk22 . (A.5)

The first term on the right side is the misfit term, and the second is the model (regularization)

term to achieve a stable and unique solution. Equation A.5 can be easily solved by the

damped least square method or conjugate gradient method (Scales, 1987), and µ denotes

the trade-o↵ parameter. While solved via the `2�`2 problem typically obtain low-resolution

Radon coe�cients, which cannot recover the data exactly (Trad et al., 2003). We can

adopt the sparse Radon transform by using `1 norm for the model term to obtain the

high-resolution Radon coe�cients with the following cost function:

J = kd�Rmk22 + µkmk11. (A.6)
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The cost function in equation A.6 (`2�`1 problem) can be solved by IRLS method (Ibrahim

and Sacchi, 2013) (see equation A.9 for details) and FISTA method (Beck and Teboulle,

2009) to obtain the non-robust sparse Radon transform for denoising.

A.2.2 IRLS method for robust and sparse Radon transform

Adopting sparse Radon transform is useful for random noise attenuation. The sparse Radon

transform can be solved by Iteratively Reweighted Least-Squares (IRLS) method by adding

a weighting matrix into the model term. The weighting matrix for the model term can be

expressed as:

kmk11 =
X

i

|mi| |mi|�1 |mi| = kWmmk22 , (A.7)

where Wm is a diagonal matrix with the diagonal elements [Wm]
ii

= |mi|�1/2. By adding

a weighting matrix, the `1 norm for the model term can be transformed into the `2 norm;

we still can adopt the conjugate gradient or least square method to solve it. Then, the

minimization of the problem A.6 produces the following equation:

J = kd�Rmk22 + µ kWmmk22 . (A.8)

A simple preconditioning modification by setting u = Wmm is used to obtain its standard

form

J = kd�R (Wm)�1 uk22 + µkuk22. (A.9)

When the data are contaminated by erratic noise, i.e., blending noise and high amplitude

erratic noise, the sparse Radon transform will not work e↵ectively. In this case, we can

utilize the robust and sparse Radon transform for noise attenuation. Besides setting `1

norm for the model term, we also set `1 norm instead of `2 norm for the misfit term with

the following equation

J = kd�Rmk11 + µkmk11. (A.10)

To solve the robust and sparse Radon transform, I first adopt the IRLS method to solve the

`1 � `1 problem by adding two weighting matrices to transform the original problem into

an `2 � `2 problem (Ibrahim and Sacchi, 2013). The weighting matrix for the misfit term is

similar to the associated weighting matrix for model norm

kd�Rmk11 = krk11 =
X

i

|ri| |ri|�1 |ri| = kWrrk22 , (A.11)

where r = d�Rm is the residual vector, and Wr is a diagonal matrix and [Wr]ii = |ri|�1/2.

The weighting matrix cannot be computed for ri = 0 for `1 norm. Thus, we normally adopt
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[Wr]ii = |ri|�1/2 + ✏, where ✏ is small number that avoids dividing ri = 0, which is the same

for Wm.

Therefore, for the robust and sparse Radon transform, we can turn the nonquadratic (`1�`1)

problem into a sequence of quadratic minimization problems (`2 � `2) by adding weighting

matrices Wr and Wm to obtain the following equation:

J = kWrrk22 + µ kWmmk22 ,

= kWr (d�Rm)k22 + µ kWmmk22 .

(A.12)

Similarly, a simple preconditioning modification is used to express J in its standard form

J =
���Wr

⇣
d�R (Wm)�1 u

⌘���
2

2
+ µkuk22. (A.13)

Equation A.13 can be minimized by the conjugate gradients method (Scales, 1987) followed

by updates of the weighting matrices Wr and Wm (Ibrahim and Sacchi, 2013).

We adopt a method similar to the one described by Trad et al. (2003); however, we do not

ignore the trade-o↵ parameter µ. Our experience with various numerical tests indicates that

we can obtain a more accurate solution by adding the trade-o↵ parameter. The solution

solved by the conjugate gradient method is the same as the damped least squares solution,

even though it takes more time to run the IRLS method. In essence, I have an internal

iteration to minimize the cost function via the method of conjugate gradients and an external

iteration to update the weighting matrices (IRLS algorithm). The algorithm is stopped when

the misfit change between iterations is less than a defined tolerance value (e.g., tolerance =

10�6) or when it reaches a maximum number of iterations (Ibrahim and Sacchi, 2013). Last,

I mention that the IRLS (non-robust) algorithm denotes adopting equation A.9 for solving

non-robust sparse Radon transform, and the IRLS (robust) algorithm denotes adopting

equation A.13 for solving robust sparse Radon transform.

A.2.3 ADMM method for robust and sparse Radon transform

The ADMM is a simple but powerful framework (Boyd et al., 2011), which is flexible in

solving many high-dimensional optimization problems by separating coupled components

in the cost function by including auxiliary constraint variables. The ADMM method nor-

mally decouples one original problem into several subproblems, which can be solved in an

alternating minimization manner (Wen et al., 2017).
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The generalized scaled form of ADMM can be summarized as the following:

minimize f(x) + g(z)

subject to Ax + Bz = c
(A.14)

The original problem A.14 can be separated into the following iterations

x
k+1 := argmin

x

⇣
f(x) + (⇢/2)

��Ax + Bz
k � c + u

k
��2

2

⌘

z
k+1 := argmin

z

⇣
g(z) + (⇢/2)

��Ax
k+1 + Bz � c + u

k
��2

2

⌘

u
k+1 := u

k + Ax
k+1 + Bz

k+1 � c

(A.15)

where u is the Lagrangian multiplier, ⇢ > 0 is a penalty parameter or a balancing parameter

(Wang et al., 2019).

Similarly, for the robust and sparse Radon transform, we can minimize the following cost

function

minimize J = kRm� dk11 + µkmk11 . (A.16)

Then, the scaled form of ADMM for the robust and sparse Radon transform can be written

as
minimize krk11 + µkmk11
subject to r = Rm� d

(A.17)

The ADMM consists of the following three steps

rk+1 = arg min
r

n
krk11 +

⇢1

2

��r�Rmk + d + uk

1

��2

2

o
(A.18)

mk+1 = arg min
m

n
µkmk11 +

⇢1

2

��rk+1 �Rm + d + uk

1

��2

2

o
(A.19)

uk+1
1 = uk

1 +
⇥
rk+1 �Rmk+1 + d

⇤
(A.20)

where u is the vector of Lagrange multipliers, µ is the trade-o↵ parameter for balancing the

misfit and model term, and ⇢1 > 0 is a penalty parameter. Equation A.18 can be solved by

the proximity operator

rk+1 = prox1/⇢1

�
d�Rmk + uk

1

 
, (A.21)

where

prox
⌧
{y} = arg min

x

⇢
1

2
(x� y)2 + ⌧ |x|

�
. (A.22)

represents the proximity operator, which is applied component-wise. The analytical solution
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of proximity operator A.22 is

prox
⌧
{y} = sign(y) max(|y|� ⌧, 0) (A.23)

which is equivalent to the soft-thresholding operator (Blumensath and Davies, 2008).

The m-update step A.19 can be reformatted into

mk+1 = arg min
m

⇢��bk �Rm
��2

2
+

2µ

⇢1
kmk11

�
, (A.24)

where bk = rk+1 + d + uk

1 . Equation A.24 is the classical `2 � `1 problem, which can be

easily solved by the least absolute shrinkage and selection operator (LASSO) (Tibshirani,

1996), fast iterative shrinkage thresholding algorithm (FISTA) (Beck and Teboulle, 2009),

or orthogonal matching pursuit (OMP) (Cai and Wang, 2011), etc. In my case, m-update

step A.24 can be solved by the FISTA algorithm

mk+1 = prox
�/⇢1

�
mk � t1R

⇤(Rmk � bk)
 

, (A.25)

where t1 > 0 is a suitable stepsize, which can be selected to be a Lipschitz constant, i.e.

1/t1 > �max(R⇤
R) to make sure the augmented Lagrangian function does not increase

when the m-update step is approximately solved by equation A.25.

The standard scaled form of the ADMM method utilizes the update steps A.20, A.21 and

A.25 to guarantee to converge to the global minimum of the equation A.16 for the robust

sparse Radon transform. In our examples, I refer to ADMM as the robust and sparse

Radon transform by solving `1 � `1 optimization problem, and FISTA as the non-robust

sparse Radon transform by solving `2 � `1 optimization problem.

A.3 Examples

In my experiments, the trade-o↵ parameters µ for the regularization term in each method

are chosen by providing the best performance in terms of relative error of recovery.

A.3.1 Synthetic example

To compare the IRLS and ADMM methods, we first synthesize an example containing five

parabolic plane-wave events with di↵erent curvatures to mimic a common receiver gather in

the conventional seismic acquisition. The numerical example consists of 60 receivers and 80
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shots. The source wavelet is synthesized with a Ricker wavelet of central frequency 30 Hz.

We apply the robust sparse Radon transform in the common receiver gathers for denoising,

including blending noise, erratic ambient noise and random noise.

First, we synthesize the data only containing the blending noise (BF = 2) to compare the

di↵erent algorithms for less blending noise attenuation (Figure A.1). Figure A.1a shows

the clean data, and the noisy data can be found in Figure A.1b. Figure A.1c - A.1f shows

the denoising results with ADMM, FISTA, IRLS (non-robust) and IRLS (robust) methods,

respectively. We can observe that all algorithms work well for denoising when less blending

noise exists. The error estimation sections can be found in Figure A.1i - A.1l. These

figures show that the ADMM and FISTA methods have insignificant signal leakage compared

with IRLS methods. This is because ADMM and FISTA methods adopt proximity (soft-

thresholding) operator for solving `1 problem, which is a biased estimator (Wen et al.,

2019), and IRLS methods adopt a weighting factor to down-scaling the outliers when the

data contains more signals. In Table A.1, we also observe that IRLS method can achieve

higher SNR values than the ADMM and FISTA methods. The IRLS method (robust) gains

an extremely high SNR value of SNR = 127.83 dB.

Our next example is to test including more blending noise (BF = 8). The denoising results

can be observed in Figure A.2. Again, Figure A.2a and A.2b shows the clean and noisy

data. Figure A.2c - A.2f shows the denoising results by ADMM, FISTA, IRLS (non-robust)

and IRLS (robust) methods, respectively. In this case, we still can find that all methods

can obtain high-quality denoising results. In the error estimation sections (Figure A.2i -

A.2l), IRLS methods start to show signal leakage. In Table A.1, for the high blending noise

(BF = 8) case, we can find that the SNR value of the IRLS method (robust) decreases

dramatically (from 127.83 dB to 28.49 dB), which is almost the same SNR value obtained by

the ADMM method. In contrast, regarding the time-consuming part, the ADMM method

spends less time than the IRLS method (robust).

The third example entails testing the condition of heavy blending noise (BF = 8) and

erratic ambient noise simultaneously. The clean and noisy data can be found in Figure A.3a

and A.3b. In Figure A.3b and A.3h, we can observe that except for blending noise, the

noisy data also includes three high-amplitude erratic ambient noise. This is to mimic the

erratic noise generated by the ambient environment. The denoising results can be found

in Figure A.3c - A.3f. In this case, we find that by adding the erratic noise, the FISTA

and IRLS (non-robust) methods do not work e↵ectively for denoising. The robust methods

(ADMM and IRLS) still obtain acceptable denoising results. When comparing Figure A.3c

and A.3f, we can find that the ADMM method outperforms the IRLS method. In Figure

A.3f, we can observe the denoising result includes some artefacts, and this is also verified in

the error estimation sections (Figure A.3i - A.3l). The reason for the IRLS method (robust)
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Figure A.1: Comparison of blending noise (BF = 2) attenuation with di↵erent
algorithms. (a) Clean data. (b) Noisy data. (c) Denoising with ADMM method
(Robust). (d) Denoising with FISTA method (Non-robust). (e) Denoising with
IRLS method (Non-robust). (f) Denoising with IRLS method (Robust). (g) Clean
data. (h) Noise section. (i) Di↵erence between (c) and (a). (j) Di↵erence between
(d) and (a). (k) Di↵erence between (e) and (a). (l) Di↵erence between (f) and (a).
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Figure A.2: Comparison of blending noise (BF = 8) attenuation with di↵erent
algorithms. (a) Clean data. (b) Noisy data. (c) Denoising with ADMM method
(Robust). (d) Denoising with FISTA method (Non-robust). (e) Denoising with
IRLS method (Non-robust). (f) Denoising with IRLS method (Robust). (g) Clean
data. (h) Noise section. (i) Di↵erence between (c) and (a). (j) Di↵erence between
(d) and (a). (k) Di↵erence between (e) and (a). (l) Di↵erence between (f) and (a).
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to include artifacts is because when the noise is dominant, the weighting factors start to

down-scaling the signals, and some noises will be treated as signals. In Table A.1, we also

can find that the SNR value for the ADMM method still keeps “robust” compared with

the IRLS method (robust), as the SNR value for the IRLS method (robust) decreases a lot.

At the same time, the ADMM method uses less computational time than the IRLS (robust)

method.

Our last example is to test an extremely noisy condition, which includes heavy blending

noise (BF = 8), erratic ambient noise and random noise. The clean data and the noisy

data can be found in Figure A.4a and A.4b and the denoising results can be observed in

Figure A.4c - A.4f. In this extremely noisy situation, we can observe that the ADMM still

achieves a reasonable denoising result compared to the other three methods. Due to the

high-amplitude erratic ambient noise, the non-robust methods (FISTA and IRLS) fail to

denoise. At the same time, the IRLS method (robust) also obtains an unacceptable result

because more noises are treated as signals. The error sections (Figure A.4i - A.4l) also

confirm our observations. In the extreme noisy test, the ADMM also shows some signal

leakage. In Table A.1, we can observe that the ADMM method gains a high SNR value

and consumes less time than the other three methods.

Synthetic Case Algorithm Time (sec) SNR (dB)

Blending Noise

ADMM 10.69 32.66
FISTA 7.25 18.28

(BF = 2)
IRLS `2 4.63 32.81
IRLS `1 10.72 127.83

Blending Noise

ADMM 4.19 27.79
FISTA 7.22 16.94

(BF = 8)
IRLS `2 5.72 26.98
IRLS `1 17.28 28.49

Blending+Erratic
ADMM 7.10 24.09

Noise (BF = 8)
FISTA 7.26 -7.08
IRLS `2 21.47 -8.84
IRLS `1 22.46 8.97

Blending+Erratic
ADMM 5.12 12.47

+Random Noise
FISTA 7.28 -6.68

(BF = 8)
IRLS `2 21.83 -8.87
IRLS `1 22.44 2.88

Table A.1: Comparison of di↵erent algorithms for robust/non-robust Radon trans-
form method for di↵erent noise attenuation with synthetic examples. Note that the
IRLS `2 and FISTA denote the non-robust Radon transform by solving `2�`1 opti-
mization problem, and the IRLS `1 and ADMM denote the robust Radon transform
by solving `1 � `1 optimization problem.



APPENDIX A. DEBLENDING VIA ADMM AND IRLS 128

True

20 40 60 80

50

100

150

200

250

300

Noise data

20 40 60 80

50

100

150

200

250

300

ADMM

20 40 60 80

50

100

150

200

250

300

FISTA

20 40 60 80

50

100

150

200

250

300

L2-IRLS

20 40 60 80

50

100

150

200

250

300

L1-IRLS

20 40 60 80

50

100

150

200

250

300

a) b) c) d) e) f)

Ti
m

e 
sa

m
pl

e

Trace Trace Trace Trace Trace Trace 
True

20 40 60 80

50

100

150

200

250

300

Diff Noise data

20 40 60 80

50

100

150

200

250

300

Diff ADMM

20 40 60 80

50

100

150

200

250

300

Diff FISTA

20 40 60 80

50

100

150

200

250

300

Diff L2-IRLS

20 40 60 80

50

100

150

200

250

300

Diff L1-IRLS

20 40 60 80

50

100

150

200

250

300

g) h) i) j) k) l)

Ti
m

e 
sa

m
pl

e

Trace Trace Trace Trace Trace Trace 

Figure A.3: Comparison of blending noise (BF = 8) and erratic ambient noise
attenuation with di↵erent algorithms. (a) Clean data. (b) Noisy data. (c) Denoising
with ADMM method (Robust). (d) Denoising with FISTA method (Non-robust).
(e) Denoising with IRLS method (Non-robust). (f) Denoising with IRLS method
(Robust). (g) Clean data. (h) Noise. (i) Di↵erence between (c) and (a). (j)
Di↵erence between (d) and (a). (k) Di↵erence between (e) and (a). (l) Di↵erence
between (f) and (a).
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Figure A.4: Comparison of blending noise (BF = 8), erratic ambient noise and
random noise attenuation with di↵erent algorithms. (a) Clean data. (b) Noisy data.
(c) Denoising with ADMM method (Robust). (d) Denoising with FISTA method
(Non-robust). (e) Denoising with IRLS method (Non-robust). (f) Denoising with
IRLS method (Robust). (g) Clean data. (h) Noise section. (i) Di↵erence between
(c) and (a). (j) Di↵erence between (d) and (a). (k) Di↵erence between (e) and (a).
(l) Di↵erence between (f) and (a).
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A.3.2 Real data example

I also test our method for di↵erent types of noise denoising with actual seismic data from the

Gulf of Mexico. The blending noise is included by numerically blending, and the traces of

erratic ambient noise are randomly added to 5 out of 100 traces in each unblended common

shot gather.

Our first example is to test denoising with blending noise BF = 2 and erratic ambient noise.

The noisy data and denoising results can be found in Figure A.5a - A.5e. Due to the erratic

ambient noise, the non-robust methods fail to denoise the erratic ambient noise (Figure A.5c

and A.5e). Both ADMM and IRLS (robust) methods e↵ectively suppress the blending noise

and erratic noise (Figure A.5b and A.5d). In the error sections (Figure A.5g - A.5j), we can

observe that the ADMM methods still have small signal leakage due to the biased proximity

operator estimation. In Table A.2, I maintain that both ADMM and IRLS methods obtain

almost the same SNR value, which means for this case, the denoising e↵ects for both robust

techniques are similar. However, regarding computational time, the ADMM method has a

significant advantage to the robust IRLS method.

The next example is to test the denoising e↵ect by adding random noise based on the first

example (Figure A.5). As we know that non-robust methods (FISTA and non-robust IRLS

method) do not work for erratic ambient noise attention. We only compare the ADMM

and IRLS (robust) methods in the following examples. The clean and noisy data are shown

in Figure A.6a and A.6b. The denoising results are displayed in Figure A.6c and A.6d.

Compare Figure A.6c and A.6d, we notice some noise left for the robust IRLS method. This

is also verified by the residual sections (Figure A.6g and A.6h). In Table A.2, we notice

that the SNR values for both robust methods are similar, while ADMM outperforms IRLS

in computational time cost.

We repeat the same test with heavier blending noise (BF = 8) in Figure A.7 and Figure

A.8. We still notice that the ADMM method typically has signal leakage drawback for the

denoising problem, while the robust IRLS method has noise left drawback, even though the

SNR value for both methods are similar. However, the ADMM method outperforms the

robust IRLS method in the time-consuming part (See Table A.2).

A.4 Conclusions

This appendix is an extension of Chapter 3 of the IRLS and ADMM methods for solving the

robust and sparse Radon transform when tackling di↵erent denoising scenarios, including

blending noise, high-amplitude erratic ambient noise and random noise. Via examples, I
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f) g) h) i) j)

Figure A.5: Denoising (blending noise BF = 2 + erratic ambient noise) results
comparison with di↵erent algorithms. (a) Noisy data. (b) Denoising with ADMM
method. (c) Denoising with FISTA method. (d) Denoising with IRLS method (Non-
robust). (e) Denoising with IRLS method (Robust). (f) Noise section. (g) Residual
section by ADMM method. (h) Residual section by FISTA method. (i) Resid-
ual section by IRLS method (Non-robust). (j) Residual section by IRLS method
(Robust).
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Figure A.6: Denoising (blending noise BF = 2 + erratic ambient noise + random
noise) results comparison with di↵erent algorithms. (a) Clean data. (b) Noisy data.
(c) Denoising with ADMM method. (d) Denoising with IRLS method (Robust).
(e) Clean data. (f) Noise section. (g) Residual between (c) and (a). (h) Residual
between (d) and (a).
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a) b) c) d)

e) f) g) h)

Figure A.7: Denoising (blending noise BF = 8 + erratic ambient noise) results in
comparison with di↵erent algorithms. (a) Clean data, (b) Noisy data. (c) Denoising
with ADMM method. (d) Denoising with IRLS method (Robust). (e) Clean section.
(f) Noise section. (g) Residual between (c) and (a). (h) Residual between (d) and
(a).
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a) b) c) d)

e) f) g) h)

Figure A.8: Denoising (blending noise BF = 8 + erratic ambient noise + random
noise) results comparison with di↵erent algorithms. (a) Clean data. (b) Noisy data.
(c) Denoising with ADMM method. (d) Denoising with IRLS method (Robust). (e)
Clean section. (f) Noise section. (g) Residual between (c) and (a). (h) Residual
between (d) and (a).
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Real Case Algorithm Time (sec) SNR (dB)

Blending(BF = 2)+Erratic Noise
ADMM 236.80 9.02
IRLS `1 986.57 8.79

Blending(BF = 2)+Erratic+Random Noise
ADMM 229.70 4.73
IRLS `1 1058.6 3.92

Blending(BF = 8)+Erratic Noise
ADMM 331.29 4.05
IRLS `1 1004.8 3.75

Blending(BF = 8)+Erratic+Random Noise
ADMM 311.06 2.85
IRLS `1 1050.5 1.72

Table A.2: Comparison of di↵erent algorithms for robust Radon transform method
for di↵erent noise attenuation with real examples. Note that the IRLS `1 and
ADMM denote the robust Radon transform by solving `1�`1 optimization problem.

conclude that the robust (ADMM and robust IRLS) methods outperform the non-robust

(FISTA and non-robust IRLS) methods when data are contaminated with erratic ambient

noise. Also, the ADMM method shows a great superiority in computational time, which

could be a suitable replacement for the IRLS method when dealing with the `1�`1 optimiza-

tion problem. Beyond that, due to the application of the proximity operator, the ADMM

method typically produces solutions with signal leakage, significantly when the data are

contaminated by a considerable amount of noise. The latter is a problem that could be

solved by including a debiasing final stage in the ADMM algorithm.
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Fast and computational-e�cient I-MSSA
1

B.1 Introduction

For separation of compressive simultaneous-source data deployed on an irregular acquisition

grid in Chapter 5, despite the accuracy of SSA for low-rank optimization, its computational

cost has always been a concern due to the Singular Value Decomposition (SVD) implemen-

tation. The Randomized SVD (R-SVD) has been proposed to replace conventional SVD to

achieve a more e�cient algorithm. Even though the R-SVD shrinks the size of the Hankel

matrix, it still needs to form the Hankel matrix and apply the SVD for rank reduction. For

multidimensional data, building block-Hankel matrices requires a high computational cost,

which could be a drawback for industrial applications. In this appendix, I provide a more ef-

ficient and faster algorithm for low-rank estimation named Fast and computational-e�cient

Multidimensional Singular Spectrum Analysis (FMSSA). The FMSSA method avoids build-

ing block-Hankel matrices and uses randomized QR decomposition to substitute the SVD

procedure. Also, the Hankel matrix’s final anti-diagonal averaging is computed e�ciently

via a convolution algorithm. The main idea is borrowed from Cheng et al. (2019) and is

first implemented for compressive simultaneous-source data deployed on an irregular grid.

This FMSSA algorithm is developed in Julia language and constitutes a deblending part in

SeismicJulia (https://github.com/SeismicJulia) for seismic data processing.

This appendix is an extended part of Chapter 5 and follows the subsequent structure. First,

I describe the FMSSA algorithm and provide the pseudocode of it. Then, I o↵er a brief

1A version of this appendix is published in Lin, R., Y. Guo, F. Carozzi and M. D. Sacchi, 2022, In-
terpolated fast and computational-e�cient multidimensional Singular Spectrum Analysis (I-FMSSA) for
compressive simultaneous-source data processing, SEG/AAPG/SEPM International Meeting for Applied
Geoscience & Energy 2022.
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review of compressive simultaneous source data processing via FMSSA with binning and

the I-FMSSA method. Finally, I provide a comparative study of the I-MSSA method with

the I-FMMSA method via synthetic and field data examples.

B.2 Method

B.2.1 Fast and computational-e�cient Multidimensional Singular

Spectrum Analysis (FMSSA) filtering

The MSSA algorithm (Oropeza and Sacchi, 2011) is an accurate method for f � x� y low-

rank denoising, and it contains three main steps that are applied in frequency slides: 1)

Hankelization. 2) Rank-reduction. 3) Anti-diagonal averaging.

The main drawbacks of the MSSA algorithm are:

• Forming Hankel matrices introduce a high computational cost and increases memory

requirement.

• Classical MSSA applies SVD on large matrices, which could be expensive for multidi-

mensional problems.

The fast and computational-e�cient MSSA (FMSSA) algorithm (Cheng et al., 2019) is an

appropriate substitution for MSSA when one desires to avoid adopting the SVD for its rank-

reduction step. Moreover, the FMSSA avoids forming explicit form of Hankel matrices. In

essence, the main features of FMSSA can be summarized as follows:

• Hankel matrix-vector products are computed via FFTs to avoid building explicit form

Hankel matrices.

The Hankel matrix can be embedded into a circulant matrix so that Hankel matrix-

vector multiplication can be computed via the fast Fourier transform (FFT):

Hx = Tx̂ = Cx̃
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x2
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(B.1)

and

Cx̃ =

2

64
D1 D3 D2

D2 D1 D3

D3 D2 D1

3
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2

64
x2

x1

0

3

75 = F
�1(F (c) �F (x̂)) (B.2)
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where H =

"
D1 D2

D2 D3

#
denotes the Hankel matrix, and T =

"
D2 D1

D3 D2

#
represents

the Toeplitz matrix, and x̂ = reverse(x) means reverse the elements order of vector

x. Matrix C =

2

64
D1 D3 D2

D2 D1 D3

D3 D2 D1

3

75 denotes the circulant matrix, which can be computed

via Fast Fourier transform (FFT), and c =
h

D1 D2 D3

iT

, x̃ =
h

x2 x1 0
iT

,

and � means element-wise multiplication. Algorithm 10 shows a detailed summary of

Hankel matrix-vector product calculation via fast Fourier transform.

• Instead of applying SVD to the Hankel matrix, a randomized QR decomposition (rQRd)

is adopted as an alternative for fast reduced-rank approximation.

A random projection is performed to reduce the size of the Hankel matrix:

M = H⌦ (B.3)

where H is the Hankel matrix with size of Nr ⇥Nc, and ⌦ denotes a random matrix

with size of Nc⇥p that composes of p independent vectors (p⌧ Nc), and matrix M is

a much smaller matrix with size of Nr⇥p. Then, an economic-size QR decomposition

is applied to matrix M:

[Q,R] = qr(M) (B.4)

Finally, the low-rank estimation of Hankel matrix H can be computed through the

orthonormal basis Q:

Ĥ = QQHH (B.5)

• The convolution operator is adopted to accelerate the anti-diagonal averaging process.

For simplicity, we assume that H is a rank of p = 1 matrix, and we let q1 = Q and

t1 = QHH, then equation B.5 can be rewritten as:

Ĥ = q1t1 (B.6)

In addition,t1 = QHH can be computed with fast Hankel matrix-vector product
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(equation B.1). Therefore, the anti-diagonal averaging can be expressed as :

D̂ =

8
>>><

>>>:

1
i

P
i

j=1 q1j t1i�j+1 , 1  i  Nc,

1
Nc

P
Nc

j=1 q1j t1i�j+1 , Nc  i  Nr,

1
L�i+1

P
Nc

j=i�Nr+1 q1j t1i�j+1 , Nr  i  L,

= w

LX

j=1

q1j t1i�j+1 .

(B.7)

Equation B.7 can be written in a matrix form:

D̂ = w � (q1 ⇤ t1) = w �F
�1
⇣
F (q1) �F (t1)

⌘
(B.8)

where � means element-wise multiplication and ⇤ denotes convolution operation. F

and F
�1 represent fast Fourier transform and inverse fast Fourier transform, respec-

tively. Therefore, for rank = p, equation B.8 can be generalized as:

D̂ = w � [(q1 ⇤ t1) + (q2 ⇤ t2) + · · · + (qp ⇤ tp)]

= w �
pX

i=1

qi ⇤ ti = w �
pX

i=1

F
�1 (F (qi) �F (ti))

(B.9)

Algorithm 11 shows the detailed summary of the FMSSA algorithm based on the strategies

mentioned above when tackling a 3D data cube (t� x� y).

B.2.2 Review of compressive simultaneous source data processing

via FMSSA and binning

Conventional processing for compressive simultaneous source data often adopt binning to

represent the desired data on a regular grid. In this vein, we write the separation and

reconstruction as the solution that minimizes the following cost function

J(D) = kb�BT Dk22 (B.10)

where b denotes the blended data, and B is the blending operator. The operator T is the

sampling operator (Liu and Sacchi, 2004; Naghizadeh and Sacchi, 2010; Cheng and Sacchi,

2015), and D denotes data deployed in regular-grid coordinates.

Again, the projected gradient-descent (PGD) method (Cheng and Sacchi, 2016; Lin et al.,

2021) is adopted to solve the problem B.10 by defining the gradient-descent step followed
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Algorithm 10 Fast Level-2 Hankel matrix-vector product PFHP

1: function y = PFHP (c,v,flag = “forward” or “adjoint”)
2: Initialization:
3: Size of c: (Lx, Ly) = size(c).
4: Size of level-2 block Hankel matrix:
5: Nr = bLx/2c+ 1 and Nc = Lx + 1�Nr.
6: Mr = bLy/2c+ 1 and Mc = Ly + 1�Mr.
7: Reverse the elements order of v for each dimension:
8: v̂ = reverse(reverse(v, dims = 1), dims = 2).
9: Fourier transform: C = F (c).

10: if forward then
11: Padding zeros: v̂ = [v̂; zeros(Nc � 1, Mc � 1)]
12: Fourier transform: V = F (v̂)
13: Element-wise multiplication and inverse Fourier transform: r = F

�1(C �V)
14: Truncate: y = r[Nr : Lx, Mr : Ly]
15: Output a vector: y = reshape(y, [], 1)
16: else
17: Padding zeros: v̂ = [v̂; zeros(Nr � 1, Mr � 1)]
18: Fourier transform: V = F (v̂)
19: Conjugate property of Fourier transform: C⇤ = conj(C)
20: Element-wise multiplication and inverse Fourier transform: r = F

�1(C⇤ �V)
21: Truncate: y = r[Nc : Lx, Mc : Ly]
22: Output a vector: y = reshape(y, [], 1)
23: end if
24: end function
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Algorithm 11 Fast and computational-e�cient MSSA (FMSSA)

1: Inputs:
2: Seismic data: d; rank: p.
3: Output:
4: FSSA filtered data: d̂.
5: Initialization:
6: D(!, x, y) d(t, x, y) (1D FFT)

7: (Nt, N1, N2) = size(D)
8: M1 = bN1/2c+ 1 and L1 = N1 + 1�M1

9: M2 = bN2/2c+ 1 and L2 = N2 + 1�M2

10: for ! = !min : !max do
11: D = D[!, :, :]
12: ⌦ = rand(M1, M2, p)
13: for i = 1 : p do
14: Y[:, i] = PFHP (D, ⌦[:, :, i], f lag = ”forward”)
15: end for
16: [Q,R] = qr (Y)
17: for i = 1 : p do
18: q = reshape(Q[:, i], L1, L2)
19: z = PFHP (D,q, f lag = ”adjoint”)
20: D̃ = D̃ + F

�1(F (q) �F (z))
21: end for
22: D̃[!, :, :] = D̃
23: end for
24: d(t, x, y) D̃(!, x, y) (1D IFFT)
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by a projection of the form

D⌫ = P
⇥
D⌫�1 � �rJ

�
D⌫�1

�⇤

= P
⇥
D⌫�1 � �T

⇤
B

⇤(BT D⌫�1 � b)
⇤ (B.11)

where rJ is the gradient of the cost function J , the scalar � is the length of step-size, and

P indicates the projection operator. The operator P could be a denoising algorithm based

on MSSA filter (Oropeza and Sacchi, 2011) or FMSSA filter (Cheng et al., 2019).

The conventional rank-reduction deblending and reconstruction methods assume a regular

grid distribution of traces. In this case, the original source coordinates are allocated to

binned coordinates via simple nearest-neighbour interpolation. However, when more than

one trace falls into the same bin, the binning strategy introduces errors in the amplitude

and phase of the traces, leading to distortion of the recovered deblended and reconstructed

signals. We refer to the conventional method as MSSA deblending (projection operator =

MSSA) or FMSSA deblending (projection operator = FMSSA) .

B.2.3 Review of compressive simultaneous source data processing

via Interpolated-FMSSA (I-FMSSA)

For a blending acquisition with an irregular-grid coordinate distribution (especially for shot

irregular-grid distribution), the blended data can be written as

b = B W D (B.12)

where D denotes the desired unblended data on the regular grid, and b is the observed

irregular-grid blended acquisition data. The operator W denotes the window tapered sinc

Kaiser interpolation operator that links the traces from the regular desired grid to irregular

observation grid (Jiang et al., 2017; Carozzi and Sacchi, 2021). Therefore, the deblending

and shot reconstruction can be written as the solution D that minimizes the following cost

function

J = kb�BW Dk22 . (B.13)

Equation B.13 can be solved by projected gradient-descent (PGD) method

D⌫ = P[D⌫�1 � �W
⇤
B

⇤(BW D⌫�1 � b) ] (B.14)

The term BW D⌫�1�b defines the error in the irregular grid. Next, the adjoint interpolator

W
⇤ and B

⇤ maps the error back to the pseudo-deblended regular grid. The fitting goal guar-

antees data fidelity by honouring the true spatial coordinates of the seismic traces. In other
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Figure B.1: Source coordinates distribution considered in the synthetic examples.
(a) Coordinates of the irregular grid with 50 % decimation. (b) The desired regular
grid of output.

words, the algorithm does not introduce time-shift errors arising from the nearest neighbour

interpolation (binning). We refer to this method as I-MSSA deblending (projection operator

= MSSA) or I-FMSSA deblending (projection operator = FMSSA).

B.3 Examples

We first consider noise-free 3D synthetic data to compare di↵erent algorithms. The synthetic

example contains three dipping linear events to mimic a small 3D patch of common receiver

gather. The regular grid consists of 30⇥ 30 source points with interval �x = �y = 20 m in

the x� and y� directions, and a Ricker wavelet of central frequency 20 Hz was adopted. We

add a perturbation to the regular grid to generate the irregular distribution. The perturba-

tion was generated with uniform random numbers in the range [��x, �x] in x�direction

and in the range [��y, �y] in y�direction. Then 50% source points are randomly deci-

mated to produce the compressive irregular-grid distribution. The geometry of the source

coordinate of irregular-grid and desired regular-grid distribution is displayed in Figure B.1.

Figure B.1a shows irregular distribution after 50% decimation, and Figure B.1b represents

our desired regular-grid output.

We first compare the computational performance of the MSSA projection operator and

FMSSA projection operator for deblending and reconstruction. The deblending and recon-

struction results for other strategies can be found in Figure B.2. Through Figure B.2d and
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Figure B.2: Reconstruction and deblending results. A comparison for one CRG. (a)
Clean regular data volume. (b) Pseudo-deblended data volume after binning. (c)
Result with MSSA deblending and binning with SNR = 15.87 dB. (d) Residuals
between (a) and (c). (e) Result with FMSSA deblending and binning with SNR =
15.25 dB. (f) Residuals between (a) and (e). (g) Result with I-MSSA deblending
with SNR = 43.66 dB. (h) Residuals between (a) and (g). (i) Result with I-FMSSA
deblending with SNR = 43.03 dB. (j) Residuals between (a) and (i).

B.2f or Figure B.2h and B.2j, we get incredibly the same deblending and reconstruction

quality for both MSSA and FMSSA projection operators. Table B.1 shows the detailed

comparison of computational time and SNR value. Adopting the FMSSA projection op-

erator shows the superior performance of the computational time without compromising

the deblending results. Comparing Figure B.2d, B.2f with Figure B.2h, B.2j, we observe

significant signal leakage when one adopts the conventional MSSA or FMSSA deblending

method (SNR ⇡ 15 dB). Conversely, with a sinc Kaiser interpolation operator, the pro-

posed deblending and reconstruction methods produce negligible signal leakage (SNR ⇡ 43

dB). The di↵erence in quality arises from small time shifts due to data binning. These time

shifts could compromise the lateral coherence of signals.

For the field example, we consider a field 3D blended-acquisition data from Oman (Song
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Methods Time(sec) SNR(dB)

MSSA 97.68 15.87

FMSSA 23.14 15.25

I-MSSA 108.28 43.66

I-FMSSA 39.28 43.03

Table B.1: Computational time and SNR for irregular-grid reconstruction.

et al., 2019). The survey area is acquired by 12 vibroseis simultaneously. As the FMSSA pro-

jection operator shows a significant advantage in the computational time, we only compare

FMSSA deblending algorithm with I-FMSSA deblending algorithm for this real example

without considering the MSSA projection operator. Figure B.3 delineates the sources’ ge-

ometry and the receiver’s location. The mean interval between sources and source lines

is 25 m. Figure B.4 shows the results for an inline slice. Figure B.4a is the observed

decimated pseudo-deblended data after binning. Figure B.4b shows the deblending and

reconstruction result with the FMSSA deblending method. Figure B.4c displays deblend-

ing and reconstruction results with the I-FMSSA deblending method. We observe that the

blending interferences have been e↵ectively eliminated, and the missing traces have been

reconstructed.

We have the same problem discussed in Chapter 5 for the real data example. Due to the lack

of ground truth data as a reference, it is hard to evaluate the performances of the I-FMSSA

deblending method (Figure B.4b) and the FMSSA deblending method (Figure B.4c). Again,

we calculate the di↵erence (Figure B.4d) between the I-FMSSA deblending method and

the FMSSA deblending method and evaluate their di↵erence and quality heuristically. In

Figure B.4d, there exist non-negligible di↵erences containing signals. These events likely

result from the errors introduced by data binning when one adopts the FMSSA deblending

method. Given that binning assigns coordinates to grid points via a crude nearest-point

interpolation, one could expect amplitude distortion. The vibroseis source points were not

ideally deployed on a regular grid. Hence, one should adopt the I-FMSSA deblending method

rather than FMSSA deblending despite the slight di↵erences we might obtain.

B.4 Conclusion

This appendix shows an extension of Chapter 5 by illustrating an inversion scheme for sepa-

rating and reconstructing irregular-grid compressive simultaneous-source data with a faster
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Figure B.3: (a) Observed decimated coordinate distribution containing 17927 source
points. (b) The desired output with a regular-grid coordinate system, including
398⇥ 62 = 24676 source points.
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Figure B.4: Real data example. (a) Observed data after binning. (b) Result with
FMSSA deblending and binning. (c) Result with I-FMSSA deblending method. (d)
Di↵erence between (b) and (c).
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and more computational-e�cient projection operator (FMSSA). The projected gradient de-

scent method is employed with the I-FMSSA algorithm to iteratively solve this problem and

to guarantee the solution honours the true irregular grid observations. The FMSSA algo-

rithm appropriately replaces the MSSA algorithm to reduce the computational burden by

avoiding building Hankel-structure matrices and speeding up anti-diagonal averaging with

convolution. Synthetic examples show significant improvement in deblending and recon-

struction with the I-FMSSA deblending method when adopted by the sinc Kaiser interpo-

lation operator. In addition, the FMSSA projection operator o↵ers remarkable advantages

in computational time. For the field data example, we can fully recover the unblended

regular-grid data from the observed data. Again, we cannot precisely evaluate signal leak-

age performance due to the lack of the ground truth as a reference. This is a common

problem for all algorithms for deblending when applied to the field data.
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