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Abstract

Modern exploration seismology acquires data that depend on four spatial vari-

ables (x−y source and receivers coordinates) and time. Each recorded seismo-

gram belongs to a source-receiver pair defined by their spatial coordinates. The

distribution of source and receiver on the surface of the Earth is often irregu-

lar, however, and thus reconstruction methods are adopted to simultaneously

denoise and regularize the seismic survey. Data reconstruction is nowadays

a customary step for preconditioning exploration seismology records. Despite

the popularity of reconstruction techniques for processing exploration seismic

data, they have not become a standard processing tool for global seismological

data.

The goal of this thesis is to develop and evaluate reconstruction techniques as a

means to enhance data acquired by seismological networks. The work focuses

on Multichannel Singular Spectrum Analysis (MSSA) reconstruction and its

application to volumes of receivers functions. More precisely, reconstruction

tests applied to regional data acquired by the USArray in the Yellowstone

region enable us to explore the regional variations of seismic discontinuities

below receivers.
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Our study suggests the presence of conversions from the 410-km, 520-km, and

660-km transition zone phase boundaries in addition to a double-phase 660-km

precursor with strong negative polarity at a depth range of 580-km to 610-km.

Amassed ancient oceanic material, a subducting slab, plume remnants, partial

melt, and an increase in water content may be associated with the signals

from these mid-transition zone conversions. Altogether, results obtained in

this work reveal that multidimensional signal processing via MSSA assists data

preconditioning and their subsequent mapping for identifying mantle transition

zone interfaces.
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CHAPTER 1

Introduction

1.1 Background

1.1.1 The Earth’s mantle

The Earth’s mantle occupies a significant portion of the volume of the Earth.

This bulk of mostly solid material remains below the crust, the thin outermost

layer of the Earth, and above the hot and fluid outer core. Obtaining an

accurate model of the density and seismic velocity structure of the mantle is

crucial for grasping a more profound understanding of its past, present, and

possibly future chemical composition and dynamical processes. Of particular

interest is a subregion of the mantle denoted by sharp changes in the radial

direction in the seismic structure as a result of changes in mineralogical phases

and chemical composition (Birch, 1961; Ringwood, 1991).

Major seismic discontinuities observed globally at depths of 410 km and 660

1
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km, on average, outline this subregion named the mantle transition zone or

MTZ. Interestingly, there are some regions where discontinuities were reported

at the depths of approximately 500 km, 520 km, and 560 km Gu et al. (1998),

further subdividing the MTZ (Deuss and Woodhouse, 2001).

This subregion is characterized by a velocity gradient that is directly dependent

on temperature. This dependency can explain the lateral variability in depths

of the discontinuities (Helffrich and Bina, 1994). Ito and Katsura (1989) sug-

gests that solid-state phase transitions of olivine is largely responsible for the

temperature gradient and changes across the mantle transition zone or MTZ

hereafter (Dziewonski and Anderson, 1981; Kennett et al., 1995).

Chemical differences can also influence observations of seismic discontinuities

in the MTZ, in addition to the commonly accepted olivine phase transitions

(Ita and Stixrude, 1992). The accumulation of oceanic material subducted

under continental material is another factor that contributes to the structure

of the mantle (Gu et al., 1998). All together, variations in iron and water

content and the influences of pyroxene and garnet are attributable factors to

the seismic structure of the MTZ.

In more recent decades, researchers have conducted many seismological inves-

tigations aiming to model, interpret, and prove the regional or global existence

of these sharp boundaries along with their properties (Revenaugh and Jordan,

1991; Shearer and Masters, 1992; Shen et al., 2008; Deuss, 2009). The product

of elastic parameters, compressional vp and shear vs velocities with density

ρ, provides the impedance contrast along these seismic boundaries, which are



CHAPTER 1. INTRODUCTION 3

adequate indicators of topography, temperature and composition, and can be

a direct interpretation of MTZ images. Likewise, changes in topography and

elastic parameters along these seismic boundaries are effective indicators of

local thermal and chemical properties.

1.1.2 Receiver function analysis

The receiver function method (RFM) (Langston, 1979; Ammon et al., 1990;

Ammon, 1991; Cassidy, 1992; Gurrola et al., 1995; Ligorria and Ammon, 1999)

is an important geophysical tool commonly employed to infer seismological

observations beneath multi-component broadband stations, and it allows ob-

taining information over an extensive area in the order of a few hundred kilo-

metres without having to probe the properties of the Earth directly. This

technique has produced several complete studies of crustal (Langston, 1977;

Owens et al., 1987; Owens and Crosson, 1988; Langston, 1989) and mantle

structure (Owens, 1985; Dueker and Sheehan, 1997; Bostock, 1998; Farra and

Vinnik, 2000; Lawrence and Shearer, 2006), and subduction zones (Langston,

1981; Owens et al., 1988; Li and Yuan, 2003). The RFM consists of the process-

ing and interpretation of body waves that originate at teleseismic distances.

Even though the Earth absorbs a considerable portion of the energy produced

by an earthquake, a fraction of it is refracted by interior stratifications. The

latter is recorded at the surface of the Earth by seismic station arrays like the

USArray, J-Array, and Gräfenberg Array (Buttkus, 1986; Meltzer et al., 1999;

Morita, 1996). Figure 1.1 illustrates this process. These waveforms contain
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Figure 1.1: The approximate ray paths of the P wave and P-to-s con-
versions in a radially varying velocity structure with sharp changes
at interfaces 1 and 2. The irregular polygon in orange represents the
earthquake, and the triangle in green represents the receiver or seis-
mic station. The teleseismic event interacts with interfaces 1 and 2 to
produce the P1s, and P2s converted phases, respectively.

P-to-s converted phases, or Pds for short, where d denotes the depth to the in-

terface. In a typical seismogram, one can distinguish several phases related to

the depth of a discontinuity (Figure 1.2). Mathematically, a receiver function

is a source-equalized time series that emerges from deconvolving the vertical

from the horizontal impulse responses in the time domain, or by perform-

ing spectral division of the horizontal components by the vertical component.

Moreover, it contains amplitude and timing information relative to the first

arrival.
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Figure 1.2: (a) Conversion of the up going P-waves to s-waves at depths
d1 and d2. The P-wave particle motion is parallel to the ray path,
whereas the converted s-wave particle motion is perpendicular to the
segments of the ray path between d2-d0 and d1-d0. The receiver de-
noted by the green triangle records the P, Pd1s and Pd2s arrivals at
the surface d0. The ray samples the point where it switches polarity,
so the waveform in (b) represents the footprint or measured wavefield
approximately below the receiver. Because the ray emerges almost ver-
tically at the surface, the horizontal component of the receiver measures
the motion due to the s-wave only and some small part leaks into the
vertical component.
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1.1.3 Reconstruction of seismic data

Seismic methods adopted for exploration and global seismology use waves

recorded by arrays of receivers to image the subsurface. In seismic explo-

ration, human-made sources and arrays of receivers are optimally deployed on

the surface of the Earth to illuminate the subregion beneath them. In general,

sources and receivers cannot be deployed on regular grids due to the presence

of obstacles, logistics and regulatory constraints. In the last two decades, ap-

plied seismologists have devoted significant efforts to multidimensional signal

processing methods capable of reconstructing seismic surveys. In other words,

acquired seismic data with irregular and insufficient source and receiver po-

sitions are processed via seismic data reconstruction algorithms to produce

seismic volumes that are regularly sampled in source and receiver coordinates.

Reconstruction methods are often based on Fourier inversion techniques (Liu

and Sacchi, 2004; Xu et al., 2005; Abma and Kabir, 2006; Zwartjes and Sacchi,

2007; Trad, 2009) or rank-reduction techniques (Trickett et al., 2010; Oropeza

and Sacchi, 2011; Gao et al., 2013a; Cheng et al., 2019; Carozzi and Sac-

chi, 2019). The main goal of reconstruction techniques is to simultaneously

denoise and map seismic observations into a regular multidimensional grid.

Reconstruction methods are prevalent in seismic exploration, but they have

not received sufficient attention in global seismology yet. Global seismolo-

gists can decide on optimal coordinates of receiver stations, but they have no

control on source (earthquake) coordinates. This research investigates numer-

ical algorithms adopted by exploration seismologists and implements them for
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preconditioning receiver functions.

1.1.4 Noise attenuation

Exploration seismologists have also been active in the development of mul-

tichannel signal enhancement techniques. Rather than attenuating noise by

operating on one seismogram at the time, modern methods for seismic sig-

nal enhancement adopt multichannel signal processing where a group of seis-

mograms is simultaneously processed to enhanced its signal-to-noise ratio.

Nowadays, most common data processing algorithms exploit the coherence

of signals across spatial coordinates such as receiver-source distance (Canales,

1984; Naghizadeh, 2012) or redundancy of information after transforming the

data, for instance, via the normal moveout correction (Yilmaz, 2001). Similar

ideas have been applied successfully in global seismology. For instance, Radon

transforms originally developed in exploration seismology to isolate, and filter

reflections have been adapted for preconditioning receivers function for the

study of mantle discontinuities (An et al., 2007; Wilson and Guitton, 2007;

Gu and Sacchi, 2009; Schultz and Gu, 2013; Aharchaou and Levander, 2016)

1.2 Literature review

In the past two decades, exploration seismologists have focused on regular-

ization and denoising methods for seismic record enhancement. The enhance-

ment or preconditioning of seismic records is a necessary step before imaging
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via modern seismic migration algorithms (Trad, 2009). These algorithms re-

quire data that are sampled adequately in receiver and source coordinates.

Regularization methods have also been adopted for Amplitude Versus Offset

(AVO) and Amplitude Versus Azimuth (AVAz) compliant processing flows

(Hunt et al., 2010). Access to dense and regularly sampled data for seismic

migration and AVO inversion has been the main driver of research in the field

of seismic reconstruction. In the next sections, I provide a literature review on

data reconstruction techniques and their application to exploration and global

seismology.

1.2.1 Reconstruction methods for exploration seismol-

ogy

Currently, seismic data restoration methods in the field of exploration seismol-

ogy fall into one of the following categories:

• Transform-based methods

• Prediction error filtering techniques

• Methods based on rank-reduction techniques

• Methods that adopt principles of wave-propagation phenomena
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Transform-based reconstruction

A transform, in general, is a linear operator that permits to represent data in

a new domain. For instance, data that depends on time (t) can be represented

in the frequency (ω) domain via the Fourier transform. Similarly, the Fourier

transform can be used to map data that depends on time and space (t− x) to

the frequency wavenumber (ω − k) domain.

Numerical algorithms for data processing adopt discrete transforms such as

the Discrete Fourier Transform, the Discrete Radon Transform, or the Discrete

Curvelet Transform. These discrete transforms are used to represent a signal in

the new domain in terms of coefficients. For instance, a two-dimensional signal

in the t− x domain can be represented by Fourier coefficients in ω − k space

via the 2D Discrete Fourier Transform. The representation of a signal in a new

domain is a simple task for regularly sampled data. For irregularly sampled

data or data with missing observations, inversion techniques are required to

estimate the coefficients that represent the data in the new domain (Sacchi

et al., 1998). The estimated coefficients are utilized to synthesize data at new

spatial positions. Transform-based reconstruction methods can be grouped

into several subcategories. Below, I review the principal techniques proposed

by the seismic exploration community.

Fourier Methods

In this category of methods, the available data are mapped to the Fourier

domain via iterative inversion, and then the new data are synthesized from

the transformed domain. For instance, Sacchi et al. (1998) use the Discrete
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Fourier Transform coefficients (DFT) to estimate Fourier coefficients from ir-

regularly sampled data. The estimated Fourier coefficients via inversion are

used to synthesize regularly sampled data. Many researchers have provided

algorithms that use this principle. For instance, Zwartjes and Sacchi (2007)

proposed an inversion procedure for estimating Fourier coefficients from irreg-

ularly sampled data where the sought coefficients are sparse. The technique of

Zwartjes and Sacchi (2007) if often called Fourier Reconstruction via Sparse

Inversion (FRSI). Similarly, Liu and Sacchi (2004) propose an algorithm where

a weighted quadratic norm constrains the Fourier coefficients. The latter is

called Minimum Weighted Norm Interpolation, a method profusely adopted

for industrial applications such as prestack data reconstruction for generating

amplitude compliant AVO and AVAz gathers (Sacchi and Liu, 2005; Downton

et al., 2008; Hunt et al., 2010).

Another category of Fourier reconstruction methods is composed of iterative

algorithms that apply amplitude thresholding in the ω − k domain. An ex-

ample of the latter is Projection onto Convex Sets (POCS) reconstruction,

a technique introduced to the seismic processing community by Abma and

Kabir (2006). It is interesting to mention that earlier work on POCS recon-

struction of 2D geophysical maps is described in Menke (1991). POCS has also

been adopted beyond reconstruction by Gao et al. (2013b) and for compressive

reconstruction by Jiang et al. (2017).

Greedy algorithms have also been used to retrieve the Fourier coefficients that

describe seismic observations. For instance, the Anti leakage Fourier Trans-

form (ALFT) was proposed for multidimensional seismic data reconstruction
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by Xu et al. (2005) and Xu et al. (2010). The method has also been adopted

for 5D prestack reconstruction by Whiteside et al. (2014) and Ghaderpour

et al. (2018). Another greedy method is Matching Pursuit Fourier interpola-

tion (Ozbek et al., 2009) which has similarities to ALFT.

Radon methods

The Radon transform (Darche, 1990; Sacchi and Ulrych, 1995; Trad et al.,

2003) represents seismic observations in the tau-p domain (τ−p) where one can

perform filtering and then use an inverse tau-p transform to generate filtered

data. The Radon transform can also be used for data reconstruction (Wang

et al., 2010; Liu et al., 2013). In this case, data are first transformed to the

Radon domain via inversion, and then the Radon domain coefficients are used

to synthesize data at desired spatial positions. Radon reconstruction is con-

sidered an effective interpolation and reconstruction method for 2D datasets,

but, in general, Radon methods are rarely adopted for multidimensional spatial

reconstruction.

Curvelet Transform reconstruction

The Curvelet Transform (Candès et al., 2005) is a local directional transforma-

tion of the data in terms of coefficients that described dip (orientation), scale

(frequency content), and location. Similar to Fourier reconstruction methods,

the Curvelet domain coefficients that model seismic observations are estimated

via inversion methods. In general, sparsity-promoting inversion algorithms es-

timate the Curvelet coefficients (Herrmann and Hennenfent, 2008). Once the

coefficients are estimated, they can be used to synthesize data at regular spa-
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tial coordinates. In general, Curvelet reconstruction methods yield optimal

results when the data that one wishes to reconstruct are randomly sampled

(Herrmann et al., 2008; Hennenfent and Herrmann, 2008). Naghizadeh and

Sacchi (2010a) further improve the Curvelet transform reconstruction method

by developing an algorithm capable of reconstructing regularly data.

Prediction Error Filtering techniques

Spatial Prediction Error Filters (Canales, 1984; Abma and Claerbout, 1995)

have been proposed for random noise attenuation of seismic records. This tech-

nique assumes that seismic waveforms are predictable in the spatial domain,

and linear prediction theory is adopted to estimate filters that are capable of

modeling seismic reflections. The difference between the observed data and

the modelled data is the additive random noise. This principle was adopted

not only for noise attenuation but also for seismic data interpolation by Spitz

(1991). The original algorithm proposed by Spitz (1991) permits to reconstruct

2D data, in other words, data that depend on time and one spatial dimension.

Reconstruction methods based on Prediction Error Filtering have also been

adopted for multidimensional seismic data reconstruction (Naghizadeh and

Sacchi, 2007, 2008, 2010b).

Rank-reduction methods

The principle of reconstruction of seismic data via reduced-rank methods can

be simply stated as follows. The ideal data can be represented by matrices or
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tensors (multi-linear arrays) that are low rank. Missing data and noise will

increase the rank of these matrices or tensors in which one has embedded the

observations. Then iterative rank-reduction methods can be used to recover

the ideal and complete data. This principle is also used in the field of collab-

orative filtering for designing recommendation systems such as those used in

e-commerce to recommend movies, books, etc (Herlocker et al., 2004; Sacchi

et al., 2015).

Methods that embed seismic data on Hankel matrices and block Hankel matrices

In this category, available seismic observations are embedded into Hankel or

block Hankel matrices. Under ideal conditions, these matrices are considered

low-rank matrices. Iterative rank-reduction methods are adopted to estimate

the missing observations and to improve the overall signal-to-noise ratio of the

recorded seismic records.

This class of signal enhancement approach assumes that seismic data acquired

under ideal conditions can be embedded into low-rank matrices. These meth-

ods take advantage of the spatial coherence and predictability of seismic data,

in other words, the linear dependency of seismic observation between channels.

The goal is to find an approximation of the observed data that is of lower

rank by decomposing the data into coherent and incoherent parts (Freire and

Ulrych, 1988). After reconstruction, the output data should be comparable

to the data that one could have acquired under ideal conditions. An early

method in this category is called Eigeinimage filtering (Trickett, 2003) where

rank-reduction is directly applied to spatial two-dimensional data at a given
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frequency components. The truncated SVD is applied to reduce the rank of

the measurements at a given temporal frequency by keeping the most signifi-

cant singular values. This technique is often adopted to denoise cubes of data

in the f − x− y (frequency and two spatial variables) domain.

A similar method to the Eigenimage Filtering technique was proposed for

noise suppression and trace interpolation. This method differs in an extra

step that organizes spatial data of a fixed temporal frequency into matrices

with unique structures such as Toeplitz and Hankel matrices as a means to

improve the coherency of the signal by increasing the redundancy in the mea-

surements. This method, called Singular Spectrum Analysis (SSA) filtering

(Vautard et al., 1992; Sacchi et al., 2009), owes its origin to the study of time

series stemming from dynamical systems (Broomhead and King, 1986). The

SSA method has also been called Cadzow filtering (Cadzow, 1988; Trickett,

2008), and the Caterpillar method (Nekrutkin, 1996; Stepanov and Golyan-

dina, 2005). All these techniques are equivalent in the sense that they lead

to similar algorithms and outputs, but were developed independently from

separate fields. For instance, Cadzow filtering acts as a general framework

for enhancing signals and images, whereas the Caterpillar method arises from

the analysis of time series. Furthermore, Trickett et al. (2010) proposed a so-

called hybrid method that simultaneously employs Eigenimage and Cadzow

filtering along different spatial dimensions in an attempt to process data in all

dimensions simultaneously.

The generalization of SSA for multiple dimensions, Multichannel Singular

Spectrum analysis (MSSA) , is the method that will be used in this thesis
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for preconditioning receiver functions. The need for rank reduction algorithms

that act on several or all spatial variables at once was palpable and motivated

the series of significant advances that efficiently deal with higher dimensional

data (Oropeza and Sacchi, 2011; Gao et al., 2013a; Cheng et al., 2019; Carozzi

and Sacchi, 2019).

Methods that embed seismic data on tensors (multi-linear arrays)

This category also performs rank reduction in the f − x domain and assumes

the data can be embedded in low-rank multilinear arrays also called tensors. A

higher-order tensor represents the spatial data at a fixed temporal frequency.

Then, the higher-order singular value decomposition reduces the rank of the

higher-order tensor to suppress noise and estimate the missing observations.

Unlike methods that operate on Hankel and Block-Hankel matrices, this ap-

proach directly operates on the higher-order seismic tensor, rather than ar-

ranging the coefficients of the multidimensional spatial data in matrices with

a unique structure. Tensor algebra is an ever-evolving mathematical tool that

aims to complete missing data, and there is a significant amount of research

done in various fields such as biomedical signal processing, social network anal-

ysis and computer vision (Acar and Yener, 2009).

Tensor seismic data reconstruction assumes that the fully sampled noise-free

seismic data can be embedded in a tensor. The intention is to apply a higher-

order singular value decomposition (HOSVD) to represent the data via low-

rank tensor model. One can interpret the HOSVD decomposition as a gener-

alization of the traditional SVD of matrices applied to tensors (Kreimer and
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Sacchi, 2012). An extension or generalization of this method solves the seismic

reconstruction problem via a constrained inversion that adopts nuclear norm

regularization (Kreimer et al., 2013).

Methods that use principles of wave-propagation phenomena

Wave equation principles provide reliable algorithms for seismic data restora-

tion. The latter often employ physical models such as the Born approxi-

mation (Miranda, 2005) or Green’s theorem (Ramı́rez and Weglein, 2009).

Wave-equation principles provide a reliable way to seismic data enhancement

by assuming a linear relationship between the data and an ideal zero-offset

section (Ronen, 1987; Ramı́rez et al., 2006). Inversion methods can give an

estimate of the subsurface model from the available data, and then data at

new spatial positions can be generated via forward modelling. Wave equation

based techniques allow the use of subsurface information such as a smooth

macro-velocity model.

1.2.2 Reconstruction methods for Global Seismology data

Although there has been recent work on techniques proposed to recover seis-

mic data in the global seismology community, the number of passive-studies for

large-scale networks of arrays that deal with higher dimensional data falls short

compared with the amount research conducted by the exploration seismology

community. Nonetheless, the studies mentioned below represent continuous

efforts in paving the way towards reconstructing the wavefield recorded by
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large seismic arrays. A significant roadblock in the journey towards the recon-

struction of earthquake records stored in multidimensional arrays is that only

structurally simple data can be recovered, such as P-to-s converted waves and

reflections.

Some studies recover the wavefield beneath arrays of receivers through straight-

forward schemes such as sample-by-sample weighted stacking. For instance, Chai

et al. (2015) applies a station-centred linearly decreasing weight to equalize the

lateral sampling of receiver functions. Similarly, Neal and Pavlis (1999) and

Song et al. (2017) use Gaussian weights to compute stacks at pseudo station

locations within an arbitrary grid of receivers. Cubic spline functions are also

apt for recovering samples across space (Sheldrake et al., 2002; Zhang and

Zheng, 2014). This type of spatial smoothing wavefield recovery allows esti-

mating the response at regular points within the location of interest, but in

general, they tend to produce overly smooth results.

The Radon transform also provides a viable route for signal precondition-

ing (Wilson and Guitton, 2007; Gu and Sacchi, 2009). The Radon transform

decomposes the recorded observations into coefficients in the τ −p domain; an

inverse transform yields the interpolated teleseismic data. The Curvelet or di-

rectional wave packets transform act as flat plane waves, providing a localized

transform in the t− x domain for unwanted signal suppression by separating

phases with differing slowness and similar to the Radon transform, an in-

verse transformation recovers the desired wavefield (Yu et al., 2017). Further-

more, Ventosa and Romanowicz (2015) developed the so-called Slant-Stacklet

Transform by harnessing the power of the directional wavelet and slant-stack,
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or Radon transforms to obtain cleaner reflections from the deep interior of

the Earth. Sparse representation of signals on another domain also allows

signal restoration; for instance, Schneider et al. (2017) use a POCS algo-

rithm (Abma and Kabir, 2006) combined with the sparsity of signals in the

f − k domain to enhance weak phase arrivals. Another example is the recon-

struction of the surface wavefield proposed by Zhan et al. (2018) where they

assume that the observed signal has a sparse representation in the wavenum-

ber domain, at individual frequencies. More recently, Hu et al. (2018) present

an exploration-based method that models seismograms at different receivers

through coefficients that denote the stretching-and-squeezing in the time axis

relative to one another. In the past decade, the application of rank-reduction

methods has been on the rise given their capability for reconstructing multi-

dimensional data from large arrays. However, recent investigations have only

applied rank-reduction techniques to teleseismic data that depend on two spa-

tial dimensions, at most (Gu et al., 2015; Dokht et al., 2016; Chen et al.,

2019).

1.3 Contributions of this thesis

My thesis is concerned with geophysical signal processing and pays particular

attention to the development of a strategy to reconstruct receiver functions

and, consequently, improve the interpretability of mantle discontinuing. The

following are specific contributions to my field of study.
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• I first provide an overview of MSSA. Then I examine the application

of the MSSA method on radial P-wave receiver functions as a proof

of concept to simultaneously suppress incoherent noise and interpolate

missing seismograms. Receiver functions in the past were generally pro-

cessed on single, isolated stations, whereas spatial redundancy across a

grid of broadband receivers is the basic premise of multichannel rank re-

duction methods. MSSA based processing can exploit spatial coherency

to obtain more robust receiver functions estimates than single, isolated

receiver processing and conventional reconstruction methods employed

in the field of global seismology. I also aim to recover first order back-

azimuthal and ray parameter variations across a less-than-ideal sampled

network of receiver arrays like the USArray.

• A significant technical challenge lies in the selection of binning param-

eters required for the construction of the multidimensional arrays of re-

ceivers function that are processed via MSSA. A strategy to assemble

these multidimensional gathers is also provided in this thesis.

• Recent work on data reconstruction via rank-reduction methods in the

field of global seismology focused on common-receiver gathers (CRG) con-

taining 2D volumes of data (Dokht et al., 2016), as well as wavefield

reconstruction of a single event or common-source gather (CSG) (Chen

et al., 2019). In this thesis, I present for the first time an application of

the regularization of 3D and 5D volumes of receivers functions. To this

end, I adopted binning techniques to produce large 3D volumes of single
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station receiver functions that depend on time, distance and azimuth.

The later allows running reconstruction preserving azimuth information,

a key difference compared with the work of Dokht et al. (2016). Then,

I also introduce multiple stations and multiple sources (earthquakes) to

assemble a volume that depends on four spatial attributes and time. This

strategy gives rise to a 5D data volume similar to those generally adopted

in modern exploration seismology. To this date, no other author has pro-

posed adopting 5D reconstruction to global seismic observations, which

I affirm it is a substantial contribution as it paves the way for translating

sophisticated modern signal enhancement methods to the processing of

data acquired by seismic networks.

• Last, I stress that this thesis is mainly concerned with seismic data pro-

cessing and its applications to receiver functions. However, it is essential

to point out that the methodology developed in this work has permit-

ted to analyze USArray data in the Yellowstone region and to explore

regional variations of mantle discontinuities below receivers.

1.4 Thesis Outline

Chapter 2 begins by introducing the spatial dependency of receiver functions

and presents a new procedure to represent 3D CRGs sorted by back-azimuth

and epicentral distance as well as 5D volumes containing a grid of CRGs by

further considering the x-y coordinates of the stations. This procedure is

based on the regular sampling requirement of the MSSA method and serves



CHAPTER 1. INTRODUCTION 21

as an initial step to alleviate spatial irregularities and sparse coverage and

increase the signal-to-noise ratio of our data. This multidimensional data

representation provides an insightful way to inspect back-azimuthal and offset

variations across different stations. The designed binned spatial data geometry

has the flexibility to be adjusted to simulate large networks of arrays such as

the USArray.

Chapter 3 presents a brief overview of the more straightforward 2D case of the

SSA technique and expands the method to two spatial variables (MSSA). We

employ the truncated SVD as the rank reduction step to enhance waveforms

of P-to-S converted waves contained in 3D summary CRGs. This approach

operates on synthetic gathers with different levels of decimation and random

noise. To explore the performance on field data, we examine observations from

the USArray, which provide an approximately dense, uniform sampling of the

seismic wavefield beneath the grid of receivers located near the Yellowstone

area.

Chapter 4 expands MSSA to higher dimensions and introduces a computa-

tionally efficient rank reduction algorithm to reconstruct a collection of CRGs

simultaneously. We test the performance of the proposed recovery algorithm

on 5D synthetic and field data from the USArray in the Yellowstone area.

We implement the low-rank constraint via the randomized QR decomposition.

The suggested approach can recover a smooth version of the timing and am-

plitude of the receiver functions and is less strict on the rank selection than

the truncated SVD.
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Chapter 5 contains a summary of key results and observations obtained

throughout this research. I also identify limitations and present recommenda-

tions for future work and applications.
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Receiver functions represented as

multi-dimensional arrays

2.1 Introduction

Passive source studies commonly use the RFM for seismological imaging pur-

poses. Receiver functions are time series s(t) derived from multicomponent

receiver recordings and computed by deconvolving the horizontal components

by the vertical component to obtain an estimate of the reflectivity of the sub-

surface (Langston, 1979; Ligorria and Ammon, 1999). The amplitude and

timing of the receiver functions depend on the ray parameter of the arrival

(Gurrola et al., 1994), which is a direct consequence of the relative distance

from the receiver to the epicentre of the event. For an inhomogeneous medium,

the receiver function s(t,∆0, φ0) represents the measurements made by the sta-

tion from an event at a distance ∆0 and a back-azimuth of φ0 . To incorporate

23
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the dependency on the path structure, we redefine the receiver function as

s(t, rx0 , ry0 ,∆0, φ0) from the event at location (∆0, φ0) measured by the re-

ceiver with coordinates (rx0 , ry0) as illustrated in Fig. 2.1.

Receiver function studies typically followed station-by-station processing as

opposed to array-based processing, which can exploit the spatial redundancy

in the measured wavefield. The demand for seismic arrays around the globe

triggered an increase in broadband seismic arrays deployed in many countries,

for instance, the USArray. Relatively uniformly spaced, dense networks of

seismic arrays provide a more robust spatial sampling and are ideal for multi-

channel based processing methods, such as MSSA. Furthermore, these grids

of receivers provide useful ways to sort and store earthquake data. Gathers

can sort a collection of seismic traces or receiver functions with a geometric

attribute in common predicated on their path structure. For instance, offset,

azimuth, midpoint, conversion point, depth point and angle of incidence are

some of the many geometrical seismic attributes that provide distinct ways

to gather the data. Moreover, gathers allow seismologists to perform quality

control, frequency analysis and inspect for spatial variations within acquired

data sets.

Seismologists have used various gathers to process receiver functions. A single

station recording many events is called a common-receiver gather (CRG) (Dokht

et al., 2016), and these can be further subdivided based on the spatial prop-

erties of the source, as we will discuss in the next section. Similarly, Chen

et al. (2019) use a common-shot or common-source gather (CSG) to examine

a single event recorded on a grid of receivers. A common-conversion point
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Figure 2.1: A single source and receiver pair that demonstrates the
spatial variable dependency of receiver functions. The station with
latitude-longitude coordinates (rx0 , ry0) records the event at a distance
∆0 and a back-azimuth φ0 relative to the receiver.

gather (CCPG) is a more sophisticated sorting problem that combines traces

from multiple sources and receivers while accounting for thee geometry of the

Earth (Frassetto et al., 2010). A CCPG is analogous to a common-depth point

gather (CDPG) from reflection seismology and a reference Earth model is typ-

ically needed to assemble these types of gathers.

In the next section, we define a regularly spaced areal grid of pseudo-CRGs

that acts as a multi-channel or array-based framework in which to store and

reconstruct receiver functions.



CHAPTER 2. TENSOR REPRESENTATION OF RECEIVER FUNCTIONS26

2.2 Method

Tensors can be particularly useful to represent seismic data recorded on a grid

of receivers or stations such as the USArray. Given the receiver function’s path

structure dependencies, it is natural to represent seismic data in the station-

event domain where (rx0 , ry0) indicates the station’s location and (∆0, φ0) the

event’s location.

We further define a field data acquisition survey. Singular spectrum analysis

requires equidistant sampling in space (Sacchi et al., 2009), which motivates

the following regular grid geometry (Carozzi and Sacchi, 2019):

rx = rminx0
+ δrx(i1 − 1), i1 = 1, ..., nrx. (2.1)

ry = rminy0
+ δry(i2 − 1), i2 = 1, ..., nry. (2.2)

φ = φmin0 + δφ(i3 − 1), i3 = 1, ..., nφ. (2.3)

∆ = ∆min
0 + δ∆(i3 − 1), i4 = 1, ..., n∆. (2.4)

We define above the centres of the bins where the indices (i1, i2, i3, i4) belong

to the coordinates (rx, ry,∆, φ). The total number of stations is nrx×nry and

the total number of distances and back-azimuths are n∆ and nφ, respectively.

We assign the trace or RF with coordinates (rx0 , ry0 ,∆0, φ0) to the center of

the closest bin with coordinates (rx, ry,∆, φ). Each center is bounded and

s(t, rx0 , ry0 ,∆0, φ0) is assigned to d(t, rx, ry,∆, φ) if there exists a trace in that
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bin, otherwise a zero trace is assigned to represent the missing observation. We

avoid notation clutter by letting r0 = (rx0 , ry0), s0 = (∆0, φ0), r = (rx, ry) and

s = (∆, φ) such that s(t, rx0 , ry0 ,∆0, φ0) = s(t, r0, s0) and d(t, rx, ry,∆, φ) =

d(t, r, s).

The aforementioned method of assigning an observed trace to a regularly sam-

pled structure is often called ’binning’ in Exploration Geophysics (Onajite,

2014). The binning process is extended to deal with traces and stations popu-

lating the same center by introducing an inverse-distance weighting (IDW) to

each RF (Shepard, 1968).

d(t, r, s) =

∑Q
q=1 sq(t, r0, s0)wq(r, s)∑Q

q=1 wq(r, s)
(2.5)

such that,

∆0 ∈ [∆− δ∆,∆ + δ∆] (2.6)

φ0 ∈ [φ− δφ, φ+ δφ] (2.7)

r0 ≤ r (2.8)

where,

wq(r, s) =
1

(
∥∥r− r0q

∥∥∥∥s− s0q
∥∥)P

. (2.9)

In this formulation, Q is the total number of traces contained in the bin with

indices (i1, i2, i3, i4), r is the radius enclosing (rx, ry) and P is a positive real

number that assigns a higher weight to receiver functions closest to the bin.
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The parameter P is analogous to the degree of smoothing and the extent

to which distant observations influence the resulting stacked receiver function.

We repeat this process for adjacent overlapping bins, thereby creating a moving

average with IDW that assembles a tensor d(t, i1, i2, i3, i4) containing all the

RFs for a given set of stations, distances and back-azimuths. The process of

binning is not a necessity for synthetic data as discretization can ensure regular

sampling. However, real data benefits from this process since measurements

have continuous representation and irregular sampling in space. Additionally,

this work-flow serves the following two purposes:

(1). Increases signal coherency (SNR). Particularly useful for weak and noisy

secondary conversions as it is often the case for RFs.

(2). Decrease the number of empty sectors or missing observations from areas

with low coverage and data sets composed of a relatively small number

of events.
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(a) (b)

N N

Figure 2.3: (a) A CRG (the green triangle) containing the events (the
orange irregular polygons) sorted by common distance ∆ and variable
back-azimuth φ. (b) Common back-azimuth φ sorting with variable
offset ∆. The sources are projected onto the surface to illustrate the
sorting.

(a) (b)

i3

i2

i1
i4

i5

Figure 2.2: (a) Schematic representation of a grid of equidistant CRGs
(common-receiver gathers) represented by the receiver in green. (b)
Tensor representation of the multi-dimensional array storing the RFs.
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2.3 Discussion

In this chapter, we present an alternative approach to representing RFs that

incorporates their spatial and path structure dependencies. Their spatial fea-

tures and geometrical properties allow forming unique domains for viewing

and sorting these time series. The multi-dimensional arrays presented in this

chapter allow MSSA to reconstruct the RFs based on the signal redundancy

and coherency contained in the gathers due to the sources’ geometric patterns.

The assembly of the seismic data arrays can be tailored to mimic a particular

network of seismic arrays by varying the binning parameters. Furthermore,

this approach provides control over the degree of spatial smoothing or aver-

aging of the stacked traces, which in turn dictates the order of the preserved

seismic features.

Our binning process is straightforward. It considers a smaller region within

the whole data set and creates equally spaced pseudo-CRGs, and further sorts

them in the back-azimuth-distance space based on an IDW scheme. The bin-

ning process places equal importance on the pseudo-CRGs and further subdo-

mains, accounting for differences in the number of observations at each node.

The method presented is capable of overcoming the shortcomings inherent in

single station RF analysis and provides an explicitly multi-channel framework

in which to represent and process receiver functions.
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3D reconstruction of receiver functions

3.1 Introduction

SSA (Singular Spectrum Analysis) is a non-parametric method, and as such,

it does not rely on assumptions about the data, making it compatible with

stationary and non-stationary time series (Hassani et al., 2013). Informally,

the technique decomposes the observations into its components so they can

be classified as signal or noise and improves it by discarding the undesired

elements (Hassani et al., 2007).

Researchers across many disciplines have proved SSA fruitful time after time

as a signal processing and time series analysis tool. Vautard et al. (1992) pro-

vide a comprehensive review of the theoretical and algorithmic characteristics

of SSA for short, noisy, chaotic signals from a signal processing point of view.

Kondrashov et al. (2010) adopted SSA to fill gaps in the solar wind and inter-

planetary magnetic field data to promote model simulation and validation by

31
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providing time-continuous data sets. In medicine, Sanei et al. (2011) propose

an adaptive SSA technique to distinguish heart sound from murmur, which is

a result of various heart abnormalities. More recently, the fields of economics

and finance have also investigated its potential in multiple areas (Hassani and

Thomakos, 2010). Thomakos et al. (2002) decompose modelled futures volatil-

ity series to capture the market trends and periodicities to aid in options

pricing and risk management. Hassani et al. (2010) investigate the impact of

noise attenuation in financial series and its effect on the measures of linear

and nonlinear dependencies of financial data. Leles et al. (2018) propose

two separate versions of singular spectrum analysis to design a trend-following

trading scheme. Lahmiri (2018) uses SSA in conjunction with support vector

regression and particle swarm optimization for intraday stock price prediction.

Strictly speaking, SSA acts on a single channel or variable and deals with

time series that vary with time. However, in the context of seismology, SSA

operates on data sets with two dimensions, the second being some coordinate

in space. We assume that the underlying signal also varies in space, allowing

for a frequency by frequency application of SSA along with the various mea-

surements in space. Hence, the rank reduction of 2D data sets needs a 1D

approach. More specifically, the treatment of 2D seismic data is termed SSA

because it acts on a single spatial variable.

In this chapter, we extend the attenuation of noise that is dissimilar from trace

to trace and the recovery of laterally continuous signals from two-dimensional

seismic records and three-dimensional records. Given that SSA works on a sin-

gle frequency at once, this requires a two-dimensional MSSA (Multi-channel
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Singular Spectrum Analysis), which acts on two independent spatial coordi-

nates simultaneously. Read (1993) first developed the treatment multi-variate

or multi-channel analysis by forming a frequency-dependent trajectory matrix

containing information from all channels. The expansion to multiple dimen-

sions has a significant improvement in the quality of the recovered data.

There are four steps in the reconstruction workflow presented in this chapter.

The first step forms a Hankel-structure trajectory matrix composed of lagged

vectors from the entries of a given temporal frequency. Next, the assembled

matrix undergoes factorization using the SVD. The decomposed matrix is

then rank-reduced by discarding singular values past a specified threshold. As

the last step, anti-diagonal averaging of the rank-reduced matrix recovers the

seismic signal.

This chapter presents the basic theory behind SSA, focusing on its application

for reconstructing receiver functions. We begin by introducing a simple case

where the data depend on two variables (one temporal and one spatial vari-

able). Then we followed with the more general instance with the addition of a

second spatial variable and thus, expanding to multi-variate or multi-channel

SSA (MSSA). This work quantifies the results of this approach on 3D synthetic

data using the quality of reconstruction factor. We evaluate its performance

on real 3D data by filling gaps in the records and robustly enhancing mantle

transition zone conversions.
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3.2 Theory

3.2.1 2D Singular Spectrum Analysis (SSA) denoising

We begin our discussion of Singular Spectrum Analysis (SSA) by introducing

the signal model as a function of a single spatial variable. Traditionally, SSA is

considered a non-parameter approach because it was designed independently

of any particular signal model. However, we will show that SSA is particularly

tailored to analyze signals that are composed of a superposition of complex

exponentials. We first propose to analyze data, more specifically, a window of

data, that is composed of a unique linear event or a waveform with constant

dip or ray parameter p in the t− x domain. Such a signal can be represented

in t − x as d(t, x) = w(t − px, ) where w(t) is the source function or wavelet.

This simple signal can be mapped to the f − x domain by taking the Fourier

transform.

d(t, x) = w(t− px)⇔ D(ω, x) = W (ω)e−i ωpx , (3.1)

where W (ω) denotes the Fourier transform of w(t). For a series of nx equally

spaced traces, the discrete spatial variable becomes xn = (n − 1)∆x, n =

1 . . . nx where ∆x is the distance between adjacent receivers. We could re-

write equation 3.1 as follows,
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Dn(ω) = W (ω) e−i ω(n−1)p∆x, n = 1, 2, ..., nx . (3.2)

It clear from equation 3.2 that the seismic signal can be reprersented via a

complex exponential in f−x space. To avoid notational clutter, we can ignore

the dependency on ω but bear in mind that the described process must be

carried out for all components in the seismic frequency band ω ∈ [ωmin, ωmax].

After simplifying the notation we express equation 3.2 via

Dn = Ae−i αn n = 1, 2, ..., nx , (3.3)

were A = Wei ωp∆x and α = ωp∆x. It is easy to show that last expression can

be written in a recursive form

Dn = aDn−1 (3.4)

where a is a complex coefficient. We define the vector of observations via the

following D = (D1, D2, D3, . . . , Dnx)
T and the Hankel or Trajectory matrix

associated to it (Sacchi et al., 2009)
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H = H(D) =



D1 D2 D3 . . . Dlx

D2 D3 D4 . . . Dlx+1

D3 D4 D5 . . . Dlx+1

...
...

...
. . .

...

Dmx Dmx+1 Dmx+2 . . . Dnx

 (3.5)

We call the operator H(·), the Hankelization operator. The Hankel matrix is

a particular structure in which each anti-diagonal is constant. One can also

define an operator that maps back the Hankel matrix H into the data and we

will call this operator the anti-diagional averaging operator A which

A(H) = D (3.6)

= (D1, D2, D3, · · · , Dnx)
T . (3.7)

The size of H is (mx × lx) and is chosen such that mx =
⌊
nx
2

⌋
+ 1 and

lx = nx − mx + 1. With this selection of mx and lx, H is a square or

almost square matrix and mx ≤ nx. As demonstrated, for consecutive spatial

measurements, the recursive relation Dn = aDn−1 naturally models our signal.

One can now express the columns of H as linear combinations of each other.

By using equation 3.4, it is easy to show that the Hankel matrix is given by
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H =



D1 aD1 a2D1 . . . alx−1D1

D2 aD2 a2D2 . . . alx−1D2

...
...

...
. . .

...

Dmx aDmx a2Dmx . . . alx−1Dmx


. (3.8)

It is clear from the above expression that equation 3.8 is a rank-one matrix

(rank(H) = 1). One can prove that for data that consist of k dips, rank(H) =

k. It is worth noting when noise or missing observation corrupt the data, the

rank of the Hankel matrix increases. Therefore, one can use rank reduction

methods as means of noise attenuation and signal reconstruction.

The truncated Singular Value Decomposition (SVD) (Andrews and Patterson,

1975; Golub and Van Loan, 1996) can be used to find the low-rank approxima-

tion of the trajectory matrix in equation 3.5 (Eckart and Young, 1936; Hansen,

1987). The SVD decomposition of the matrix H, which can approximate any

matrix by one of lower rank, is given by

H = UΣU† (3.9)

where U and V are unitary matrices and Σ is a diagonal matrix. The symbol

† indicates the conjugate transpose. The size of the matrix U is (mx × lx)

whereas the size of the matrix V is (lx × lx). The matrix Σ is the (lx × lx)

diagonal matrix of singular values sorted in descending order σ1 ≥ σ2 ≥ σ3 ≥

. . . σlx. The columns of the matrices U and V are the eigenvectors of outer

HH† and inner H†H products, respectively. Similarly, the singular vectors σi
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are related to the eigenvalues λi of HH† and H†H via σ2
i = λi. The Eckart

and Young theorem (Eckart and Young, 1936) states that the matrix of rank

k, Hk that minimize ‖H−Hk‖F is given by 1

Hk =R(H)

= UkΣkVk
† , (3.10)

where Uk and Vk are matrices with the first k columns of U and V, respec-

tively. Similarly, Σk is the (k× k) diagonal matrix with the largest k singular

values of Σ. The operator R(·) is a compact notation for rank reduction that

will become useful in the development of the SSA filter. The SVD approxima-

tion can also be written as follows:

Hk =R(H)

=
k∑

n=1

σnunvn
† (3.11)

which clearly shows that Hk can be written as the superposition of rank-one

matrices of the form ukv
†
k. This method is compelling for noise suppression

since most of the coherent energy tends to map into the first few eigenimages

allowing for the separation of signal from incoherent noise. Moreover, this

procedure is equivalent to eigenimage filtering when the matrix to be rank-

reduced is not a trajectory matrix but rather a frequency slice in the f −x−y
1‖ · ‖F denotes the Frobenius norm of a matrix.
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domain (Trickett, 2003).

After obtaining the approximation of rank k, Hk, the denoised data is syn-

thesized by averaging across the anti-diagonals of Hk via the operator A(·)

(Oropeza and Sacchi, 2011). We recall that we have designated R(·) the rank-

reduction operator, H(·) the Hankelization operartor then SSA filter can be

expressed via the following expression

D̂ = A (R (H (D))) , (3.12)

where D̂ is the denoised data via SSA .

We can summarized SSA denosing as follows:

Transform to frequency domain d(t, x)→ D(ω, x)

For each frequency ω

Form spatial data vector D = (D(ω, 1), D(ω, 2) . . . , D(ω, nx))T

Form Hankel matrix H = H(D)

Apply rank reduction Hk = R(H)

Antidiagonal averaging D̂ = A(Hk)

End ω loop

Transform back to time D̂(ω, x)→ d̂(t, x)
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3.2.2 3D Multichannel Singular Spectrum Analysis (MSSA)

denoising

We now adapt our analysis to data that depend on a temporal variable and

two spatial variables; this implies that we extend SSA to MSSA. The temporal

window can be mapped to the frequency domain d(t, x1, x2) ↔ D(ω, x1, x2).

We consider the analysis for one frequency ω and ignore dependency on fre-

quency to simplify notation. If x1n = (n − 1)∆x1, n = 1, . . . nx1 and x2n =

(n− 1)∆x2, n = 1, . . . nx2. Then we can form a level-one Hankel matrix from

every component of the first dimension

H
(1)
n2 =



D1,n2 D2,n2 . . . Dlx1,n2

D2,n2 D3,n2 . . . Dlx1+1,n2

...
...

. . .
...

Dmx1,n2 Dmx1+1,2 . . . Dnx1,n2


(3.13)

Note that matrices in equation 3.13 are embedded in a level-two or block

Hankel matrix, where each entry is a level-one Hankel matrix (Oropeza and

Sacchi, 2011),

H(2) =



H
(1)
1 H

(1)
2 . . . H

(1)
lx2

H
(1)
2 H

(1)
3 . . . H

(1)
lx2+1

...
...

. . .
...

H
(1)
mx2 H

(1)
mx2+1 . . . H

(1)
nx2


(3.14)
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H(2) is of size (mx1mx2× lx1 lx2), where mxi =
⌊
nxi
2

⌋
+ 1, lxi = nxi−mxi+ 1

and i = 1, 2. MSSA is equivalent to SSA but, rather than operating on

Hankel matrices, now the rank-reduction is applied to a block Hankel matrix.

Similarly, we have to replace the antidiagonal averaging operator by the block

antidiagonal averaging operator. Again, we filter the data via truncated SVD

to compute H
(2)
k and express the filtering process as

D̂ = A (R (H (D))) , (3.15)

where now D and D̂ are data matrices for a single frequency ω. It is worth

noting that the filtering operatorR(·) heavily depends on the application of an

SVD, which can be slow and even infeasible for exceedingly large data sets. As

an alternative, one can adopt a randomized singular value decomposition (R-

SVD) to accelerate the algorithm (Liberty et al., 2007a; Rokhlin et al., 2009).

We refer interested readers to Appendix A in (Oropeza and Sacchi, 2011). The

following section introduces a new algorithm to alleviate the computational

cost, which is necessary since the Hankel matrix to be rank-reduced can grow

very large, very fast.

3.2.3 Data reconstruction with a reinsertion algorithm

The acquisition of earthquake data consists of measuring the displacement

of the ground generated by the propagating wavefield beneath — receivers

placed at discrete intervals on the surface of the Earth record the ground

motion. Due to land, logistical and economic challenges, unavoidably, there
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will be some irregularity on the receiver spacing. Consequently, there will

be gaps in the data from irregular sampling. Missing observations arising

from less-than-ideal acquisition conditions will also increase the rank of the

matrix to be rank-reduced. Abma and Kabir (2006) proposed an algorithm

to regularize the irregular sampled data. Their method consists of iteratively

applying a threshold in the Fourier domain and replacing the recovered data in

the original observations to recover the amplitudes of the missing records. We

adopt an iterative algorithm presented in (Oropeza and Sacchi, 2011) rather

than thresholding the frequency spectrum, we find a low-rank approximation

using MSSA. The filtering and interpolation steps apply the MSSA operator

to carry out both processes simultaneously

D0 = Dobs

Dν = αDobs + (1− αS) ◦ F(Dν−1), ν = 1, 2, ..., niter

(3.16)

where F(·) = ARH(·) is the synthesis of the SSA or MSSA filter and where

Dobs is athe array representing the observed data. The symbol ◦ is element-

wise product. The sampling operator S(·) S, which has a value of 1 where a

measurement exists and 0 otherwise. The scalar α is the reinsertion weight

and is related to the noise level. It represents the extent to which we honour

the data. The symbol 1 is an array of ones the same size as the observed data.
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3.3 Results

In this section, we evaluate the performance of 3D reconstruction on several

theoretical and field data sets containing P-to-s receiver functions from MTZ

conversions. The MSSA operator F(·) works on nω = 72 frequency slices,

where ω ∈ [0.01, 0.36]Hz in each run for a total of niter = 150 iterations by

performing the truncated SVD. We adopt a reinsertion weight of α = 0.4 to

honour the original observations robustly.

3.3.1 Synthetic data

We generate synthetic P-to-s receiver functions from MTZ conversions using

a matrix propagator approach (Dokht et al., 2016) for a homogeneous Earth

with a 1D velocity structure (Dziewonski and Anderson, 1981). The generated

data simulates three approximately linear events in the t − ∆ − φ domain

corresponding to the P220s, P410s and P660s phases, epicentral distances

∆ ∈ [45, 90]◦ and a frequency band of ω ∈ [0.1, 1.5]Hz. The temporal length

of the window is 65s with a sampling interval of 0.1s. Lastly, we determine

their theoretically optimal rank by quantifying the reconstruction quality of

the output data in decibels (dB) as

Q(dB) =
‖d(t, r, s)‖2

2

‖d(t, r, s)− d̂(t, r, s)‖2
2

(3.17)
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where d(t, r, s) and d̂(t, r, s) represent the ideal and recovered data, respec-

tively. With the choice of where nt = 651, n∆ = 46 and nφ = 8, we construct a

3D CRG by repeating the synthetic matrix d(t,∆) along the additional spatial

variable φ for a set of eight evenly spaced back-azimuth sectors φ ∈ [45, 360]◦

to create d(t,∆, φ). Consequently, the noise-free, complete and ideally sam-

pled data (Qin = ∞) in Fig. 3.1a is of size (nt × n∆ × nφ). The size of the

block Hankel matrices for this example is (92 × 120). The panels are identi-

cal before decimation since we assume an azimuthally invariant 1D structure.

This assumption will be sufficient to illustrate the capabilities of the suggested

method.

Our procedure uses the sampling operator S(·) to randomly remove receiver

functions from the volume. Also, we populate the data with random levels of

incoherent noise to mimic gaps in data acquisition observed in the field. The

previous step generates two input data sets. The first is 70% empty and has

an SNR of 0.5, resulting in an input quality of Qin = −1.1dB in Fig. 3.1b.

Similarly, the second volume is 50% empty and has an SNR of 2.0, which

corresponds to an input quality of Qin = 1.1dB in Fig. 3.1d. The recovered

data sets show output quality factors of Qout = 6.60dB and Qout = 8.80dB,

respectively (Figs 3.2c and e). Our algorithm effectively recovers the coher-

ent secondary conversions, multiples and reverberations while attenuating the

noise.

We achieve maximal recovery using a rank of k = 4 for the first data set,

whereas k = 5 is required to sufficiently recover the second data set (see

Figs 3.2d and e). The ranks underscore the importance of the most significant
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singular values in data recovery. Equally important, we observe a sharp in-

crease in quality when preserving the first eigenvalues since they contain most

of the coherent signal. In contrast, a systematic decrease occurs at higher

ranks due to the overfitting of the noise.

3.3.2 Field data

In this section, we explore the effectiveness of 3D recovery on recordings from

the USArray and map the seismic structure of the mantle transition zone

beneath the receivers in the Yellowstone area. Despite the efforts in acquisition

design, the sources and receivers still follow a non-ideal distribution. More

precisely, although the USArray is programmed to follow a dense network of

seismographs, its actual deployments introduce irregularities. Furthermore,

there is no control over the timing and distribution of the sources relative to

the array; this challenge further translates to incomplete measurements.

We restrict the investigation to events with ray parameters between 0.08s/rad

and 0.04s/rad, which are typical of teleseismic events and are ideal for RF

studies (Gurrola et al., 1994). First, to implement MSSA, we must ensure

regular sampling of the input data. We bin the data following the geometry

described by equations 2.1 to 2.4 and use equation 2.5 to construct the seismic

volumes by stacking all the receiver functions populating a given bin. Hence,

all the observations that satisfy equations 2.6 to 2.8. We then adopt the inverse

distance weighting (IDW) stacking approach from equation 2.9 with a distance-

dependent smoothing weight of P = 1. Like in the synthetic examples, the
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sampling operator S(·) quantifies the degree of sparseness in the data after

binning.

We apply some quality control on the data as an initial step and prepro-

cess the data by applying a band-pass filter with corner frequencies fc =

[0.01, 0.03, 0.33, 0.36]Hz due to a decrease in recovery performance for higher

frequencies. The procedure employs reconstruction parameters of alpha = 0.4,

niter = 150, ω ∈ [0.01, 0.36]Hz, nω = 72 and a value of k = 10 is chosen to

follow the strategy of k ≈ 2(ktrue) (Sacchi et al., 2009).

We test the reconstruction algorithm on three separate data sets. To do so,

we build summary stations, or common-receiver gathers d(t,∆, φ) sorted by

epicentral distance and back-azimuth. Then, we construct the summary sta-

tions from 72, 84 and 85 individual stations containing a total of 3950, 4743

and 3961 receiver functions originally. The binning parameters are as follows:

• Summary station latitude-longitude coordinates:

. ri1 = (−110.5, 43.5 + i1 − 1)◦, i1 = 1, 2, 3 and r = 2◦

• Epicentral distance sectors for each summary station:

. ∆i2 ∈ [∆min
0 − (2− i2)δ∆,∆min

0 + (i2)δ∆], ∆min
0 = 31◦, δ∆ = 1◦ and

i2 = 1, ..., n∆ = 59

• Back-azimuth sectors for each summary station:

. φi3 ∈ [φmin0 − (2 − i3)δφ, φmin0 + (i3)δφ], φmin0 = 45◦, δφ = 45◦ and

i3 = 1, ..., nφ = 8
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After regularizing the spatial distribution, we obtain three evenly spaced vol-

umes with spatial dimensions of (nt × n∆× nφ) with nt = 651, n∆ = 59 and

nφ = 8 and corresponding Hankel matrices of size (120 × 150). The gathers

store a total of 393, 401 and 392 receiver functions and are equivalent to 17%,

15% and 17% decimation, respectively. Fig. 3.3 shows the initial positions of

the stations from the USArray and the new position of their corresponding

summary station.

The MSSA filter parameter is k = 10 as it captures most of the information.

Small rank k leads to very harsh denoising, which produces unrealistic solu-

tions. On the other hand, larger values return noisier reconstructions. There

are no easily identifiable phases in the input stacks with panels φ = 45◦ and

φ = 225◦ due to the high levels of noise and zero traces (See Fig. 3.4), their

corresponding time-to-depth converted representations and stacked summary

trace in Fig. 3.5 and Fig. 3.4, respectively. In addition to the successful predic-

tion of the arrival times and amplitudes of the interpolated receiver functions,

the proposed method preserves the P410s, P520s and P660s phases. We also

identify a robust negative polarity double phase preceding the P660s discon-

tinuity.

3.4 Conclusion

In this chapter, we began by introducing singular spectrum analysis as a signal

processing and time series analysis tool to enhance data by separating it into

its constituents. We mentioned various applications of SSA reported in the
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literature from many different fields and introduced it in the context of seismic

data reconstruction. The development of SSA capable of handling two spatial

variables was also covered, which was called MSSA. For this, a Hankeliza-

tion operator arranges the elements of given monochromatic frequency into a

level-2 Block Hankel matrix. Subsequently, a rank reduction and anti-diagonal

operator act on the trajectory matrix to return an enhanced estimate of the

seismic records. The POCS based reinsertion algorithm simultaneously filters

and interpolates the receiver functions to estimate the amplitude of the recov-

ered traces. We tested MSSA on corrupted synthetic seismograms containing

theoretical conversions from the MTZ. We quantified the results by computing

the reconstruction quality in dB. This chapter also includes several examples

of 3D field data reconstruction and mapped the seismic structure below the

pseudo-CRGs. The results presented in this chapter suggest that MSSA is an

essential processing step to robustly enhance secondary conversions and fill

gaps in the seismic records from irregularities in the acquisition step.
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(a)

(b)

(c)

(d)

(e)

Figure 3.1: Interpolation and denoising of synthetic 3D volumes com-
posed of radial P receiver functions generated from a 1D velocity model.
The x-axis and y-axis represent the theoretical back-azimuth sector of
the events and the arrival time from P, respectively. The line at the
top of each sector indicates the increasing epicentral distance. (a) Ideal
synthetic volume representing three discontinuities. (b) The ideal syn-
thetics after randomly removing 70% of the traces and an SNR of 0.5.
(c) The recovered data from (b) after keeping the four largest eigenval-
ues. (d) The synthetics from (a) with an SNR of 2.0 and keeping 50%
of the traces. (e) The output from (d) after keeping the largest five
singular values.
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: Data for a fixed back-azimuth sector corresponding to φ =
180◦ of the synthetics in Fig. 3.1, and the reconstruction quality for
simulation with varying rank. (a,d) The input from Figs 3.1b and d.
(b,e) The output from Figs 3.1c and e. The traces with peak amplitudes
in both graphs are the original traces; the amplitudes of the missing
traces increase with each reinsertion. (c,f) Keeping the four and five
largest eigenvalues yields the highest quality of reconstruction for the
synthetics in Figs 3.1b and d, respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.3: Selected stations survey acquisition geometry and statistics
for 3D MSSA examples. (a,d,g) Summary stations with the center of
the search radius being the new latitude and longitude station coor-
dinates and equation (blue circles) 2.5 forms the summary common-
receiver gather with a stacking weight of P = 1/r. The individual
stations (in black) in their original location. (b,e,h) Back-azimuth dis-
tribution of the events illustrated using a linear scale with most events
originating from the interval 0◦−180◦. (c,f,i) Epicentral distance distri-
bution for the events data set used to build a given summary station.
The vertical axis represents the count. Although the distribution is
approximately uniform, the count peaks for ∆ > 70◦, which may con-
tribute to the high levels of noise in the raw receiver functions.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.4: Receiver function enhancement examples for the stations
in Fig. 3.3 using equation 3.15. (a,c,e) The observed 3D data volume
after binning along back-azimuth and epicentral distance prior to reg-
ularization. The first and fifth panels φ = 45◦ and φ = 225◦ show no
distinguishable phases due to the high levels of incoherent noise and
missing traces. (b,d,f) The filtered and interpolated data using the 3D
proposed reinsertion algorithm implemented via the truncated SVD.
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(a) (b)

(c)

(d)

(g)

(e)

(h)

(i)

(f)

Figure 3.5: The time converted volumes for Fig. 3.4 and their corre-
sponding stacked summary traces. (a,d,g) The output volumes after
3D MSSA in the depth domain with discontinuities located underneath
the receivers. (b,e,h) The corresponding raw summary traces. (c,f,i)
The summary traces after the recovery algorithm with discontinuity
depths marked by the dark dashed-lines.



CHAPTER 4

5D reconstruction of receiver functions

4.1 Introduction

This chapter focuses on the generalization of SSA to the reconstruction of

RFs arranged in a 5D tensor. The recovery algorithm acts on four spatial

dimensions for all frequencies, and as such, it is considered a 4D MSSA. The

previous chapter introduced the concept of denoising and interpolating 3D

pseudo-CRGs containing RFs simultaneously. We capture offset and back-

azimuth dependent features by representing earthquake records as 3D gathers.

This type of representation is more familiar to the human mind as it is easy

to visualize. However, it is also possible to process seismic data represented

in 5D volumes by incorporating the x-y position of the receiver. To illustrate,

we briefly present a link between seismic data dimensionality and singular

spectrum analysis.

A 1D signal or a single receiver function will only vary with time since we

54
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do not consider its spatial dependence. Consequently, SSA acts in the time

domain by forming a trajectory matrix containing time samples. A 2D gather

depending on time and a single space coordinate can also be enhanced using

1D SSA, but this process is carried out in the f − x domain by reorganizing

spatial samples into a Hankel matrix. This treatment relies on the assumption

that the signal model is predictable in space. Examples of 2D records are

CSGs and CRGs that consider only one coordinate of the receivers or the

sources, respectively. As we saw in the previous chapter, a 3D gather contains

a second spatial variable and time. 2D MSSA is capable of enhancing these

records in the f − xy domain by forming level-2 block Hankel matrices for

each frequency. In chapter 2, we show that A 5D volume can represent events

recorded on a grid or network or receivers. MSSA can analyze the information

contained in all dimensions following the same steps described in Chapter

3. The reconstruction algorithm is identical regardless of the dimensionality

of the seismic data, and the addition of more information may improve the

results. However, the computational cost is much more substantial as the size

of the trajectory matrix grows at a rapid pace with every added dimension.

Consequently, this implies more memory to store the Level-four block Hankel

matrix and higher computation power to perform rank-reduction using the

SVD (Golub and Van Loan, 1996).

Many authors have examined rank reduction based reconstruction algorithms

that attempt to alleviate the computational cost that comes with operating on

higher-dimensional seismic data sets. For instance, Trickett (2003) suggests

Lanczos bidiagonalization as a lower-cost alternative for decomposing the ma-
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trices to be rank reduced and a hybrid between SVD and Lanczos as a more

accurate approach. Furthermore, Gao et al. (2013a) present a method to de-

crease the computational demand of this decomposition by implementing fast

matrix-vector multiplications using the fast Fourier transform. Other tech-

niques involve a randomization stage in the MSSA algorithm. Oropeza and

Sacchi (2011) randomize the SVD (R-SVD) to speed up the reconstruction

by operating on a smaller randomized version of the trajectory matrix (Lib-

erty et al., 2007b; Rokhlin et al., 2009). More recently, Cheng et al. (2019)

implement a randomized version of pivoted QR factorization (RQRD) in con-

junction with the fast matrix-vector multiplication method discussed by Gao

et al. (2013a) to avoid explicitly building trajectory matrices and mitigate the

computational complexity.

This chapter focuses on the generalization and adaptation of SSA to the recon-

struction of earthquake data arranged in a 5D tensor. The computationally

efficient recovery algorithm acts on four spatial dimensions for all frequencies,

and as such, it is considered a 4D fast MSSA (FMSSA). We present synthetic

and field data examples from the USArray that illustrate the ability of the

algorithm to distinguish periodic from incoherent events, increase SNR and

interpolate gaps in 5D receiver function records.
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4.2 Theory

4.2.1 5D MSSA

We propose to adapt fast multi-channel singular spectrum analysis (FMSSA)

to deliver a fast and memory-efficient version of MSSA (Cheng et al., 2019).

This approach implements an economic decomposition through dimensionality

reduction via random projections and exploits the structure of Hankel matrices

to avoid explicitly constructing them without jeopardizing accuracy. Although

the approach is intended for data that depend on four regularly sampled spatial

variables D(ω, x1, x2, x3, x4) where xini
= (ni − 1)∆xi with ni = 1, ..., nxi and

i = 1, 2, 3, 4, we chose to provide a comprehensive and intuitive explanation

of the method by illustrating with the simplest case, namely FSSA knowing

that it can be generalized to 5D FMSSA without complications. We drop the

dependency on ω and perform the procedure over all the frequencies in the

signal.

We implement the randomized QR decomposition (RQRD) as an alternative

to the SVD in the rank-reduction step to the level-one Hankel matrix from

equation 3.8 (Halko et al., 2011; Chiron et al., 2014; Cheng and Sacchi, 2016).

As a first step, we reduce the dimensionality of the problem by performing a

random projection on the Hankel matrix

G = HΨ (4.1)
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We recall that traditional SSA requires forming and storing the Hankel struc-

tured (mx×lx) matrix H, where lx ≤ mx. In contrast, the proposed algorithm

in this section avoids that step. Here, Ψ is a matrix of size (lx × κ) which

handles κ random linearly independent vectors and where κ ≤ mx. Thus, the

shrunk random projection has a size of (mx × κ). This technique transforms

the data into a lower-dimensional space representation while maximizing the

variance in the data. What is more, O’Leary and Simmons (1981), and Gao

et al. (2013a) show that one can find an equivalent Toeplitz matrix represen-

tation of the data, embed it into a level-one circulant matrix and then apply

an FFT to get the columns of 4.1. Although their algorithm works on Toeplitz

matrices, both forms are tightly related, and one can go back and forth from

both by reversing the order of their rows or columns. This simple transforma-

tion makes the proposed workflow plausible for Hankel matrices too and leads

to the fast Toeplitz matrix-vector multiplication step, which is key in avoiding

the construction of Hankel matrices

gi = Hψi = Tγi, i = 1, ..., κ. (4.2)

Where gi and ψi denote the the ith columns of G and Ψ, respectively. In

parallel, reversing the order of G and ψi yields T and γi. Consequently, T

is a level-one Toeplitz matrix. The next step entails the multiplication of a

(cx× cx) circulant matrix C defined below and an augmented vector padded
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with zeros. Sacchi and Porsani (1999) demonstrates that an FFT efficiently

computes this product.

ĝi = Cγ̂i ≡ IFFT (FFT (ĉ) ◦ FFT (γ̂i)), i = 1, ..., κ. (4.3)

Where IFFT (·) and FFT (·) indicate the fast Fourier transform operator and

its inverse, ĉ is the first column of C, ◦ indicates element-wise multiplication

and γ̂i is ψi reversed and zero-padded to length cx, where cx = 2J , J ∈ Z

ĉ = (Dlx, ..., Dcx, D1, D2, ..., Dlx−1)T (4.4)

Finally, we retrieve the columns of the smaller matrix G by extraction of the

first mx elements of ĝi. We emphasize the fact that the computation requires

forming neither the Hankel nor the circulant matrix; we only need to save ĉ.

The complexity of the computation of the circulant matrix and augmented

vectors products are in the order of O(cx log2 cx) (Chan et al., 2007).

Once we have systematically reduced the size of our complex-valued trajectory

matrix, we perform a more economical yet accurate factorization of such. The

factorization involves the product of a unitary matrix Q, meaning that Q†Q =

I, with I being the identity matrix, and a right triangular matrix R

G = QR (4.5)

Cheng and Sacchi (2016) show that performing rank-reduction on a matrix



CHAPTER 4. 5D RECONSTRUCTION OF RECEIVER FUNCTIONS 60

via RQRD is about ten times faster in computation time than TSVD. Corre-

spondingly, the computational complexity of the full and truncated SVD would

require an order of O(lx2mx) and O(k2mx) operations, respectively (Golub

and Van Loan, 1996). The following expression gives an estimate of the tra-

jectory matrix as a projection onto its k rank-reduced orthonormalized basis

Q with dimensions (mx× κ).

Hk = Q(Q†H) (4.6)

The parameter κ is considered to be a relaxation of the desired rank k of the

data. In general, RQRD can not ensure that the approximation is of rank

k since the random projection step does not constrain the rank as strongly

as the SVD, given that the SVD is the optimal solution in the least-squares

sense, which results in unattenuated noise evenly spread across the spectrum.

Put differently, we treat κ as a random subset of the desired rank k, and this

is crucial in achieving better reconstruction for real data. We know very little

information about the rank of the field data acquired, and as a consequence,

the rank k of such is rarely a priori in geophysical problems. Furthermore,

there is unusually a clear cut separation of signal and noise in the singular

value spectra.

The last step in the algorithm requires recovering the estimated data at a

given frequency. In traditional SSA, this step entails summing along the anti-

diagonals of Hk from equation 3.10 and then multiplying each sum by a given

weight to obtain a given entry in D̂(x). The weights are calculated in ad-
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vance directly from the size of the data. Hence, this is an averaging step of

each anti-diagonal proportional to its length denoted by the operator A(·) in

equation 3.12,

D̂ = w ◦ (σ1(u1 ∗ v†1) + ...+ σk(uk ∗ v†k)) (4.7)

In this formulation, w are the weights and ∗ means convolution. The overall

cost of the process in equation 4.7 requiresO(nx) multiplications andO(lxmx)

sums (Korobeynikov, 2009). However, the FFT efficiently computes the con-

volution, reducing the cost to O(nx log2(k)).

Cheng et al. (2019) adopt the previously mentioned step to RQRD

D̂ = w ◦ ((q1 ∗ t1) + ...+ (qκ ∗ tκ)) (4.8)

ti = q†iH belong to the ith row of the rank-reduced orthonormalized basis Q

from equiation 4.5. As we saw in equation 4.3, this is computed via fast matrix-

vector multiplication. Thus, completely bypassing the implicit construction of

any Hankel matrices in the SSA algorithm.

When handling 5D data, the 4D FFT replaces the 1D FFT in the matrix-vector

products and anti-diagonal averaging steps of the rank-reduction algorithm.

Level-One matrices with special structures such as Toeplitz, Hankel and cir-

culant, are replaced by their multi-level block matrix equivalence.
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4.2.2 Interpolation with a reinsertion algorithm

As discussed previously in Chapter 3, the less-than-ideal acquisition geometry

creates sparse or incomplete matrices arising form missing observations, which

in turn increases the rank of the trajectory matrix. We use the iterative

algorithm described in 3.16 to recover the timing and amplitude of the missing

records. All the parameters are kept constant, with the only difference being

the rank-reduction operator F(·). In the case of 3D data, the operator employs

the SVD as a means to reduce the Hankel matrix, whereas, for 5D data, it

uses the RQRD technique described by equation 4.5.

4.3 Results

4.3.1 Synthetic data

Like in Chapter 3, in this section, we evaluate the performance of the proposed

5D reconstruction algorithm on several theoretical data sets containing P-to-

s receiver functions from MTZ conversions produced using the same matrix

propagator approach (Dokht et al., 2016). Again, the generated synthetic

events originate from a homogeneous Earth with a depth varying velocity

structure (Dziewonski and Anderson, 1981), epicentral distances ∆ ∈ [45, 90]◦

and a frequency band of ω ∈ [0.1, 1.5]Hz. The temporal length of the window

is 65s with a sampling interval of 0.1s. The generated numerical receiver

functions contain three approximately linear events in the t −∆ − φ domain
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corresponding to the 220-km, 410-km and 660-km interfaces.

The rank reduction operator F(·) works on nω = 72 frequency slices, where

ω ∈ [0.01, 0.36]Hz in each run for a total of niter = 150 iterations by using the

RQRD technique. We keep the same reinsertion weight of α = 0.4 to honour

the original observations robustly. Lastly, we determine their theoretically

optimal rank by quantifying the reconstruction quality of the output data in

decibels (dB) (equation 3.17).

Equation 3.17 provides insight into the change in the accuracy of the recon-

struction between 3D and 5D data sets and their corresponding algorithms

while keeping the remaining terms constant. The two methods can both re-

cover the amplitudes and timing of the discontinuities from the synthetic data.

However, the simultaneous enhancement of groups of gathers outperforms sin-

gle gather reconstruction.

We conclude the synthetic test by forming a theoretical seismic volume that de-

pends on four spatial variables. This procedure creates the multi-dimensional

array by embedding the 3D CRG along two additional axes for a set of eight

equidistant x−y station coordinate sectors. That is, we form a group of single

station gathers such that d(t,∆, φ) becomes d(t, rx, ry,∆, φ). Consequently,

the model data (Qin = ∞) is of size (nt × nrx × nry × n∆ × nφ), where

nt = 651, nrx = 8, nry = 8, n∆ = 46 and nφ = 8. The size of the corre-

sponding level-four block Hankel matrices for this example is (1472 × 3000).

Again, we would like to stress that the panels are identical before decimation

due to the assumption of an azimuthally invariant 1D structure. We find that
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each gather and their back-azimuth sectors are not identical after removing

the observations since the decimation is random.

We assess the performance of the 5D recovery algorithm on two distinct vol-

umes. First, we increase the rank of the seismic volumes by introducing Gaus-

sian noise and replacing receiver functions with zero traces at random using the

sampling operator S(·) to imitate field data acquisition surveys. In this exam-

ple, the input data is 30% full and has an SNR of 0.5, which result in an input

quality of Qin = −1.14dB in Fig. 4.1a. Likewise, the second volume is 50% full

and has an SNR of 2.0, matching to an input quality of Qin = 1.24dB shown

Fig. 4.1c. Figs 4.1b and c show the retrieved data for (nrx = 4, nry = 4) with

an output quality of Qout = 7.04dB and Qout = 9.13dB, respectively. These

examples confirm that 5D MSSA outperforms 3D MSSA due to its ability to

exploit the redundancy in the data across space.

Furthermore, for the case of nrx = nry = nφ = 4, the theoretical arrivals are

sufficiently resolved with 11 singular values for the first data volume, while

eight singular values are needed for the second data volume. Similar to the

3D case, a rank that exceeds the optimal systematically reduces the accuracy

of the recovery by re-introducing noise.

4.3.2 Field data

In this section, we examine 5D FMSSA on observations from the USArray

and perform the time-to-depth conversion of the enhanced records to observe

the discontinuity structure bellow the array of receivers in the Yellowstone
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area. For consistency, we keep only the events with ray parameters between

0.08s/rad and 0.04s/rad, which are ideal in the RFM (Gurrola et al., 1994).

We follow equations 2.1 to 2.4 and use equation 2.5 to assemble the 5D vol-

umes containing information from four spatial variables while ensuring uniform

sampling. This stacking process equalizes the importance for all pseudo-CRGs.

Again, we then adopt the inverse distance weighting (IDW) stacking approach

in Chapter 3 with a distance-dependent smoothing weight of P = 1. The

sampling operator S(·) is a 5D array containing ones or zeros depending on

whether there is an observation or not and it quantifies the degree of sparse-

ness in the data after binning. We limit the frequency band of the input data

by applying a band-pass filter with the same design as in the previous chapter.

We chose alpha = 0.4, niter = 150, ω ∈ [0.01, 0.36]Hz, nω = 72 and a value of

k = 10 for consistency.

At last, we test the rapid, and memory-efficient recovery algorithm on a real 5D

multi-linear array of receiver functions d(t, rx, ry,∆, φ) by performing the rank-

reduction step via the randomized QR decomposition (RQRD). We process

data from the USArray in the western US covering the Yellowstone region.

The scheme forms the tensor by embedding 3D gathers on the additional

two spatial variables from 394 stations containing a total of 15100 receiver

functions, before binning. Fig. 4.3a shows their original position before forming

the regular grid of receivers. The binning geometry is as follows:

• Summary station longitude coordinates:

. rxi1 = rminx0
+ (i1 − 1)δrx, r

min
x0

= −115.5◦, δrx = 1◦, and i1 =
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1, .., nrx = 10

• Summary station longitude coordinates:

. ryi2 = rminy0
+(i2−1)δry, r

min
y0

= 40.5◦, δry = 1◦, and i2 = 1, .., nry =

8

• Epicentral distance sectors for each summary station:

. ∆i3 ∈ [∆min
0 − (2− i3)δ∆,∆min

0 + (i3)δ∆], ∆min
0 = 31◦, δ∆ = 1◦ and

i3 = 1, ..., n∆ = 59

• Back-azimuth sectors for each summary station:

. φi4 ∈ [φmin0 − (2 − i4)δφ, φmin0 + (i4)δφ], φmin0 = 45◦, δφ = 45◦ and

i4 = 1, ..., nφ = 8

After binning, we construct a 4D source-receiver grid with spatial dimensions

(nrx×nry×n∆×nφ) where nrx = 10, nry = 8, n∆ = 59 and nφ = 8. The as-

sociated level-four block Hankel matrices would have dimensions (2400×4500),

these matrices are 600 times bigger than the level-two Hankel matrices in the

3D real data case; this is equivalent to a 59900% increase in size. Performing an

SVD on such matrices would be much more expensive, hence the demand for

computationally efficient algorithms. The tensor contains information from 80

summary stations, which contain a total of 28746 receiver functions. Approxi-

mately 24% of the seismic volume does not contain any information. Fig. 4.4a

shows the locations of the regularly spaced summary stations and Fig. 4.4b
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shows the fold in the rx− ry plane, the maximum fold is 404 traces, while the

minimum is 258 traces.

Again, the MSSA filter parameter is k = 10 for the previously stated reasons.

Figs 4.5a, d and g show the results of the iterative rank-reduction method via

RQRD. These gathers belong to the slices rx = 5, ry = 4, 5, 6 and are the

same summary stations in Figs 3.3a, d and g. This is done to obtain a fair

comparison of the methods. The output stacks show the suspected phases with

the correct polarity and timing across all panels. We shed light on the increase

in performance of the reconstruction when more spatial variables are available

by directly comparing the output slices φ = 45◦ seen in Figs 3.4b, d and e,

and in Figs 4.5a, d and g. Although the output from the 3D algorithm fills

the gaps, the pashes are more evident on its 5D counterpart. Figs 4.5c, f and

i show the associated summary trace stacked along both spatial dimensions.

In addition to the successful prediction of the timing and amplitudes of the

interpolated receiver functions, the proposed method preserves the P410s and

P660s phases. Again, we note the existence of a robust negative polarity

double phase preceding the P660s discontinuity.

Lastly, we would like to be transparent about a challenge that comes with this

method; it is very easy to masks small scale features at the cost of recovering

the overall structure. We can see a decrease in amplitude from conversions from

the 520-km discontinuity in Figs 4.5c, f and i; this is due to the smoothing

effect created by the stacking parameter P and the bin size r in comparison to

the node spacing parameters δrx and δry. One could overcome these feats by

choosing a value for P that exceeds the number of spatial dimensions giving
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higher precedence to nearby observations and by choosing a smaller search

radius to reduce the amount of overlap between adjacent nodes. Although it

is possible to fine-tune these parameters to preserve and enhance local features.

4.4 Conclusion

The reconstruction of earthquake records via MSSA traditionally requires an

SVD, which is particularly expensive for large matrices. This chapter requires

the rank-reduction of a trajectory matrix that contains information from four

spatial dimensions. Depending on the number of samples for each dimension,

traditional MSSA could be unmanageable by standard TSVD. Here, we pre-

sented a more feasible alternative that yields satisfactory results, namely the

RQRD. The results show that the method presented in this chapter can recover

the amplitude and timing, which a full set of measurements would contain.

The accuracy of the algorithm is less stringent on the choice of the rank of the

trajectory matrix than the TSVD conventional approach. In doing this, we

achieve significant accuracy since we do not recover high levels of noise even

for a higher choice of k. Additionally, it requires less memory as the level-four

Hankel matrix does not need to be explicitly built. Overall, this algorithm

successfully accelerated MSSA.

Synthetic and field data examples imply that the proper application of the

suggested methods is arguably a viable approach for the analyses and interpre-

tation of secondary phases from the Earth’s interior, such as P-to-s converted
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phases. We identify robust conversions for the 410-km and 660-km interfaces

beneath Yellowstone. As expected, the reconstruction produces an extensive

smoothing of the RF impulse response, masking local variations of the MTZ.

For instance, the 520-km discontinuity observed in the reconstruction of 3D

records is averaged laterally when applying the 5D FMSSA. Additionally, we

once again distinguish a robust P660s precursor with double phase and nega-

tive polarity.
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(a)

(b)

(c)

(d)

P220s

P410s

P660s

Figure 4.1: Reconstruction examples of 5D synthetic volumes from a 1D
velocity structure. Single gathers from the receivers with indices (rx =
4, ry = 4). (a,c) Corrupted data with 70% and 50% decimation, and an
SNR of 0.5 and 2.0, respectively. (b,d) The corresponding output data
after 5D MSSA using k = 10.
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: Back-azimuth slice at φ = 180◦ for the single station gathers
shown in Fig. 4.1, and the quality of reconstruction as a function of
the rank of the Hankel matrix. (a,d)Figs 4.1b and d. (b,e) Figs 4.1c
and e. (c,f) Choosing k=8 and k=10 produces the recovery quality
for the synthetics in Figs 4.1b and d, respectively. An increase in
spatial redundancy translates to an increase in dB for the recovered
data sets for a fixed rank. That is, the volume depending on four
spatial coordinates will be more robustly enhanced than the volume
depending on three spatial variables, everything else constant.
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(a) (b) (c)

Figure 4.3: Field acquisition geometry and statistics for 5D MSSA
examples. (a) Irregular distribution of stations before binning in the
Latitude-Longitude plane. (b) The overall distribution of the teleseis-
mic events’ distances. The vertical axis represents the count.(c) The
overall distribution of the events’ back-azimuths illustrated using a lin-
ear scale.
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(a) (b)

Figure 4.4: Regularly sampled data and fold, for the 5D examples. (a)
Distribution of reconstructed summary stations in the regular grid. The
black dots show their x-y coordinates and the blue circles correspond
to a search radius of r = 2◦. (b) The fold map of the 5D data structure
showing the station density for a given cell.
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(a) (b)

(c)

(d)

(g)

(e)

(h)

(i)

(f)

Figure 4.5: Results of 5D real data set enhancement. The field data set
is shown in 4.4. (a,d,g) The retrieved data illustrated by the latitude
and longitude sector pairs (rx = 5, ry = 4), (rx = 5, ry = 5) and (rx =
5, ry = 6), respectively. The RQRD implements the rank reduction
step in the algorithm 4.6. (b,e,h) Time converted output volumes.
(c,f,i) Stack of the enhanced depth-converted receiver functions with
discontinuity depths (black dashed lines) and Pds arrivals.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.6: Comparison of 3D and 5D reconstruction of seismic field
data for the back-azimuth bin 6 (315◦ − 45◦) of the gathers in Fig. 3.4
and Fig. 4.5 using α = 0.4 and k = 10. (a,d,g) Input data. Slice for
φ = 360◦. (b,e,h) The output data. Slice for φ = 360◦, the truncated
SVD performs the rank reduction step. (c,f,i) The output data via
fast 5D MSSA. Slice for φ = 360◦. The P410s and P660s waveforms
are robustly enhanced, and a strong negative polarity P660s precursor
waveform is observable across all panels at 60s− 70s.
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Conclusion

5.1 Summary

Throughout this thesis, we investigated MSSA as a recovery algorithm using

P-to-S converted waves arising from MTZ discontinuities. MSSA is predicated

on the idea under ideal conditions, the data is compressible and of low-rank.

We increased the amount of data processed by increasing the dimensionality

of the seismic volumes and adapted the rank-reduction techniques to recover

the mantle reflectivity structure robustly. Careful mathematical treatment for

building the trajectory matrix and finding a lower rank approximation of such

is crucial to enhance and precondition large data sets for improving seismic

imaging and our understanding of mantle structures, which in turn can tell us

something about its dynamics and composition.

In Chapter 1, we give a brief overview of the mantle and its seismically discon-

tinuous region, the MTZ. We describe the importance of performing imaging

76
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studies of the interior of the Earth and outline some of the phases previously

observed on a global average. Next, we introduce the RFM as a tool in global

seismology to examine the seismic structure of the Earth at mantle depths

with some examples in the literature. Receiver function studies are typically

compromised by the underlying geometry of the secondary conversions. Re-

ceivers or stations need to be placed approximately above the area of interest,

and we have no control over any source parameters such as occurrence, loca-

tion or magnitude. Although there is a substantial increase in the amount of

data collected and networks of arrays deployed around the world, the acquisi-

tion geometry is still affected by terrain, logistic and economic complications,

additional to the high levels of noise intrinsic to receiver functions.

With the recent availability of dense seismological networks of arrays, re-

searchers in the field of global seismology have developed many methods to

reconstruct seismic data. Reconstruction of wavefields sensed by grids of ar-

rays will improve our understanding of the Earth’s structure beneath the ar-

ray. In Chapter 2, we introduced a practical and intuitive way to construct

multi-dimensional gathers containing receiver functions. The presented bin-

ning method performs an IDW-based station-event stacking of a particular

location of interest, to increase the SNR and robustness of the conversions in

the existing observations. For all nearby stations inside a search radius, our

technique sorts the receiver functions by their distance and back-azimuth. It

equalizes station importance by normalizing the number of events per pseudo-

CRG. Various parameters such as bin size, degree of smoothing, overlap and

spacing control the ensemble of the multi-linear arrays and have a direct im-
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pact on the quality of reconstruction and the scale of the recovered seismic

features. These assembly parameters can be tailored to mimic particular net-

works of arrays, such as the USArray, since the receiver function volumes

base their design on the spatial sampling regularity required by singular spec-

trum analysis. This chapter shows we can build 3D and 5D receiver function

volumes and simultaneously reconstruct the wavefields recorded by all the re-

ceivers in the grid. These volumes provide insights on structural variations

with back-azimuth and offset for different receivers and permit the imaging of

the reflectivity underneath the stations.

The interpolation and random noise attenuation of uniformly spaced data is an

essential topic in seismic data processing. Numerous studies have addressed

this problem in the field of exploration seismology, but there are not many

reports of algorithms proposed for earthquake data. In chapter 3, we studied

the use of MSSA as a proof of concept to reconstruct 3D CRGs of receiver

functions sorted by epicentral distance and back-azimuth. MSSA is a tech-

nique that yields an estimate of a low-rank version of the observed signals,

and it relies on the spatial predictability of our model. The truncated SVD

performs the rank reduction step in the frequency-space domain in this chap-

ter. The rank of the theoretical level-2 Hankel matrix is related to the number

of expected linear events produced by MTZ interfaces. The recovery algorithm

operates on synthetic record sections and observations from the Yellowstone

area. We test the method on a numerically generated data set using a 1D

global model of the Earth. In these examples, we corrupt the generated data

with random noise and decimation. We also construct pseudo-CRGs from P-
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to-S converted waves recorded by the USArray using the procedure described

in Chapter 2. We apply MSSA to remove random noise, reconstruct gaps in

the data, and enhance the robustness of the secondary phases. In both cases,

comparisons with raw data, MSSA reconstructed data shows discernible MTZ

secondary phases attributable to incoherent noise filtering and correct timing

and amplitude recovery of the receiver functions.

In Chapter 4, we include the x-y coordinates of the stations to construct and

enhance 5D seismic volumes. 5D MSSA requires a different mathematical

approach due to the computational complexity of using the truncated SVD

as the rank reduction approximation. A randomized QR decomposition per-

forms the low-rank approximation step and avoids building and thus storing

the huge level-4 Hankel matrix using a fast vector-matrix multiplication tech-

nique. The results from including their coordinates in the recovery algorithm

are significantly better than 3D reconstruction. The improvement in the re-

construction quality is a consequence of the addition of more information per

frequency slice in the analysis. We tested FMSSA using numerically generated

synthetic data and field data from the USArray. Our analysis shows that it is

possible to simultaneously suppress white Gaussian noise while filling gaps in

the records. The results show that using RQRD is more computationally ef-

ficient than using truncated SVD without compromising signal recovery. The

proposed algorithm has a few parameters to vary. Such are the pseudo-CRG

gather spacing, search radious and the IDW smoothing parameter. These

parameters dictate the ability to capture small scale features or the overall

seismic structure beneath the grid of receivers. Synthetic and real data ex-
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amples suggest that the precise application of FMSSA is a correct approach

for preconditioning waveforms from secondary conversions. In this study, we

focus on the radial component, keeping in mind that the reconstruction al-

gorithm can equally enhance the other components. The improvement in the

receiver functions makes FMSSA an appealing tool to use in seismic imaging

using receiver functions.

5.2 Contributions and limitations

The contributions of this thesis are as follows. Firstly, we present a method

to assemble regularly spaced multi-linear arrays of Receiver functions. The

suggested 3D and 5D binning procedures equalize the station importance and

the effects from varying distances and back-azimuths by incorporating IDW

stacking. Secondly, we prove that MSSA can reconstruct approximately linear

events arising from MTZ secondary conversions. 2D MSSA works in the f−xy

domain and implements the truncated SVD as the rank reduction step. Lastly,

this research extended MSSA, and it is capable of handling receiver func-

tions that depend on one 4 spatial coordinates. This generalization required

a mathematical treatment in which reduces the computational complexity by

implementing the RQRD as the rank-reduction step. The recovery algorithms

examine numerically generated and field data. Both methodologies accurately

recover the timing and amplitude of the missing observations while enhancing

P-to-s converted phases contained in the seismic records. These observations

consistently suggest a P660s precursor with double phase and negative polarity
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underneath Yellowstone. Ancient oceanic material, a subducting slab, plume

remnants, partial melt, and an increase in water content may be associated

with the signals from these MTZ zone interfaces. This study only recovered

the radial component as a proof of concept, knowing that it can resolve the

remaining components in the same manner without any complications.

The reconstruction of multidimensional earthquake records relies on many fac-

tors that dictate the quality of the output data. Fundamental limitations are

the amount of available unprocessed receiver functions as a consequence of

acquisition geometry constraints. Mapping the seismic structure of the Earth

strongly depends on the placement of arrays of receivers. As we saw, individual

raw stations need to be combined with nearby stations to form a pseudo-CRG.

Otherwise, the seismic volumes are too sparse, making MSSA not feasible. Ad-

ditional challenges that come with secondary seismic phases are the low SNR

and interfering seismic arrivals. The constructions of the multi-linear gathers

need a careful selection of the binning parameters to mimic the acquisition

parameter of the underlying network of arrays of receivers. However, the pa-

rameter selection comes with a trade-off between the scale of the recovered

seismic features and the number of missing observations. An acquisition de-

sign with receivers too closely spaced could resolve small local features, but

it may simply not be possible to reconstruct due to the amount of decima-

tion. The desired rank is not a priori for field data, so some experimentation

is needed. Many reports show that k should be about 2-3 times larger than

the number of actual phases due to real data not being entirely explained by

simple linear events and lateral variations of amplitude. More fundamentally,
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only structurally simple data can be enhanced, and the output tends to be

smooth.

5.3 Future work

The method presented in this thesis will benefit future analyses of seismic

phases originating at depths below the crust, particularly for studies where

sources and receivers are irregularly spaced. Future investigations in the re-

construction of secondary conversions may head towards more sophisticated

migration methods than the ones presented in this work. For instance, they

could incorporate 3D regional seismic models to place the receiver function in

the correct location where the P-to-s conversion occurs. This type of imaging

provides a better estimate of the reflectivity structure underneath the grid of

receivers. In the same manner, the enhanced receiver functions can be used

to estimate for a regional shear-wave seismic velocity model.

Some other aspects, such as the distribution of earthquakes and stations, can

be studied in more detail to select the optimal binning parameters that can

best resolve features without compromising the quality of reconstruction. In

this investigation, we sacrificed preserving small scale features when using

5D reconstruction for a more consistent smooth model. Future studies can

window the data to improve the reconstruction algorithms by approximating

nonlinear events in the window of analysis. The works presented here assume

the signals are composed of purely linear events immersed in random noise.

Future investigations can generalize the model to include both random and
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erratic noise with unknown distributions as it is the case with field data.

Studies focusing on the interpretation of seismic structures of the MTZ can im-

plement the suggested recovery techniques to several networks of arrays around

the globe. Furthermore, future work can explore resolving the other two hor-

izontal components of receiver functions. Lastly, we suggest the application

of MSSA to other seismological observations such as SS and PP precursors,

triplications and ScS reverberations.
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