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Abstract

Conventional seismic migration operators produce an image that suffers from low resolution,

sampling artifacts, and poorly balanced amplitudes. An improved image can be obtained by

casting migration as a least-squares optimization problem in which the goal is to minimize

the difference between the predicted synthetic data and the true observed data. This thesis

aims to expand the technology surrounding least-squares Kirchhoff depth migration. First,

an anti-aliased forward/adjoint Kirchhoff operator is derived for performing seismic model-

ing and migration. The anti-aliased Kirchhoff operator utilizes a triangular filter that can

be efficiently customized on-the-fly. Unlike alternative Kirchhoff operators, the anti-aliased

Kirchhoff operator proposed in this thesis is well-suited for least-squares migration because

only one copy of the data is required to be produced and stored. Second, the importance of

regularizing the least-squares cost function is discussed, and a preconditioning strategy for

promoting lateral continuity within common image gathers is reviewed. Since the precondi-

tioner promotes stable features in the model, the eigenvalue distribution of the operator is

improved, thereby increasing the rate-of-convergence of conjugate gradients. Lastly, a new

cost function is proposed for performing converted wave least-squares depth migration in

the presence of S-velocity errors. Due to the low signal-to-noise ratio and strong aliasing

of converted waves, S-velocity models are typically less accurate than P-velocity models;

consequently, PP seismic images are typically more accurate than PS seismic images. The

proposed converted wave migration cost function exploits this observation by registering the

PS image volume with the presumably correct PP image volume. The new converted wave

cost function is found to be an improvement over the conventional cost function in terms
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of the accuracy of the image and the flatness of the common image gathers. Moreover, the

registration strategy allows the true depths of the converted wave reflectors to be recovered,

despite the presence of errors in the S-velocity model.
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CHAPTER 1

Introduction

1.1 Background

Seismic exploration is a branch of geophysics that focuses on searching for natural resources

in the subsurface by recording, processing, and interpreting seismic data. Of the numerous

tools available to exploration seismologists, seismic reflection is by far the most powerful.

Seismic reflection is an active-source experiment that uses seismic waves to illuminate fea-

tures in the subsurface. After processing the seismic reflection data, an image of the subsur-

face reflectivity can eventually be recovered. These images ultimately reveal the interfaces

between different geological units, and are therefore invaluable in oil and gas exploration

because they provide detailed information about the subsurface structure and stratigraphy.

In addition to this, amplitude variations within the pre-stack image volume can provide

direct evidence of hydrocarbons, thereby increasing the probability of success.

Several methods have been developed for generating seismic images. The earliest approaches

were based on the assumption that the subsurface consists of laterally continuous, horizon-

tally layered geological units. Under this assumption, each trace in a common midpoint

(CMP) gather samples the same region in the subsurface (Yilmaz, 2001). Therefore, a time-

domain pre-stack image volume can be obtained by applying a normal moveout (NMO)

correction to the traces in each CMP gather. The time-domain image can be directly an-

alyzed, or it can be converted into a depth-domain image by performing a time-to-depth

conversion using the subsurface velocity model (Cameron et al., 2008). The image volume

can be analyzed for variations in seismic amplitude vs. offset (AVO), or it can be stacked to

form a structural image. This process has been widely used in industrial seismic exploration

and remains a fundamental step in modern seismic processing workflows.

1



CHAPTER 1. INTRODUCTION 2

The normal moveout correction assumes the subsurface consists of flat geological layers.

However, hydrocarbons are often located in structurally complex areas where the flat-layer

assumption is invalid. Since the velocity model varies laterally in these areas, the NMO

correction is incapable of completely flattening the CMP gathers. If the geology is simple

enough that it can be represented by constant-dip layers, a dip moveout (DMO) correction

can be used to improve the image (Deregowski, 1982; Hale, 1984; Notfors and Godfrey,

1987; Liner, 1990). The DMO correction is an extension of the NMO correction that aims

to remove the dip-dependency of the stacking velocities, thus allowing dipping reflectors to

be properly flattened.

Although the DMO correction can improve the accuracy of the seismic image, structurally

complex geological regions require a more rigorous mathematical treatment. Moreover, even

the simplest geological structures such as anticlines and synclines produce artifacts that the

DMO correction cannot account for. Therefore, a more robust method for seismic imaging

is required. This problem is addressed using a technique called seismic migration. Unlike

the NMO/DMO method, which is based on a geometrical interpretation and generates a

seismic image by shifting events vertically within the data domain, seismic migration aims

to estimate a model that explains the data by migrating features from the data domain into

the model domain. Since seismic migration is based on modeling, it satisfies the physics of

the seismic experiment and is therefore capable of generating an accurate image in even the

most structurally complex geological environments. For these reasons, migration has be-

come a crucial part of the seismic processing workflow. However, as we will find throughout

this thesis, limitations in the frequency content of the data as well as approximations used

in the migration operator ultimately reduce the resolution and accuracy of the migrated

seismic image. This thesis aims to advance the technology surrounding seismic migration

by proposing modifications to the existing algorithms as well as incorporating some new

ideas.

In the remainder of this thesis, the terms “seismic imaging” and “seismic migration” will be

used interchangeably. However, a more formal treatment would differentiate between the

two by noting that seismic imaging is a general term that describes the process of generat-

ing a seismic image, whereas seismic migration is a specific technique used for performing

seismic imaging.
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1.2 Seismic migration

In the seismic reflection experiment, a seismic source is used to send elastic waves down into

the subsurface where they are reflected, refracted, and transmitted before being recorded

back at the Earth’s surface. Reflection seismology aims to use this data to recover an image

of the geological interfaces off of which the recorded seismic waves reflected. Of the many

techniques available for performing seismic imaging, seismic migration is the most powerful.

Seismic wave propagation is governed by the wave equation. Therefore, the seismic data

that is recorded at the Earth’s surface is a subset of the full wavefield. Seismic migra-

tion aims to undo the physics of the wave equation by numerically back-propagating the

recorded seismic data down into the subsurface until it reaches its reflection/scattering point.

This is typically accomplished using a two-step process: first extrapolate the source-side and

receiver-side wavefields downward, and then apply an imaging condition to extract an image

of the subsurface (Claerbout, 1971; Lumley, 1989; Rickett and Sava, 2002; Sava and Fomel,

2003, 2006). Seismic migration can therefore be viewed as a boundary value problem in

which the goal is to estimate the wavefield in the subsurface for a given set of boundary

observations.

In order to estimate the wavefield in the subsurface, seismic migration requires a method

for simulating the propagation of seismic waves. Two general classes of algorithms have

been developed for this purpose: wave equation and Kirchhoff/scattering. The two classes

are typically referred to as wave equation migration (WEM) and Kirchhoff migration, re-

spectively. As its name suggests, wave equation migration extrapolates the source-side and

receiver-side wavefields downward via the wave equation. This can be accomplished in the

time-space domain by solving the wave equation using the finite difference method (Boore,

1972), or in the frequency-wavenumber domain by iteratively extrapolating the wavefield

downward using the one-way wave equation (Gazdag, 1978; Stolt, 1978; Stoffa et al., 1990;

Mulder and Plessix, 2004). The former approach is a special type of wave equation migra-

tion that is given its own name: reverse time migration (RTM). Although WEM and RTM

solve the wave equation in different domains, the final objective is the same: find a solution

that satisfies the wave equation. Solutions of the full “two-way” wave equation generally

produce the best seismic images because they most accurately represent the physics of the

seismic experiment. However, the two-way wave equation is generally too expensive to solve

in most practical applications. For this reason, one-way WEM has gained popularity as a

low-cost alternative (Mulder and Plessix, 2004).

Although WEM and RTM are accurate, they suffer from a number of fundamental issues
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that limit their practicality. As previously mentioned, they are computationally expensive;

thus, the hardware requirements are generally unrealistic for large-scale 2D and 3D prob-

lems (Zhu and Lines, 1998; Mulder and Plessix, 2004). In addition to this, WEM and RTM

require a uniform modeling grid; this poses a problem in areas with topography, although

some effort has been made to address this issue (Shragge, 2014). Wave equation methods

also require regularly spaced data; any sources and receivers that are unaligned with the

modeling grid must be binned or interpolated to the nearest grid point. For these reasons,

industry has been slow to adopt wave equation-based migration algorithms.

The aforementioned issues can be resolved by utilizing the second class of seismic migration

algorithms: Kirchhoff migration. Kirchhoff migration seeks an integral approximation to

the wave equation by making two key assumptions: (i) the data satisfies the high-frequency

assumption, and (ii) the upward scattered wavefield is linearly related to the incident wave-

field by a factor called the reflectivity. Evidently, Kirchhoff migration is based on scattering

theory. Kirchhoff migration assumes the subsurface is a grid of scatterers and the seismic

data consists of a sum of diffractions. An image of the subsurface reflectivity can therefore

obtained by collapsing the data-domain diffractions back to their model-domain scattering

point. In order to accomplish this task, Kirchhoff migration requires a method for simu-

lating the propagation of seismic waves from the sources & receivers at the surface to the

scattering points in the subsurface; this is done using Green’s functions (Schneider, 1978;

Bleistein et al., 2001). For each source/receiver pair in the data and each scattering point

in the model, a source-side Green’s function is used to simulate the downward propagation

of the incident wavefield and a receiver-side Green’s function is used to simulate the upward

propagation of the scattered wavefield. Since estimating Green’s functions is substantially

less expensive than solving the wave equation, Kirchhoff migration has a relatively low com-

putational cost (Zhu and Lines, 1998). In addition to this, Kirchhoff migration does not

require a uniform modeling grid, nor does it require evenly spaced data. Thus, Kirchhoff

migration is naturally capable of handling topography, and does not require binning or inter-

polating the recorded seismic data. However, since Kirchhoff migration utilizes an integral

approximation to the wave equation, it is less accurate than WEM/RTM and may be inad-

equate for imaging highly complex geological structures (Zhu and Lines, 1998). Despite this

shortcoming, Kirchhoff migration remains the workhorse of most industrial seismic imaging

workflows.

Regardless of whether WEM or Kirchhoff migration is used, the final image will always

contain a number of artifacts due to the presence of noise in the data, errors in the velocity

model, and poor subsurface illumination (Herron, 2000; Gray et al., 2001; Gray, 2013). Reg-

ularizing the seismic data can help minimize the number of artifacts in the image (Fomel
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and Guitton, 2006). Least-squares migration (LSM) has also been shown to help with this

problem (Nemeth et al., 1999; Chavent and Plessix, 1999; Duquet et al., 2000; Kuehl and

Sacchi, 2003; Wang and Sacchi, 2006; Kaplan et al., 2010; Dong et al., 2012). Unlike tradi-

tional seismic migration algorithms, which generate an image by applying a linear migration

operator to the data, least-squares migration produces an image by solving an optimization

problem. The LSM cost function typically contains two terms that must be minimized si-

multaneously: (i) a data misfit term, which measures how well the predicted synthetic data

fits the observed data, and (ii) a regularization term, which measures the prevalence of unde-

sirable features in the model. Minimizing the misfit term ensures the inverted seismic image

satisfies the observed data, while minimizing the regularization term reduces the prevalence

of undesirable features in the model. Thus, if the relative weight/tradeoff between the two

terms is correctly chosen, the inverted seismic image will fit the observed data and have

minimal artifacts.

The main shortcoming of least-squares migration is its computational cost. In order to

solve the LSM optimization problem, an iterative solver such as the conjugate gradient

(CG) method must be used. The conjugate gradient method is a Krylov subspace method;

each iteration of CG requires one application of the forward modeling operator and one

application of the adjoint migration operator. Thus, the total cost of each iteration of CG is

approximately double that of traditional seismic migration. Since multiple iterations of CG

are required to reach convergence, the cost of LSM is substantial. One option for improving

the rate of convergence LSM is to precondition the inverse problem (Wang et al., 2004).

Preconditioning is generally capable of incorporating the same constraints as regularization,

but also improves the rate of convergence because it improves the condition number of the

pseudoinverse.

Since least-squares migration is solved iteratively, this thesis will periodically refer to LSM

as the “iterative” approach to seismic migration. The alternative approach, which estimates

a seismic image through application of a linear migration operator, will be referred to as

the “direct approach”.

1.3 Image registration

Image registration is a computer vision technique for aligning the coordinates of two or more

similar images. One image is designated as the reference, and the others are transformed

(registered) to align their features with the reference. After the images have been registered,

their features share common coordinates and can therefore be easily compared. Thus, image

registration is a crucial step when comparing data and images that were collected during
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different measurements.

Image registration has been used in a variety of applications including automatic targeting

systems, audio signal processing, and medical imaging. More recently, image registration

has been used in seismic exploration. One example is the alignment of synthetic and real

seismograms (Liner and Clapp, 2004). Synthetic seismograms typically differ from real

seismograms due to errors in the velocity model and approximations made during forward

modeling. Thus, image registration can be used to align the synthetic events with the corre-

sponding real events. This is particularly valuable in least-squares migration, where subtle

differences between the synthetic and real seismograms can lead to notable changes in the

migrated image. For example, Zeng et al. (2015) and Luo and Hale (2014) found that reg-

istering the synthetic events with the real events resulted in a more focused seismic image

with better overall continuity. Image registration has also been used for estimating trim

statics by registering the far-offset traces with the near-offset traces (Zhang et al., 2014).

Another application has been the alignment of different seismic phases (Hale, 2013). More-

over, in order to compare PP1 and PS2 migrated images, the events in the PS image must

be registered with the PP image to align their reflectors. By aligning the PP and PS phases,

amplitude differences between the two images can be easily compared to make inferences

about the subsurface geology. Lastly, image registration has been used for estimating the

ratio between the P-wave and S-wave velocities (Compton and Hale, 2013; Gaiser, 1996;

Liang and Hale, 2012; Nickel and Sonneland, 2004).

This thesis investigates a specific type of image registration called dynamic time warping

(DTW). DTW was first used in the field of audio signal analysis for applications involving

voice recognition (Sakoe and Chiba, 1978; Müller, 2007), and has more recently been used

in seismic exploration (Hale, 2013). The DTW algorithm aims to estimate the relative shifts

between two signals by “forward accumulating” the relative error followed by “backtrack-

ing” to estimate the shifts. The method is naturally capable of incorporating smoothness

constraints; thus, DTW is robust in the presence of noise and other artifacts.

Conventional dynamic time warping is limited to working with one dimensional signals.

However, most seismic data are inherently multidimensional. The most straightforward

extension of DTW to multidimensional image registration has been shown to be computa-

tionally infeasible (Keysers and Unger, 2003). Moreover, the cost of this approach grows

exponentially with the number of dimensions. Several computationally efficient alterna-

1The abbreviation “PP” is commonly used to denote the compressional-wave to compressional-wave
seismic phase.

2The abbreviation “PS” is commonly used to denote the compressional-wave to shear-wave seismic
phase.
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tives have been proposed to address this issue (Pishchulin, 2010; Mottl et al., 2002). One

algorithm that has gained substantial popularity in recent years is the dynamic image warp-

ing (DIW) method proposed by Hale (2013). DIW estimates the relative shifts between

two images on a trace-by-trace basis, much like DTW. However, DIW also includes lateral

smoothness constraints to ensure the relative shifts are continuous across each dimension of

the image. Consequently, DIW is stable in the presence of noise and other non-linearities.

Hale and Compton (2013) also showed that performing DIW on a subsampled image volume

can further improve the smoothness and continuity of the estimated shifts.

In this thesis, a new application of multidimensional image registration is reviewed. Multi-

dimensional image registration has frequently been used for registering PP and PS images.

However, it is typically assumed that the P- and S-velocity models are correct. In practice,

S-velocity models are typically less accurate than P-velocity models due to the strong alias-

ing3 and low signal-to-noise ratio4 (SNR) associated with converted waves. As a result, the

migrated PS image is typically less accurate than the PP image. Dynamic image warping

can compensate for the S-velocity errors by warping the PS image to align its reflectors

with the corresponding PP reflectors. Moreover, embedding the DIW operator in the con-

verted wave LSM cost function allows for the recovery of a high-resolution image that is

structurally accurate, despite the presence of S-velocity errors.

1.4 Scope of this thesis

1.4.1 Main contributions

This thesis aims to expand the technology surrounding least-squares Kirchhoff depth mi-

gration. The main contributions are:

1. Formulate an anti-aliased forward and adjoint Kirchhoff operator that are numerically

adjoint to each other,

2. Demonstrate the benefits of preconditioned least-squares migration by promoting

smoothness within common image gathers, and

3. Provide a new method for performing converted wave least-squares migration in the

presence of S-velocity errors by embedding a dynamic image warping operator into

the cost function.
3Converted waves propagate as shear-waves as they arrive at the surface. Since shear waves travel slower

than compressional waves, they are more susceptible to aliasing than compressional-wave arrivals.
4Converted waves are predominantly measured on the horizontal component of seismic receivers. Many

sources of noise (e.g. the wind) also travel horizontally; thus, converted waves often suffer from low signal-
to-noise ratio.
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1.4.2 Organization

This thesis is organized as follows. Chapter 2 derives the forward and adjoint Kirchhoff op-

erators from first principles. The concept of Kirchhoff operator aliasing is discussed and a

solution is presented based on a triangular filter that can be customized on-the-fly. Chapter

3 derives the traditional ray tracing equations from the eikonal equation. The wavefront con-

struction method is then introduced as an extension of ray tracing that propagates the full

wavefront rather than individual rays. Finally, a robust technique is reviewed for estimating

the amplitude component of the seismic Greens functions by comparing the wavefront at

consecutive time steps. Chapter 4 reviews least-squares migration. Two different regular-

ization strategies are discussed: (i) damping by minimizing the norm of the model, and (ii)

preconditioning by promoting smoothness within common image gathers. Chapter 5 pro-

vides a review of the dynamic image warping method. A new converted wave least-squares

migration cost function is then formulated that uses dynamic image warping to register the

PS image with the PP image, thereby reducing the sensitivity of the cost function to errors

in the S-velocity model.



CHAPTER 2

The Kirchhoff operator

2.1 Introduction

Forward modeling is the process in which a known model is used to generate an observable

outcome. In seismic exploration, the model consists of the geophysical parameters that

characterize the subsurface, and the observations are the seismic data that are collected

during a field experiment. The set of equations that relate the geophysical parameters to

the observed seismic data is generally referred to as the forward problem. Therefore, the

forward problem is a simulation that aims to mimic the physical processes that occur during

a seismic experiment.

The complete physical representation of the forward problem is often too complex and

computationally expensive to solve for practical applications. Instead, it is common to ap-

proximate the forward problem by using a simplified set of governing equations. Since the

Earth’s subsurface is an elastic medium, the propagation of seismic waves is governed by the

elastic wave equation. However, simulating the elastic wave equation is prohibitive and is

generally not necessary to achieve satisfactory results. Since it is often possible to isolate or

extract P-wave arrivals from the recorded wavefield, it is generally sufficient to replace the

elastic wave equation with the acoustic wave equation and treat the Earth as an acoustic

medium. The wave equation can be further simplified by assuming the wavefield and model

satisfy the high-frequency assumption, under which the contribution of multiply-scattered

waves is negligible. As a result, the recorded wavefield can be expressed explicitly via an

integral equation known as the Kirchhoff integral. The Kirchhoff integral maps scatterers

from the model domain into diffractions in the data domain based on computed travel-

times, then scales the amplitude using three factors: (i) the reflectivity of the scatterer,

9
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(ii) the geometrical spreading factor, and (iii) the scattering angle. The resulting data is a

primaries-only approximation of the acoustic wave equation.

Forward modeling is an interesting and useful topic on its own. However, industrial ap-

plications of seismology are generally more interested in solving the inverse problem. That

is, for a given set of a geophysical data, what was the physical model that caused it? Inverse

problems are typically more complicated than forward problems because the forward mod-

eling operator is generally not invertible. Geophysicists must therefore utilize alternative

methods for solving inverse problems. This thesis focuses on a class of solvers that aims

to find a solution by iteratively minimizing the error between the true observed data and

the predicted synthetic data. In order to adopt this strategy, a forward modeling operator

and its exact adjoint must be derived. In this chapter, we derive a forward & adjoint pair

for performing forward modeling and migration of seismic data. The analysis begins by

deriving the momentum equation for an arbitrary medium. Next, the elastic wave equation

is formulated for an isotropic medium with homogeneous layers. Following this, the acous-

tic wave equation is presented and linear scattering under the high-frequency assumption

is reviewed. Next, the Kirchhoff approximation is applied, which leads to the development

of a forward & adjoint operator pair based on the Kirchhoff integral. Finally, the problem

of Kirchhoff operator aliasing is discussed, including an inexpensive solution based on a

triangular filter.

2.2 The wave equation

Seismic imaging algorithms are based on solutions to the wave equation. Multicomponent

seismic imaging requires an algorithm based on the elastic wave equation, while single-

component seismic imaging can achieve satisfactory results using the acoustic wave equation.

In this section, the elastic wave equation and the acoustic approximation are derived from

first principles.

2.2.1 The momentum equation

We begin by considering Newton’s second law of motion, which describes the relationship

between a force Fi and acceleration üi in the ith spatial dimension:

Fi = müi , (2.1)

where ui is the displacement, the two overdots denote the second derivative with respect to

time, m = ρdx1dx2dx3 is mass, ρ is mass density, and i can take on the value 1, 2, or 3 to
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represent the three spatial dimensions. Force is related to stress via

Fi = (∂jτij + fi)dx1dx2dx3 , (2.2)

where ∂j = ∂
∂xj

denotes differentiation with respect to the jth spatial dimension, τij is the

stress tensor that describes the force acting in direction î on a plane whose normal faces

in direction ĵ, and fi is the body force term. Combining equation 2.1 and 2.2 leads to the

momentum equation

ρüi = ∂jτij + fi , (2.3)

where ρ is a function of position x, and ui, τij , and fi are functions of position x and time

t. The momentum equation is a fundamental equation that lays the foundation for much of

seismology. It constrains the physical system by requiring changes in particle momentum

to be balanced by the sum of external forces acting on them. In seismology, the body force

generally consists of a gravity term and a source term. The gravity term is significant in

low-frequency normal mode seismology, but can generally be ignored in seismic exploration

because its contribution is negligible for typical seismic wavelengths (Shearer, 2009). The

source term, on the other hand, is not negligible and must be considered. Therefore, fi is

often referred to as the source term in seismic exploration.

2.2.2 The elastic wave equation

Equation 2.3 describes the displacement in terms of the stresses involved. The linearized

stress-strain equation (Hooke’s law) describes the relationship between those stresses and

the associated strain:

τij = Cijklekl , (2.4)

where Cijkl is the elastic moduli (stiffness) tensor and ekl is the strain tensor. The subscripts

i, j, k, and l can take on the value 1, 2, or 3. Therefore, the stiffness tensor has 81 elements.

If the medium is isotropic, the number of unique elements is reduced to 2 and the stiffness

tensor is given by

Cijkl = λδijδkl + μ(δikδjl + δilδjk) , (2.5)

where λ and μ are called the Lamè parameters. The Lamè parameters are material-

dependent and therefore characterize the physical properties of the medium. The first

Lamè parameter, λ, has no obvious physical meaning (Laursen, 2013). The second Lamè

parameter, μ, is the shear modulus and describes the resistance of the material to shearing.

Next, we assume the material displacements are small compared with each dimension of

the body (infinitesimal strain theory). Under this assumption, the strain tensor can be
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linearized by eliminating the second-order terms. As a result, the 9 elements of the strain

tensor are given by

ekl =
1

2
(∂kul + ∂luk) . (2.6)

Combining equation 2.3, 2.4, and 2.6 results in

∂j(Cijklukl)− ρüi = −fi . (2.7)

Finally, subbing equation 2.5 into equation 2.7 results in the isotropic, elastic wave equation

for homogeneous media

(λ+ 2μ)∇(∇ · ū) + μ∇×∇× ū− ρ
∂2ū

∂t2
= −f̄ , (2.8)

where ū is the displacement vector and ∇ denotes the spatial gradient defined by

∇ = î
∂

∂x1
+ ĵ

∂

∂x2
+ k̂

∂

∂x3
. (2.9)

Helmholtz theorem states that any smoothly varying vector field can be expressed as the

sum of an irrotational vector field and a solenoidal vector field. Therefore, defining

ū = ∇φ+∇× ψ̄ , (2.10)

we obtain the equation for a compressional wave

∇2φ− 1

α2

∂2φ

∂t2
= −fφ , (2.11)

and a shear wave

∇2ψ̄ − 1

β2

∂2ψ̄

∂t2
= −f̄ψ , (2.12)

where α =
√

λ+2μ
ρ is the P-wave velocity, β =

√
μ
ρ is the S-wave velocity, fφ is the com-

pressional component of the source, and f̄ψ is the rotational/shear component of the source.

Helmholtz theorem can therefore be used to decompose an elastic wavefield into seperate

P- and S-potentials. As a result, it is possible to process and image P- and S-wave data

separately, as will be exploited later in this thesis.

2.2.3 The acoustic approximation

The elastic wave equation is prohibitively complicated and computationally expensive to

solve. It is therefore desirable to simplify the seismic modeling equation. As several authors

have exploited (e.g. Kosloff and Baysal (1983); Tarantola (1984b); Bleistein (1987); Lambare
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et al. (1992)), treating the subsurface as a fluid greatly simplifies the problem while still

allowing for the recovery of ample subsurface information. Thus we proceed under the

acoustic approximation. Since fluids are incapable of supporting shear deformation, μ = 0

and the elastic wave equation simplifies to

∇(λ∇ · ū)− ρ
∂2ū

∂t2
= −f̄ . (2.13)

Defining the pressure as

p = −λ∇ · ū , (2.14)

we obtain the acoustic wave equation

∇2p− 1

c2
∂2p

∂t2
= −f̃ , (2.15)

where c = c(x) is the acoustic velocity and f̃ = ∇· 1ρ f̄ . The acoustic wave equation describes

the propagation of compressional waves in a fluid medium. Although the Earth’s subsurface

is strictly elastic, the acoustic wave equation is capable of modeling the dilatational part

of the wavefield. Therefore, the acoustic wave equation can be used for seismic modeling if

the P-wave data can be extracted from the recorded wavefield with minimal crosstalk. A

number of techniques have been proposed to address this challenge. For example, Dellinger

and Etgen (1990) proposed the application of Helmholtz decomposition to elastic data in the

frequency-wavenumber domain. van der Baan (2006) proposed a technique for separating PP

and PS data using independent component analysis. Other techniques based on plane-wave

decomposition have also been investigated (Cary, 1998). In some cases, the P-wave data is

nearly polarized with the vertical axis and can therefore be extracted without performing

additional processing steps. This is often the case for land seismic data due to the presence

of a low-velocity weathered layer near the Earth’s surface. For these reasons, the acoustic

approximation has been used as the foundation of many seismic processing and imaging

workflows (Schneider, 1978; Berryhill, 1979; Baysal et al., 1983; Gazdag and Sguazzero,

1984; Tarantola, 1984a; Claerbout, 1985; Symes and Carazzone, 1991).

2.3 Linear scattering

Since seismologists are mainly interested in primary reflections, it is common to simplify

the problem based on linear scattering (Bleistein et al., 2001). We begin by considering the

temporal Fourier transform of equation 2.15, which leads to the inhomogeneous Helmholtz

equation

∇2p(x, s, ω) +
ω2

c(x)2
p(x, s, ω) = −F̃ (ω)δ(x− s) , (2.16)
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where F̃ (ω) is the temporal Fourier transform of f̃ , ω is the angular frequency, x is an

arbitrary position in the subsurface, and s is the location of the source. Equation 2.16 can

be expressed more compactly as

L(x, ω)p(x, s, ω) = −F̃ (ω)δ(x− s) , (2.17)

where L(x, ω) = ∇2 + ω2

c(x)2 is the Helmholtz operator. Imposing the high-frequency as-

sumption diminishes the contribution of multiples. Strictly speaking, the high-frequency

assumption is only valid when λ and μ vary on a length scale that is large compared with

typical seismic wavelengths. However, it turns out that primary reflections can still be ac-

curately modeled even if this condition is violated, so long as the input model is sufficiently

smoothed prior to modeling (Gray, 2000). The total wavefield can then be written as the

sum of the incident wavefield pI(x, s, ω) and the scattered wavefield pS(x, s, ω):

p(x, s, ω) ≈ pI(x, s, ω) + pS(x, s, ω) , (2.18)

where pI(x, s, ω) satisfies the Green’s function for the source:

L(x, ω)pI(x, s, ω) = −F̃ (ω)δ(x− s) . (2.19)

Equation 2.19 is the inhomogeneous Helmholtz equation for the incident wavefield. It de-

scribes the propagation of acoustic waves from the source down into the subsurface, ignoring

reflections. Thus, equation 2.19 can be used to extrapolate the source-side wavefield down-

ward.

Subbing equation 2.18 into equation 2.17 results in

L(x, ω)pI(x, s, ω) + L(x, ω)pS(x, s, ω) = −F̃ (ω)δ(x− s) . (2.20)

The terms containing the scattered wavefield can then be isolated by subbing equation 2.19

into equation 2.20, which leads to

L(x, ω)pS(x, s, ω) = 0 . (2.21)

Equation 2.21 is the homogeneous Helmholtz equation for the scattered wavefield. It de-

scribes the propagation of acoustic waves that have already been reflected once and is

therefore responsible for modeling the primary reflections in a seismic record. In order to

solve equation 2.21, Green’s theorem is used. Following Bleistein et al. (2001), we define a
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Figure 2.1: Diagram showing the intersection of a sphere D with a plane S. The
subscript “a” denotes features in the upper hemisphere and the subscript “b” de-
notes features in the lower hemisphere.

receiver-side Green’s function G(x, r, ω) subject to

L�(x, ω)G�(x, r, ω) = −δ(x− r) , (2.22)

where r is the location of the receiver and the superscript “” is used to denote the adjoint.

Applying Green’s theorem to p(x, s, ω) and G�(x, r, ω) results in

∫
Da

[
G�Lp− pL�G�

]
dV =

∫
Sa+SR

[
G� ∂p

∂n
− p

∂G�

∂n

]
dS , (2.23)

where the dependent variables have been dropped to improve readability. The integration

regions Da, Sa, and SR are the upper hemisphere volumes and surfaces created when a

sphere D intersects a reflection surface S, as shown in figure 2.1. Specifically, Da is the

upper hemisphere volume, Sa is the upper hemisphere surface that bounds Da on the top,

and SR is the part of S inside of D that bounds Da on the bottom. Lastly, ∂
∂n is the outward

normal derivative on the boundary surface. Solving the integral on the left side of equation

2.23 yields
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∫
Da

[
G�Lp− pL�G�

]
dV = p(r, s, ω)− F̃ (ω)G�(s, r, ω)

= pI(r, s, ω) + pS(r, s, ω)− F̃ (ω)G�(s, r, ω)

=

∫
Sa+SR

[
G� ∂p

∂n
− p

∂G�

∂n

]
dS .

(2.24)

Performing a similar analysis with pI(x, s, ω) and G�(x, r, ω) leads to

∫
Da

[
G�LpI − pIL�G�

]
dV = pI(r, s, ω)− F̃ (ω)G�(s, r, ω)

=

∫
Sa+SR

[
G� ∂pI

∂n
− pI

∂G�

∂n

]
dS .

(2.25)

Next, combining equation 2.24 and 2.25 gives the result

pS(r, s, ω) =

∫
Sa+SR

[
G� ∂pS

∂n
− pS

∂G�

∂n

]
dS . (2.26)

If we consider the limit where the radius of the sphere approaches infinity, then SR ap-

proaches S and the integral over Sa approaches zero (Bleistein et al., 2001). Therefore,

equation 2.26 becomes

pS(r, s, ω) =

∫
S

[
G�(x, r, ω)

∂pS(x, s, ω)

∂n
− pS(x, s, ω)

∂G�(x, r, ω)

∂n

]
dS . (2.27)

Finally, the theorem of reciprocity states that the adjoint Green’s function is related to the

Green’s function via G(r,x, ω) = G�(x, r, ω). Therefore, we arrive at the result

pS(r, s, ω) =

∫
S

[
G(r,x, ω)

∂pS(x, s, ω)

∂n
− pS(x, s, ω)

∂G(r,x, ω)

∂n

]
dS . (2.28)

Equation 2.28 is an expression for the scattered wavefield in terms of an integral of itself.

Since pS is present both inside and outside of the integral, it is impossible to rearrange

the equation to isolate it. Therefore, an alternative approach must be adopted to obtain

an explicit formulation for the scattered wavefield. This problem is addressed in the next

section by applying the Kirchhoff approximation.

2.4 The Kirchhoff approximation

The Kirchhoff approximation is a technique for linearizing the non-linear Kirchhoff integral

in equation 2.28. It assumes the following linear relationship between the incident wavefield
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and the scattered wavefield at the location of each scatter:

pS(x, s, ω) = R(x, θ)pI(x, s, ω) ,

∂pS(x, s, ω)

∂n
= −R(x, θ)

∂pI(x, s, ω)

∂n
,

(2.29)

where R(x, θ) is the angle-dependent reflectivity and θ is the reflection angle (Bleistein et al.,

2001). Subbing equation 2.29 into equation 2.28 gives

pS(r, s, ω) =

∫
S

R(x, θ)

[
pI(x, s, ω)

∂G(r,x, ω)

∂n
+G(r,x, ω)

∂pI(x, s, ω)

∂n

]
dS . (2.30)

According to the product rule for differentiation, equation 2.30 is equivalent to

pS(r, s, ω) =

∫
S

R(x, θ)
∂
(
pI(x, s, ω)G(r,x, ω)

)
∂n

dS . (2.31)

Equation 2.31 is the Kirchhoff integral for the upward scattered wavefield. It shows that the

primary reflections for a known reflectivity model can be computed so long as the source

and receiver Green’s functions are known. Therefore, the accuracy of the Kirchhoff integral

is ultimately limited by accuracy of the Green’s functions pI(x, s, ω) and G(r,x, ω).

The Green’s function for an arbitrary background field has the form

G(x,y, ω) = A(x,y)eiωτ(x,y) , (2.32)

where A(x,y) is the amplitude (geometrical spreading factor) and τ(x,y) is the traveltime.

By substituting the WKBJ approximation for the wavefield into the Helmholtz equation, it

can be shown that A(x,y) obeys the transport equation

2∇τ(x,y) · ∇A(x,y) +A(x,y)∇2τ(x,y) = 0 , (2.33)

and τ(x,y) obeys the eikonal equation

1

c2(x)
− (∇τ(x,y))2 = 0 . (2.34)

Therefore, the source and receiver Green’s functions can be obtained by solving equation

2.33 and 2.34. See Appendix A for a complete derivation of the eikonal and transport

equations via the WKBJ approximation. For now, we proceed under the assumption that

a solution to the eikonal and transport equations can be found. In chapter 3, a numerical

technique for estimating the Green’s functions will be reviewed in detail.
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Using equation 2.32 as a template for the source and receiver Green’s functions, equation

2.31 becomes

pS(r, s, ω) = iωF̃ (ω)

∫
S

R(x, θ)A(r,x, s)
[
n · ∇τ(r,x, s)

]
eiωτ(r,x,s)dS , (2.35)

where

A(r,x, s) = A(r,x)A(x, s) ,

τ(r,x, s) = τ(r,x) + τ(x, s) .

Equation 2.35 can be further simplified to (Bleistein and Gray, 2002)

pS(r, s, ω) = S(ω)

∫
S

R(x, θ)A(r,x, s)
∣∣2cos(θ)

c(x)

∣∣eiωτ(r,x,s)dS , (2.36)

where S(ω) is the source signature given by

S(ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−iωF̃ (ω) for 3D

|ω|F̃ (ω) for 2D√|ω|
√

σsσr

σs+σr
e3iπ·sgn(ω)/4F̃ (ω) for 2.5D .

(2.37)

The parameters σs and σr are responsible for describing out-of-plane behavior for the 2.5 di-

mensional case (Bleistein and Gray, 2002). Equation 2.36 can be expressed more compactly

using linear algebra notation:

d = Lm , (2.38)

where d = d(r, s, ω) is the seismic data in the frequency domain, m = m(x, θ) is the angle-

dependent or offset-dependent reflectivity, and L is the linear Kirchhoff forward modeling

operator that consists of two main parts: (i) integration over each scatterer in the model

to accumulate the Earth’s impulse response, and (ii) multiplication with a wavelet to honor

the seismic source. The advantage of using linear algebra notation will become clear when

the concept of least-squares migration is introduced in chapter 4.

The Kirchhoff integral can be used to predict seismic data for a known reflectivity model. In

terms of practical implementation, it suggests that seismic data can be computed by sum-

ming the contribution from each subsurface scatterer. For a given source-receiver pair and a

single subsurface scatter, a source-side Green’s function must be computed to simulate the

downward propagation of seismic waves from the source to the scatter, and a receiver-side

Green’s function must be computed to simulate the upward propagation of scattered waves

from the scatterer to the receiver. Therefore, the core of Kirchhoff modeling consists of

computing source and receiver Green’s functions for each source-receiver pair in the data
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and each scatterer in the model.

Our analysis of Kirchhoff modeling was carried out in the frequency domain. In practice,

Kirchhoff modeling is typically performed in the time domain. The change from frequency

to time is trivial and can be achieved by taking the inverse Fourier transform of equation

2.36. As a result, multiplication of the source gets replaced with convolution, and inte-

gration of the complex exponential gets replaced with integration of an impulse response

δ(t−τ). Time-domain implementations of Kirchhoff modeling therefore have the same algo-

rithmic structure as frequency-domain implementations: first estimate the source-side and

receiver-side Green’s functions to form the Earth’s impulse response, then perform convolu-

tion with a wavelet to honor the source. Importantly, time-domain Kirchhoff modeling can

be expressed using the same linear algebra notation that was used in the frequency-domain:

d = Lm, where d = d(r, s, t) is the seismic data in the time domain.

So far, we have derived a forward modeling integral that can be used to generate seismic

data. Forward modeling is a valuable tool that has many applications in seismic exploration.

For example, it can be used to design seismic surveys and pick optimal parameters when up-

scaling from 2D to 3D. It can also be used to verify geological interpretations or to estimate

the seismic response for a specific geological feature. Although forward modeling has many

uses, it is incapable of recovering direct, quantitative information about the subsurface. In

order to recover a quantitative description of the subsurface, an inverse problem must be

solved.

2.5 Kirchhoff migration

An inverse problem is a mathematical framework that allows the unknown physical param-

eters of a system to be estimated from a set of observations. In the case of seismic imaging,

the observations are the recorded seismic data, and the unknown physical parameters con-

sist of an image of the subsurface reflectivity. The mathematical framework that relates the

seismic data to the subsurface reflectivity is the Kirchhoff integral. Intuitively, an inverse

problem should be solved by undoing the physics of the forward problem. This implies that

an image of the subsurface reflectivity can be obtained by multiplying the recorded seismic

data with the inverse of the forward modeling operator: m̂ = L−1d. In practice, L−1 is

either unstable or impossible to estimate, so an alternative approach must be used.

Two classes of techniques exist for performing seismic migration: direct and iterative. Direct

migration techniques aim to transform the seismic data into an image of the subsurface via

an explicit formula. Moreover, they seek an approximation of the inverse that is capable
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Figure 2.2: Coordinates for Kirchhoff AVA migration. Figure from Feng (2004).

of preserving the dominant features in the migrated image (Beylkin, 1985; Bleistein, 1987;

Bleistein and Gray, 2002). For example, Bleistein and Gray (2002) proposed the following

algorithm for common-angle migration:

R(x, θ, φ) =
1

8π3

[
2cos(θ)

c(x)

]2 ∫ ∫
S(ω)

pS(r, s, ω)

A(r,x, s)
e−iωτ(r,x,s)

∣∣∣∣ν̄ · ∂ν̄

∂α1
× ∂ν̄

∂α2

∣∣∣∣·
·δ(θ′ − θ)δ(φ′ − φ)

∣∣∣∣∂(α1, α2, θ
′, φ′)

∂(s1, s2, r1, r2)

∣∣∣∣ds1ds2dr1dr2dω ,

(2.39)

where ν̄ is the unit normal vector for the reflector, θ is the reflection angle, φ is the az-

imuth, and α1 and α2 are the raypath angles, as shown in figure 2.2. Direct approaches

for migration have gained substantial popularity in industrial seismic imaging due to their

low computational cost, simplicity, and versatility. However, they also suffer from a number

of drawbacks. Most notably, the predicted synthetic data for the migrated image does not

match the true observed data. Therefore, the migrated image does not satisfy the physics

of the forward problem, which in turn reduces our confidence in the solution and can make

it difficult to evaluate the accuracy of the inversion. Additionally, direct seismic migration

techniques are less robust in the presence of noise and incomplete seismic data (Nemeth

et al., 1999). As a result, the inverted image is often contaminated with noise and artifacts.

The second class of techniques for performing seismic migration takes an iterative approach.

Unlike direct seismic migration, which attempts to approximate the inverse using an explicit

transformation, iterative seismic migration aims to estimate the true model by approximat-

ing the pseudoinverse. Moreover, iterative methods aim to solve an optimization problem by
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repeatedly updating the model until it optimally satisfies the recorded seismic data. Since

the predicted synthetic data satisfies the observed wavefield, iterative methods are gener-

ally considered an improvement over direct transformations. Chapter 4 discusses iterative

methods for seismic migration in detail. In order to implement an iterative solver, the for-

ward modeling operator and its adjoint must be derived. We have already developed an

expression for the forward problem, as shown in equation 2.36. Therefore, all that remains

is to derive its adjoint. Since the Kirchhoff integral is a Fredholm integral of the first kind,

its adjoint is given by

R(x, θ) =

∫
S�(ω)p�S(r, s, ω)A(r,x, s)

∣∣2cos(θ)
c(x)

∣∣eiωτ(r,x,s)dsdrdω , (2.40)

where ds and dr denote the sources and receivers, and dω is the frequency increment. Much

like the forward Kirchhoff integral, the adjoint integral has two main parts: (i) multiplica-

tion with the complex conjugate of the source wavelet, followed by (ii) summation over a

traveltime isochron to collect scattered energy.

Since the adjoint maps data-domain features into the model domain, it can be viewed

as a seismic migration operator. In this thesis, migration via the adjoint will serve as the

benchmark for evaluating the performance of our iterative methods. Note that the adjoint

is not orthogonal and is therefore a poor approximation of the inverse. As a result, using

the adjoint integral for seismic migration will result in a blurred image that is incapable of

satisfying the observed seismic data (Youzwishen, 2003).

The adjoint Kirchhoff integral can be expressed using linear algebra notation as

m̂ = L†d , (2.41)

where the superscript “†” denotes the adjoint (Hermitian transpose) and d = d(r, s, ω) is

the seismic data in the frequency domain. The adjoint Kirchhoff integral is typically imple-

mented in the time domain, which can be achieved by taking the inverse Fourier transform

of equation 2.40. This can be accomplished by taking the same steps that were used for the

forward integral: replacing multiplication of the source with convolution, and replacing the

complex exponential with an impulse response. The resulting time-domain integral can be

expressed using the same linear algebra notation that was used in the frequency domain:

m̂ = L†d, where d = d(r, s, t) is the seismic data in the time domain.

Equations 2.36 and 2.40 inherently assume that the subsurface is a continuous medium

and that the spacing between neighboring sources/receivers is infinitesimally small, thereby

justifying an integral formulation. In practice, computers are limited to working with dis-
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cretized models, and seismic surveys are performed using a finite number of sources and

receivers. As a result, the integrals in equations 2.36 and 2.40 get replaced with finite sum-

mations. The result is a discretized forward and adjoint Kirchhoff operator (L and L†) that
can be implemented based on the pseudocode in Algorithm 1.

The “rhofilter” in Algorithm 1 applies a phase-shift to the data and scales its amplitude

spectrum by a factor of ω to account for the iω in S(ω). Practical implementations of the

Kirchhoff forward/adjoint operator (including the one used in this thesis) are more compli-

cated than Algorithm 1 and include several additional features. For example, rounding of

indexes generally gets replaced with interpolation to improve the stability of the operator.

Additionally, the Kirchhoff operators aperture is usually limited to a specified range of an-

gles to reduce its cost and limit the number of migration artifacts. A number of tapers,

including edge tapers and aperture tapers, are typically introduced to reduce the impact of

boundaries on the Kirchhoff operator. Lastly, many Kirchhoff operators also include fea-

tures to reduce the effects of operator aliasing, which is discussed in the next section.

Algorithm 1 Forward/adjoint Kirchhoff operator

procedure Kirchhoff(d, m, forward/adjoint, wav, sx, rx, dz, dx, dt)
if adjoint then

d = rhofilter(d, adjoint)
d = convolution(d, wav, adjoint)

end if
for itrace = 1:Ntrace do

for ix = 1:Nx do
for iz = 1:Nz do

w = weight(sx[itrace], rx[itrace], vel, ix, iz, dx, dz)
t = traveltime(sx[itrace], rx[itrace], vel, ix, iz, dx, dz)
it = round(t/dt) + 1
if forward then

d[it,itrace] += w*m[iz,ix]
else if adjoint then

m[iz,ix] += w*d[it,itrace]
end if

end for
end for

end for
if forward then

d = convolution(d, wav, forward)
d = rhofilter(d, forward)

end if
end procedure



CHAPTER 2. THE KIRCHHOFF OPERATOR 23

2.6 Operator aliasing

The Kirchhoff integral associates each scatterer in the model domain with a diffraction in

the data domain, as shown in figure 2.3. The forward Kirchhoff integral generates seismic

data by spraying the reflectivity of each scatterer over a diffraction hyperbola. Likewise,

the adjoint Kirchhoff integral computes the reflectivity of each scatterer by collapsing and

summing the amplitudes along the corresponding diffraction. Since the forward and ad-

joint Kirchhoff integrals map model-domain scatterers to data-domain diffractions (and vice

versa), the diffraction trajectory is sometimes referred to as the Kirchhoff operator. Within

this section, any usage of the term “Kirchhoff operator” refers to a diffraction trajectory.

Outside of this section, usage of the term “Kirchhoff operator” refers to the linear operator L.

Our derivation of the forward and adjoint Kirchhoff integrals assumed the seismic data was

collected using an infinite number of sources and receivers, therefore justifying an integral

formulation. Under this assumption, the Kirchhoff operator is perfectly sampled, so aliasing

is not a concern. However, real seismic data is collected using a limited number of sources

and receivers. Therefore, the forward and adjoint Kirchhoff integrals get replaced with finite

summations. Although replacing integration with summation is a relatively inconsequential

change, it does introduce a few fundamental problems. Among them is the issue of operator

aliasing. Operator aliasing occurs when the Kirchhoff operator cuts through an event at too

steep an angle to adequately sample it, as shown in figure 2.4. As a result, the migration

operator calculates a non-zero reflectivity for a scatterer that should have otherwise been

assigned a value of zero, thus introducing an “alias” artifact into the image.

Aliasing is ultimately a sampling problem. As the sampling rate approaches infinity, discrete

signals becomes asymptotically similar to analog signals and aliasing ceases to be a problem.

Conversely, as the sampling gets sparser, discrete signals loses high-frequency information

and aliasing becomes an increasingly important issue. This suggests that operator aliasing

cannot be ignored if the array of receivers is sparsely sampled. In order to remain unaliased,

each point on the Kirchhoff operator must satisfy the dip Nyquist criterion (Lumley et al.,

1994; Abma et al., 1999):

fmax
k =

1

2Δtk
=

1

2(∂tk/∂ξ)Δξ
, (2.42)

where fmax
k is the maximum unaliased frequency that can supported by the operator at

the kth trace, Δtk is the local operator moveout, ∂tk/∂ξ is the local dip of the operator,

and Δξ is the spacing between adjacent traces. Equation 2.42 indicates that the maximum

unaliased frequency is inversely proportional to the slope of the operator. Therefore, gently
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Figure 2.3: Illustration of the Kirchhoff operator (red curve). The forward Kirch-
hoff integral sprays each model-domain scatterer over a data-domain diffraction.
The adjoint Kirchhoff integral collapses each data-domain diffraction into a model-
domain scatterer. In practice, the adjoint operator recovers a blurred version of the
true image because it is not orthogonal to the forward operator.
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a)

b)

Figure 2.4: Kirchhoff migration operator (red curve) cutting through a seismic
event. (a) The trace spacing is small, so the Kirchhoff operator intersects several
traces. The sum of the samples along the operator is nearly zero, so an aliasing
artifact is not produced. (b) The trace spacing is large. The steeper Kirchhoff
operator intersects only a single trace, so the sum of the samples along the operator
is non-zero. Therefore, the steeper Kirchhoff operator produces an aliasing artifact.
The less steep Kirchhoff operator intersects a few traces, so the sum of the samples
along the operator is nearly zero. Therefore, the less steep Kirchhoff operator does
not produce an aliasing artifact. Figure from Gray (2013).
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Figure 2.5: The amount of operator moveout (grey boxes) is proportional to the
local dip of the Kirchhoff operator (red curve). The steepest parts of the Kirchhoff
operator experience the greatest amount of moveout and are therefore the most
susceptible to aliasing.

dipping Kirchhoff operators can support higher frequencies than steeply dipping Kirchhoff

operators. Additionally, since the slope of the Kirchhoff operator varies from trace to trace,

so too does the amount of operator moveout (figure 2.5). This suggests that the maximum

unaliased frequency is different for each point on the Kirchhoff operator.

A number of approaches have been proposed for dealing with operator aliasing. The sim-

plest solution is to apply a single lowpass filter to the entire data set, thereby suppressing

the aliased energy. However, picking the high-cut frequency for the lowpass filter is prob-

lematic. Since the maximum unaliased frequency is different for each point on the Kirchhoff

operator (and the Kirchhoff operator varies from scatterer to scatterer), the high-cut fre-

quency must be set to the lowest possible value of fmax
k . Therefore, a considerable amount of

high-frequency data gets suppressed that theoretically could have been used. A substantial

improvement can be achieved by producing several different copies of the data, each with a

different high-cut frequency (Gray, 1992). The Kirchhoff operator can then extract ampli-

tudes from the data set whose high-cut frequency most closely matches the local value of

fmax
k . This approach has been used extensively in industrial applications of seismic imaging.

However, it is only feasible for migration methods that are based on a direct transformation.

Since iterative seismic migration require an exact forward and adjoint, Gray’s approach for

anti-aliasing would require each data set to be forward modeled at each iteration. This

would increase the cost of the algorithm and partially negate the benefits of using a Kirch-
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hoff operator. Thus an alternative anti-aliasing technique is desired for iterative seismic

migration.

An ideal anti-aliasing filter should be customized on-the-fly based on the local maximum

unaliased frequency. The first step is to find an efficient way to compute fmax
k . For Kirch-

hoff time migration, an analytical expression of fmax
k can be derived in terms of the RMS

velocity and the source-side & receiver-side traveltimes (Lumley et al., 1994). In contrast,

the depth migration anti-aliasing criteria does not have an analytical expression because

Kirchhoff operators in c(x) media do not have simple hyperbolic forms. Instead, depth-

domain Kirchhoff operators can estimate fmax
k by differencing the traveltimes on each side

of the kth trace:

fmax
k =

1

|tk+1 − tk−1| . (2.43)

Given that fmax
k can be computed for each point on the Kirchhoff operator, all that remains

is to design a lowpass filter than can be applied locally and customized on-the-fly. Lumley

et al. (1994) proposed a clever method to efficiently implement a triangular anti-aliasing

filter for this purpose. The filter can be expressed in the Z-domain as

g(Z) =
−Z−�−1 + 2Z0 − Z�+1

α(1− Z1)(1− Z−1)
, (2.44)

where � is the half-length of the triangular filter and α = (�+1)2. The amplitude spectrum

of the triangular filter is given by (Lumley et al., 1994)

Γ(ω) =
sin2(ωδt(�+ 1)/2)

sin2(ωδt/2)
, (2.45)

and has spectral notches located at

fn =
ωn

2π
=

n

(�+ 1)δt
, (2.46)

where δt is the time sampling interval for each receiver. As an example, figure 2.6 shows a

plot of the normalized amplitude spectrum with � = 10 and δt = 4 milliseconds. Most of

the filters energy is contained within the first spectral notch. Therefore, the optimal half-

length of the triangular filter can be determined by choosing the local maximum unaliased

frequency to correspond with the first spectral notch, i.e., fmax
k = f1. Equation 2.46 then

becomes

fmax
k =

1

(�+ 1)δt
, (2.47)
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Figure 2.6: Amplitude spectrum for the triangular filter in equation 2.45 with � = 10
and δt = 4 milliseconds. Most of the triangular filters energy is contained within
the first spectral notch.

which can be rearranged to solve for the optimal half-length of the triangular anti-aliasing

filter:

� =
1

fmax
k δt

− 1 . (2.48)

Finally, the 1/(1− Z1) and 1/(1− Z−1) in equation 2.44 can be Taylor expanded as

1

1− Z1
= Z0 + Z1 + Z2 + Z3 + Z4 + Z5 + ... , (2.49)

and
1

1− Z−1
= −Z−1 − Z−2 − Z−3 − Z−4 − Z−5 − ... , (2.50)

which represent causal and acausal integration, respectively (Lumley et al., 1994). The nu-

merator of equation 2.44 represents a gapped three-point Laplacian, where the gap length

controls the length of the triangular filter and the high-cut frequency. The anti-aliasing fil-

ter can therefore be implemented by replacing the Dirac-delta shaped diffraction trajectory

with a gapped-Laplacian shaped diffraction trajectory, followed (preceded) by causal and

acausal integration for the forward (adjoint) operator, as shown in Algorithm 2. The struc-

ture for the aliased Kirchhoff operator (Algorithm 1) and the anti-aliased Kirchhoff operator

(Algorithm 2) is nearly identical. Practical implementations of Algorithm 2 include all of

the extra features mentioned at the end of section 2.5.
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Algorithm 2 Anti-aliased forward/adjoint Kirchhoff operator

procedure Kirchhoff(d, m, forward/adjoint, wav, sx, rx, dz, dx, dt)
if adjoint then

d = rhofilter(d, adjoint)
d = convolution(d, wav, adjoint)
d = integrate causal acausal(d, adjoint)

end if
for itrace = 1:Ntrace do

for ix = 1:Nx do
for iz = 1:Nz do

w = weight(sx[itrace], rx[itrace], vel, ix, iz, dx, dz)
t = traveltime(sx[itrace], rx[itrace], vel, ix, iz, dx, dz)
it = round(t/dt) + 1
Δt = abs(titrace+1 − titrace−1)/2
fmax = 1

2Δt
� = round( 1

fmaxdt ) - 1
if forward then

d[it-�,itrace] -= w*m[iz,ix]
d[it,itrace] += 2*w*m[iz,ix]
d[it+�,itrace] -= w*m[iz,ix]

else if adjoint then
m[iz,ix] += -w*d[it-�,itrace] + 2*w*d[it,itrace] - w*d[it+�,itrace]

end if
end for

end for
end for
if forward then

d = integrate causal acausal(d, forward)
d = convolution(d, wav, forward)
d = rhofilter(d, forward)

end if
end procedure

2.7 Examples

The following synthetic examples demonstrate the functionality of the forward and adjoint

Kirchhoff operator. The examples use simple models with the intent of illustrating the

Kirchhoff operators basic behavior, strengths, and limitations, rather than investigating its

full capability. More complicated models are investigated when least-squares migration is

discussed in chapter 4.
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2.7.1 Example: The forward/adjoint Kirchhoff operator

This example demonstrates the Kirchhoff operators ability to map model-domain features

into the data domain and vice versa. To begin, consider the simple anticline velocity model

in figure 2.7(a). The forward Kirchhoff operator requires a reflectivity model as its input.

The reflectivity should generally be computed based on the angle of incidence, density, and

P and S velocities (Aki and Richards, 2002). In this example, we simplify the reflectivity

formula by using a constant density and assuming the rays reflect at near-vertical incidence

R =
v2 − v1
v2 + v1

,

where v1 and v2 are the velocities of the layers above and below each hypothetical interface,

respectively. Using this approach, we obtain the reflectivity model in figure 2.7(b), which

serves as the input for forward modeling via the Kirchhoff operator.

The Kirchhoff operator is highly flexible and can handle common-shot or common-offset

data. In this example, the Kirchhoff operator works in the common-shot domain and thus

produces a set of common shot gathers as its output. An example for a source located at

x=2500m is shown in figure 2.8. Comparing figure 2.7(b) with figure 2.8, it is clear that

the Kirchhoff operator has modeled only the primary reflections. Care must therefore be

taken when comparing real data with modeled data because the Kirchhoff operator ignores

the direct wave and multiples. A closer inspection of figure 2.8 reveals a number of low-

amplitude artifacts that do not correspond to features in the model. These artifacts arise

from two main sources: (i) incomplete destructive interference, which is responsible for

the low-amplitude diffraction “wings” underneath the first reflection, and (ii) edge effects,

which are responsible for the spurious events protruding from the edge at approximately

t = 1.5s. The former can typically be overcome by using a denser modeling grid, which

provides additional scatterers to help cancel the remaining diffraction “wings”. The latter

arises due to the presence of model boundaries, and can be partially mitigated by using a

harsher edge-taper. In this example, the artifacts can be ignored because their amplitudes

are relatively small compared with the reflections.

The adjoint Kirchhoff operator takes a seismic data set as its input, then outputs an image

of the subsurface reflectivity. Figure 2.9 show the migrated image for the forward modeled

data. Although the migrated image is structurally accurate, it incorrectly estimates the

reflectivity of each interface and suffers from poor resolution. For these reasons, the adjoint

is generally considered a poor approximation of the inverse and a more accurate solution is

desired.
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Figure 2.7: (a) Synthetic velocity model (m/s). (b) Reflectivity model for (a). The
reflectivity is the same for each offset bin.
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Figure 2.8: Forward modeled shot gather for a source located at x=2500m for the
model in figure 2.7.
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Figure 2.9: Stacked seismic image obtained by migration via the adjoint Kirchhoff
operator.
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2.7.2 Example: Kirchhoff operator aliasing

To illustrate the impact of aliasing on the Kirchhoff operator, consider the two-interface

reflectivity model in figure 2.10(a). Operator aliasing is more prevalent for low-velocity

models because traveltime is inversely proportional to velocity. Therefore, to emphasize

the effect of operator aliasing, a constant velocity of 2000m/s was used to generate the

zero-offset section in figure 2.10(b). The data consists of 50 receivers that were uniformly

spaced over a distance of 2500m. Each receiver used a sampling interval of 4ms to ensure

the data is adequately sampled in time. Thus, the spatial and temporal sampling of the

data is sufficient to avoid data aliasing. Any artifacts appearing in the migrated image must

therefore be a consequence of Kirchhoff operator aliasing.

In figure 2.10(c), the input data was migrated using the adjoint Kirchhoff operator without

accounting for operator aliasing (Algorithm 1). Since the effect of aliasing was ignored, the

Kirchhoff operator incorrectly migrated the high-frequency features in the data. This is

responsible for the low-amplitude precursor artifacts that precede the real reflectors. This

style of high-frequency artifact is well documented and is known to reduce the quality of the

migrated seismic image (Biondi, 2001). Because these artifacts are caused by operator alias-

ing, it stands to reason that they can be suppressed by locally filtering the frequencies that

violate equation 2.42. In figure 2.10(d), the seismic data was migrated using the anti-aliased

adjoint Kirchhoff operator (Algorithm 2). Comparing figure 2.10(c) with figure 2.10(d), it

is clear that the triangular anti-aliasing filter has suppressed the aliased energy, resulting in

an image with fewer artifacts. If enough clipping is applied to figure 2.10(d), it would be

possible to see low-amplitude remnants of the aliasing artifacts. This is a consequence of

the fact that the triangular anti-aliasing filter does not completely suppress the frequencies

above fmax
k . Moreover, the triangular filter has non-zero spectral side-lobes that extend

beyond fmax
k (figure 2.6). However, the presence of the spectral side-lobes clearly has a

negligible effect on the migrated image.

As expected, the triangular anti-aliasing filter marginally increased the computational cost

of the forward/adjoint Kirchhoff operator, resulting in only a 2% increase in run time.

This increase is probably comparable with (or even less than) the cost of alternative anti-

aliasing filters, which have additional input/output costs associated with accessing multiple

copies of the data. Additionally, since the triangular filter was implemented on-the-fly, the

anti-aliased Kirchhoff operator had the same computer memory requirements as the aliased

Kirchhoff operator. This is a considerable advantage over alternative anti-aliasing filters,

which require extra computer memory for each copy of the data. These observations suggest

that the triangular anti-aliasing filter is well suited for iterative seismic migration.
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Figure 2.10: (a) Synthetic reflectivity model. (b) Zero-offset seismic section pro-
duced using the forward Kirchhoff operator L. (c) Migrated seismic image using
the aliased adjoint Kirchhoff operator L† based on Algorithm 1. Migrated seismic
image using the anti-aliased adjoint Kirchhoff operator L† based on Algorithm 2.
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2.8 Summary

Seismic migration algorithms are based on the wave equation. Solving the full elastic wave

equation is generally too expensive for practical purposes. A less expensive alternative is to

approximate the Earth as a fluid (acoustic approximation), followed by linearizion via the

high-frequency assumption and the Kirchhoff approximation. The resulting forward model-

ing operator is capable of calculating the primary reflections for a known reflectivity model.

Its adjoint transforms a primaries-only data set into a blurred image of the subsurface re-

flectivity.

Operator aliasing is an issue that arises due to the use of a finite number of receivers. Alias-

ing has the greatest effect on the steepest dipping parts of the Kirchhoff operator, where the

operator moveout is the largest. Conventional anti-aliasing techniques that involve lowpass

filtering the data are unpractical for iterative seismic migration. Instead, an efficient tri-

angular anti-aliasing filter can be implemented and customized on-the-fly by replacing the

Dirac-delta shaped migration operator with a gapped-Laplacian shaped operator, followed

(preceded) by causal and acausal integration for the forward (adjoint) operator.



CHAPTER 3

The wavefront construction method

3.1 Introduction

The Kirchhoff operator integrates over the model to accumulate the Earth’s impulse re-

sponse. For each scattering point in the model, a source-side Green’s function is used to

simulate the downward propagation of the source and a receiver-side Green’s function is

used to simulate the upward propagation of the scattered wavefield. If either of the Green’s

functions contain errors, the Kirchhoff operator will incorrectly propagate the seismic waves,

resulting in erroneous seismic data (for the forward operator) or an incorrect seismic image

(for the adjoint operator). Therefore, the forward and adjoint Kirchhoff operators require

an accurate method for estimating the Green’s functions for seismic waves.

The traveltime and amplitude components of the Green’s functions can be estimated by

solving the eikonal and transport equations, respectively. There are two classes of solvers

for the eikonal and transport equations: grid-based and ray-based. Grid-based methods

aim to find a direct solution to the eikonal and transport equations using numerical tech-

niques such as the finite difference method (Vidale, 1988) or the fast marching method

(Sethian, 1996). The motivation for using a grid-based method is obvious: they are robust

and can handle even the most structurally complex velocity models. However, the pitfalls of

grid-based methods generally outweigh its strengths. For example, their accuracy directly

depends on the grid-spacing. Therefore, highly accurate grid-based solvers come with a

substantial computational cost, especially for three dimensional models. Additionally, most

practical implementations of grid-based methods are only capable of estimating first arrivals,

which may be insufficient when the subsurface is structurally complex (Operto et al., 2000).

Lastly, grid-based methods require separate solvers for the traveltime and amplitude com-

36
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ponents; thus, the two solutions may be inconsistent with each other. Instead, the Green’s

functions are typically estimated using ray tracing (Dines and Lytle, 1979; Červenỳ, 1987;

Lomax, 1994; Vinje et al., 1993). Ray tracing seeks a solution to the eikonal equation by

solving a set of coupled ordinary differential equations (ODEs). Unlike grid-based methods,

ray-based methods can estimate amplitudes without having to solve the transport equation.

In addition to this, most implementations of ray tracing are capable of computing later

arrivals. Thus, most practical implementations of Kirchhoff migration rely on ray tracing

to estimate Green’s functions.

In this chapter, I review the wavefront construction method (WCM) for estimating Green’s

functions. WCM is similar to conventional ray-based methods in that it solves a set of

coupled ODEs to propagate rays forward in time. However, instead of propagating each

ray independently, WCM propagates each ray simultaneously by reconstructing the wave-

front at each time step. Moreover, WCM utilizes ray tracing principles to propagate the

wavefront itself, rather than individual rays. As a result, it resolves the ray multipathing

and ray shadow zone problems, thereby improving the accuracy and stability of the inter-

polated traveltimes. Additionally, the relative divergence/convergence of each point on the

wavefront can be compared at successive time steps to obtain an accurate estimate of the

geometrical spreading factor. This is an advantage over grid based methods, which require

the traveltime and geometrical spreading factor to be estimated independently. In summary,

WCM has the same robustness as grid-based methods, while retaining the benefits of ray

tracing, including its accuracy and ability to estimate amplitudes (geometrical spreading

factors) and later arrivals. WCM is therefore an ideal choice for estimating the Green’s

functions used in our Kirchhoff operator.

3.2 Ray tracing

Most implementations of the Kirchhoff forward/adjoint operator utilize ray tracing to es-

timate the source-side and receiver-side Green’s functions. In this section, the method of

characteristics is used to derive the ray tracing ODEs from the eikonal equation. Following

this, a naive technique is presented for estimating the amplitude of the Green’s functions

based on the ray tracing solution.

3.2.1 Background velocity model

The forward & adjoint Kirchhoff integrals and the eikonal & transport equations are only

valid under the high-frequency assumption. This suggests that the migration velocity model



CHAPTER 3. THE WAVEFRONT CONSTRUCTION METHOD 38

should contain only low-wavenumber features; moreover, the high-wavenumber perturba-

tions get decoupled from the velocity model and are instead contained within the reflectivity

model, where they can eventually be inverted for (Aki and Richards, 2002). Unfortunately,

there isn’t an absolute rule or guideline for distinguishing between low-wavenumber and

high-wavenumber features. Instead, low and high wavenumber features are distinguished

by comparing the length-scale of the feature with the frequency of the signal. Therefore,

features that are considered “low wavenumber” at one frequency may be considered “high

wavenumber” at another frequency.

As Bleistein et al. (2001) noted, one way to distinguish between low and high wavenum-

ber features is to use the Rayleigh criterion, which states that two features can be “just

resolved” so long as the maximum (i.e. the peak) of one feature corresponds with the zero

crossing of the other (Born and Wolf, 1999). Using this criterion, a feature in the model is

considered to be large if its length-scale L satisfies

L ≥ Λ

4
, (3.1)

where Λ is the dominant wavelength in the wavefield. If the seismic waves travel at a

background speed of c0, the Rayleigh criterion can be rewritten as

1 ≤ 4L

Λ
=

4Lf

c0
, (3.2)

where c0 = Λf , and f is the dominant frequency in the wavefield. If we define the dimen-

sionless parameter ζ as

ζ =
4Lf

c0
, (3.3)

then the Rayleigh condition for identifying large features becomes (Bleistein et al., 2001)

ζ ≥ 1 . (3.4)

If the frequency f of the seismic data and the length-scale L of the features in the velocity

model satisfy equation 3.4, then the data and model are said to satisfy the high-frequency

assumption.

When seismic data is collected, the frequency bandwidth of the data is known and the

average velocity can be estimated. Therefore, equation 3.4 determines the length-scale of

the features that can exist in the velocity model while satisfying the high-frequency assump-

tion. This length-scale can also be interpreted as the size of the blurring kernel that should

be used to smooth the velocity model. As an example, consider a typical seismic data set
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in which the signal falls primarily between 5 Hz and 100 Hz. For convenience, lets assume

the average velocity is c0 = 2000 m/s. When f = 5 Hz, features in the velocity model must

vary on a length scale of at least 100 m to satisfy the high-frequency assumption. On the

other hand, when f = 100 Hz, features in the velocity model must vary on a length scale of

at least 5 m to satisfy the high-frequency assumption. As expected, the higher frequencies

are capable of supporting features that vary on a shorter length-scale. This suggests that

the lowest frequency in the signal ultimately determines the length-scale over which fea-

tures in the velocity model should vary. In other words, the lowest frequency in the signal

determines the optimal size L of the blurring kernel that should be used to smooth the

velocity model. For our example, the velocity model should be smoothed using a blurring

kernel with a diameter of approximately L = 100 m. Based on my experience, I recommend

using a normalized Gaussian blurring kernel that is truncated at three standard deviations.

However, any diameter L blurring kernel should suffice.

Although the high-frequency criterion in equation 3.4 is a nice theoretical development,

it represents only one interpretation of the high-frequency assumption and should not be

considered an absolute rule that must be followed. In practice, it is generally sufficient to

smooth the velocity model just enough so that sharp variations are not obviously visible.

In fact, Gray (2000) found that it is generally better to apply less smoothing rather than

too much; as the size of the blurring kernel becomes grossly large, the velocity model loses

all geological plausibility, and the migrated image suffers as a result.

If less smoothing is better than more smoothing, then the question is raised: what hap-

pens if the high-frequency assumption is violated? Bleistein et al. (2001) pointed out that

the frequency content of the data primarily impacts the resolution of the image. If the

data contains only low frequencies, the migration operator becomes incapable of resolving

sharp reflectors. As a result, the migrated image contains blurred reflectors rather than

sharp ones. As we will find out in chapter 4, migration via the pseudoinverse (least-squares

migration) helps to boost the resolution of the migrated image, and therefore allows us to

partially violate the high-frequency assumption.

3.2.2 The ray tracing equations

The traveltime component of the Green’s functions can be estimated by solving the eikonal

equation. Although the eikonal equation can be solved directly, it is generally advantageous

to recast the problem as a coupled system of ordinary differential equations via the method

of characteristics (Kravtsov and Orlov, 1990; Bleistein et al., 2001). The resulting system
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of ordinary differential equations is given by

dx

dτ
= c2(x)p ,

dp

dτ
= −∇c(x)

c(x)
,

(3.5)

where τ(x) is the traveltime (phase) and p(x) is the slowness vector defined by

p(x) = ∇τ(x) =
1

c(x)

[̂
i sin(θ)cos(φ) + ĵ sin(θ)sin(φ) + k̂ cos(θ)

]
, (3.6)

where θ is the inclination angle with respect to vertical and φ is the azimuthal angle. If

the rays are propagated using a small step in time & space, each segment of the raypath

is approximately linear. Thus, θ and φ are nearly constant for each step, which means

equation 3.5 can be further simplified by replacing ∂p
∂τ with ∂θ

∂τ and ∂φ
∂τ . The resulting

system of equations is given by

∂x1

∂t
= c(x)sin(θ)cos(φ) ,

∂x2

∂t
= c(x)sin(θ)sin(φ) ,

∂x3

∂t
= c(x)cos(θ) ,

∂θ

∂t
= −cos(θ)

[
cos(φ)

∂c(x)

∂x1
+ sin(φ)

∂c(x)

∂x2

]
+ sin(θ)

∂c(x)

∂x3
,

∂φ

∂t
=

1

sin(θ)

[
sin(φ)

∂c(x)

∂x1
− cos(φ)

∂c(x)

∂x2

]
.

(3.7)

The ray tracing equations can be further simplified for two dimensional models by choosing

φ = 0, which gives

∂x1

∂t
= c(x)sin(θ) ,

∂x3

∂t
= c(x)cos(θ) ,

∂θ

∂t
= −cos(θ)

∂c(x)

∂x1
+ sin(θ)

∂c(x)

∂x3
.

(3.8)

Since the ray tracing ODEs form a coupled system, x1, x2, x3, θ, and φ must be up-

dated simultaneously. An analytical solution usually cannot be found for most 2D and 3D

velocity models. Therefore, a numerical approach must be used instead. Several numerical

methods exist for solving systems of ODEs. The most straightforward approach is the Euler



CHAPTER 3. THE WAVEFRONT CONSTRUCTION METHOD 41

method, which replaces derivatives with finite differences. The Euler method is intuitive to

understand, straightforward to implement, and inexpensive to solve. However, the Euler

method’s error is proportional to the square root of the step size; thus the Euler method is

only accurate to the first order. Seismic migration requires precise traveltimes in order to

obtain a high-quality image. Therefore, the Euler method’s error is too large for this task.

A more accurate solution can be obtained using higher-order solvers such as the Runge-

Kutta method (Franklin, 2013). The Runge-Kutta method solves each ODE by evaluating

each derivative as a weighted sum of points along the step length. Since more information

is utilized at each step, the Runge-Kutta method can achieve much higher accuracy. The

classical version of the Runge-Kutta method utilizes information from four points along each

step and is accurate to the fourth order. Appendix B provides a review of the fourth order

Runge-Kutta method.

Ray tracing provides a means for numerically integrating individual rays forward in time.

For a single ray, solving the ray tracing equations yields the location of the ray as a func-

tion of time. If several rays - each with a different takeoff angle - are traced outward away

from the source, then the traveltimes in the subsurface can be estimated by interpolating

between the raypaths. This process can be repeated for each source and receiver in the data

to estimate the traveltime component of the seismic Green’s functions. An improved esti-

mate of the traveltimes can be obtained by utilizing strategies such as the shooting method

(Červenỳ et al., 1977), although this greatly increases the computational cost.

So far, ray tracing has been used to solve for the traveltime component of the Green’s

functions; next, we solve for the amplitude component. As shown in Appendix A, the

amplitude component of the Green’s functions is given by the solution to the transport

equation. However, solving the transport equation is an added computational cost that

ideally should be avoided. Instead, it is common to estimated the amplitude of the Green’s

functions based on the solution to the ray tracing equations. A naive estimate of the ampli-

tude can obtained based on the length of each raypath. Moreover, for a constant velocity

model, the amplitude (geometrical spreading) factor is given by

A =
1

R
(3.9)

for 3D models and

A =

√
1

R
(3.10)

for 2D models, where R is the length of the raypath. Thus, for relatively simple geologi-

cal models (e.g. horizontally layered strata), the amplitude factor can be estimated using

equation 3.9 or 3.10, where R is computed by summing the length of each segment of the
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Figure 3.1: Rays with different takeoff angles can follow a different path to reach
the same scatterer. The curved ray travels a longer distance at a slower velocity,
and thus requires a larger traveltime to reach the scatterer. The red star denotes
the source and the grey shape represents a low velocity zone.

ray path. The amplitudes can then be interpolated between the raypaths using the same

strategy that was discussed for the traveltimes.

Ray tracing is an inexpensive alternative to solving the eikonal and transport equtions.

However, it suffers from a number of fundamental issues. First, for complex geological

models, ray paths with different takeoff angles may eventually intersect/cross each other,

as shown in figure 3.1; this phenomenon is typically referred to as ray multipathing. Be-

cause the rays traveled a different path through the model, they will generally intersect

at different times. Moreover, one ray will arrive before the other, which causes difficulties

when interpolating the traveltimes (Operto et al., 2000). Which traveltime should be used?

The traveltime for the first ray? The traveltime for the second ray? Or an average of

the two? Conventional ray-tracing has no way to deal with this problem because each ray

is propagated independently without any knowledge of the other rays; thus, instabilities

and inaccuracies will be introduced into the interpolated traveltimes. Second, high-velocity

caustics can cause shadow zones which the raypaths are incapable of penetrating. There-

fore, conventional ray tracing methods cannot estimate the traveltimes for these parts of the

velocity model. Third, the ray coverage becomes increasingly sparse as the rays propagate

farther away from the takeoff location. Therefore, the traveltimes must be interpolated

using a decreasing amount of raypath information, which can produce additional interpo-

lation errors and ultimately decreases the accuracy of the interpolated traveltimes. All of

these issues can be address by using a modified version of ray tracing called the wavefront

construction method.
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3.3 Wavefront construction

The conventional method for ray tracing involves shooting a fan of rays outward from the

source by propagating each ray independently. The ray fan is then used to interpolate the

traveltime and amplitude of each scatterer in the subsurface. This approach generally pro-

duces poor results when the geology is structurally complex, as discussed in the previous

section. A substantial improvement can be achieved by using the ray tracing equations to

propagate the wavefront itself, rather than individual rays; this approach is typically re-

ferred to as wavefront construction (Vinje et al., 1993). The wavefront construction method

is capable of monitoring the raypath density on-the-fly; thus, additional rays can be in-

terpolated as needed. This ensures that the ray density remains approximately the same

throughout the simulation, and also eliminates the issues posed by ray shadow zones. In

addition to this, the wavefront construction method resolves the multipathing problem by

including a criterion that automatically determines which rays should be kept and which

ones should be terminated. The most common strategy is to keep the ray that arrives first

and terminate all later arrivals; this is typically referred to as “first-arrival mode”. However,

an argument can be made that the ray with the greatest amplitude should be kept instead

(Vinje et al., 1993). Unless the model is characterized by extreme structural complexity,

the first arrival will typically correspond with the highest amplitude. Therefore, choosing

between first-arrival mode and highest-amplitude mode is relatively inconsequential.

3.3.1 Wavefront propagation

Consider the wavefront given by the solid line in figure 3.2. The wavefront consists of

8 rays that are approximately evenly spaced; these 8 rays serve as the starting point for

the next iteration of ray tracing. If each of the rays is traced forward, the wavefront will

eventually reach the dashed line. The distance DS between adjacent rays on the wavefront

are then compared with a predefined maximum distance DSmax. If the distance between

adjacent rays exceeds DSmax, an additional ray is interpolated on the wavefront. In figure

3.2, the distance between each ray on the new wavefront exceeds DSmax, so new rays are

interpolated. For each new ray, the following parameters must be interpolated:

1. The position of the new ray,

2. The inclination angle of the new ray,

3. The azimuthal angle of the new ray, and

4. The amplitude (geometrical spreading factor) of the new ray.
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Figure 3.2: A new wavefront (dashed line) is constructed by tracing the existing rays
(black circles) forward one time step. Additional rays (white circles) are interpolated
when the distance between rays (red line) is greater than the threshold DSmax.

Note that the time does not need to be interpolated because the wavefront is defined as a

constant time surface. Thus, the interpolated ray should be assigned the same time as its

neighbors. Vinje et al. (1993) provided a detailed review of the ray-interpolation procedure.

By interpolating the rays using this strategy, the raypath density should remain approxi-

mately constant throughout the simulation, regardless of whether the wavefield is diverging

or converging. This approach is particularly beneficial when dense ray coverage is needed

in the deeper parts of the model.

So far, a condition has been introduced for determining when new rays should be inter-

polated. Just as importantly, conditions must be put in place to determine when rays

should no longer be traced (i.e. terminated). Generally, there are two cases in which a ray

should be terminated:

1. The wavefront crosses itself (i.e. rays intersect), or

2. Part of the wavefront crosses the model boundary.

Wavefront self-crossings occur when two or more parts of the wavefront travel different

paths through the model to reach the same point. Since each part of the wavefront travels

a different distance at a different velocity, one part of the wavefront will arrive before the
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Figure 3.3: The new wavefront crosses itself as it propagates across a low-velocity
caustic. Only the rays corresponding to first arrivals are kept when using the first
arrival mode. Thus, the part of the wavefield behind the crossing (point number 5
and 6) is removed. An imaginary link (red dashed line) is created to fill in the gap;
however, no new rays are interpolated in this gap.

others. Figure 3.1 illustrates this phenomenon from a ray-based perspective; since each ray

is propagated without any information about its neighboring rays, it is impossible to prop-

erly address this issue. Figure 3.3 illustrates the same phenomenon, but from a wavefront

construction perspective; since the full wavefront is propagated simultaneously, it is possible

to determine which rays arrived first based on the geometry of the wavefront. In particular,

the part of the wavefront behind the crossing (point no. 5 and 6 in figure 3.3) corresponds

to a secondary arrival and should therefore be removed. When the self-crossing is removed,

the wavefront gets divided into two parts that should each be treated as a separate wave-

front. This means the wavefront will eventually be broken up into several smaller wavefronts

if the velocity model is structurally complex. These smaller independent wavefronts may

eventually interact and cross each other; when this happens, it should be dealt with using

the same strategy as before. The ray-selection criterion illustrated in figure 3.3 is based

on the first-arrival mode. Alternatively, highest-amplitude mode can be implemented by

keeping the part of the wavefront with the greatest amplitude. Most implementations of the

wavefront construction method (including the one used in this thesis) use the first-arrival

mode due to its simplicity and low computational cost.

The second case in which rays are terminated occurs when part of the wavefront propa-
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gates beyond the boundary of the model. Since traveltime and amplitude information is

not needed outside of the modeling region, any rays that cross the model boundary should

be terminated. However, since the wavefront construction method requires each ray to have

information about its neighbors (e.g. for identifying wavefront self-crossings), it may be

necessary to propagate each ray one or two steps beyond the model boundary.

Upon completion of wavefront construction, the modeling region will be covered by a series

of wavefronts that sample the velocity model in a spider web-like mesh. Each piece of the

mesh will have a width of approximately DS and a length of approximately c(x)Δτ . In

areas where the wavefront is diverging, the size of the mesh will gradually increase until

DS > DSmax, at which point a new ray will be interpolated and the size of the mesh will

be halved. In areas where the wavefront is converging on itself, the size of the mesh will

gradually decrease until the wavefront crosses itself, at which point some of the rays will be

terminated. Evidently, the size of the mesh is controlled by DSmax and Δτ . Smaller mesh

are generally preferred because it increases the sensitivity of the wavefront construction

method to local variations in the velocity. However, decreasing the size of the mesh results

in an increase in computational cost. Therefore, a trade-off must be made between having

a small mesh and a low computational cost. Generally speaking, more complicated velocity

models require a smaller mesh and thus have a greater computational cost.

Successive iterations of wavefront construction shows how the wavefield propagates as a

function of time; thus, the wavefront mesh provides information about the traveltime com-

ponent of the seismic Green’s functions. In the following paragraphs, it will be shown that

the wavefront mesh can also be used to obtain information about the amplitude component

of the Green’s functions.

Consider the three rays in figure 3.4. As previously discussed, the amplitude (geomet-

rical spreading factor) for a homogeneous 2D velocity model can be estimated from the

length R of the raypath:

A =

√
1

R
. (3.11)

Equation 3.11 becomes inaccurate for most heterogeneous media. In order to obtain an

accurate estimate of the amplitude, equation 3.11 must be rewritten in terms of the relative

divergence/convergence of the wavefront. This can be accomplished by utilizing the following

geometrical relationship:

L = Rν , (3.12)

where L = L1→2 + L2→3 is the sum of the arc lengths between rays 1 & 2 and rays 2 & 3,

and ν is the angle between rays 1 & 3. Subbing equation 3.12 into equation 3.11 yields a
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Figure 3.4: Geometrical relationship between the arc length of three rays and the
opening angle.
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new expression for the amplitude factor:

A =

√
ν

L
. (3.13)

For most heterogeneous media, ν is approximately constant from one iteration to the next so

long as the time step is small. Thus, for the ith ray on the wavefront, the ratio of amplitudes

at iterations j + 1 and j is given by

Ai,j+1

Ai,j
=

√
ν/Li,j+1√
ν/Li,j

=

√
Li,j

Li,j+1
, (3.14)

where Ai,j is the amplitude of the ith ray at the jth iteration of wavefront construction, and

Li,j is the arc length between ray i − 1 and ray i + 1. Estimating the arc length precisely

requires fitting a polynomial to the wavefront. However, Kirchhoff migration is less sensitive

to amplitude errors than traveltime errors; thus, it is generally sufficient to use a straight-line

approximation to estimate the arc length between neighboring rays. Rearranging equation

3.14 yields a recursive expression for updating the amplitude factor:

Ai,j+1 = Ai,j

√
Li,j

Li,j+1
. (3.15)

The ratio
Li,j

Li,j+1
is a measurement of the relative divergence/convergence of the ith ray from

one iteration to the next. Thus, equation 3.15 measures the amplitude factor based on

the local behavior of the wavefront; as a result, it is accurate for both homogeneous and

heterogeneous media. Parts of the wavefront that are rapidly diverging will experience the

greatest decrease in amplitude, while parts of the wavefront that are rapidly converging will

experience the greatest increase in amplitude. Equation 3.15 is also valid for plane waves,

which neither converge nor diverge and are thus characterized by a constant amplitude. A

similar expression can be derived for 3D velocity models using the same approach.

3.3.2 Parameter estimation

Each time the wavefront is stepped forward, a number of intermediate steps must be com-

pleted. Four of those steps have already been reviewed: (i) removing wavefront self-crossings,

(ii) terminating rays that cross the model boundary, (iii) interpolating additional rays, and

(iv) estimating the amplitude of each ray. Generally, the computed wavefronts will not

coincide with the exact location of the scatterers. Thus, the last intermediate step is to in-

terpolate the wavefront properties at the location of the scatterers. In the case of Kirchhoff
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�r

Figure 3.5: Traveltimes are interpolated by propagating the wavefront forward
within each piece of the mesh.

migration, the following properties must be interpolated:

1. The traveltime of the wavefront at each scatterer in the model,

2. The amplitude of the wavefront at each scatterer in the model, and

3. The incidence angle of the wavefront at each scatterer in the model.

A lookup table containing this information must be generated for each source and receiver.

Altogether, the lookup tables contain all of the information required to compute the source-

side and receiver-side Green’s functions as well as the angle-dependent obliquity factor in

the forward and adjoint Kirchhoff operators.

Traveltime errors have a greater impact on Kirchhoff migration than amplitude or angle

errors. Thus, the amplitudes and incidence angles can be interpolated using conventional

interpolation schemes such as cubic splines. The traveltimes could also be interpolated us-

ing this strategy; however, due to the high sensitivity of Kirchhoff migration to traveltime

errors, it is generally better to interpolate the traveltimes using a method that honors the

wavefront propagation.

Consider figure 3.5, which shows a typical piece of the wavefront mesh. This particular

piece of mesh contains a known scatterer inside of it; thus, the traveltime must be interpo-

lated at the location of the scatterer. Since the traveltimes τ and τ + Δτ are known, the

traveltime at the scatterer can be obtained by propagating the wavefront forward within the
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piece of mesh. Vinje et al. (1993) proposed to accomplish this by estimating the following

values:

1. The perpendicular distances (d1 and d2) from the two rays to the scattering point,

2. The normalized distance s′ along the wavefront: s′ = d1/(d1 + d2); and

3. The distance �r from ξ(s′) to the scattering point.

The position ξ(s′) can be estimated by fitting a low-order polynomial (e.g. a parabola) to

the wavefront. Vinje et al. (1993) then reasoned that the traveltime at the location of the

scatterer could be computed by propagating the wavefront forward within the mesh:

τscatterer = τ +
�r

vmid
, (3.16)

where τ is the traveltime of the old wavefront and vmid is the velocity in the middle of

the piece of mesh. Evidently, the accuracy of this approach depends on the size of the

mesh. As each piece of the mesh gets smaller, vmid becomes a better approximation of the

average velocity and thus the traveltime is interpolated more accurately. In my experience,

interpolating the traveltimes using cubic splines results in roughly the same accuracy as

the method proposed by Vinje et al. (1993). However, Vinje et al. (1993) method has

an intuitive physical basis which may result in more accurate traveltimes when the velocity

model is structurally complex. Algorithm 3 summarizes the wavefront construction method.

Algorithm 3 Wavefront Construction

procedure Wavefront Construction(vel, x0, z0, θ0, dx, dz, dt, DSmax)
for each source and receiver do

initialize ray parameters
while (number of points on wavefront)>3 do

propagate the wavefront
compute amplitudes along the wavefront
remove wavefront self-crossings
terminate rays that go out of bounds
interpolate new rays
interpolate incidence angles, amplitudes, and traveltimes

end while
end for

end procedure
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3.4 Examples

The following examples demonstrate the wavefront construction method. The first example

illustrates how the wavefront construction method is used to estimate the traveltime and

amplitude components of the seismic Green’s functions. The second example investigates

the accuracy of the wavefront construction method compared with an analytical solution.

3.4.1 Example: SAIG velocity model

Consider the velocity model in figure 3.6(a). The model contains sharp discontinuities and is

therefore unsuitable for ray tracing. Moreover, ray-based methods require a smooth velocity

model to satisfy the high-frequency assumption. Thus, a Gaussian blurring kernel was used

to generate the smooth velocity model in figure 3.6(b). Importantly, the blurring operator

was applied to the slowness model (rather than the velocity model) in order to preserve the

kinematics of the ray tracing equations.

Figure 3.7(a) shows the wavefront mesh for a source located at x=1500m with DSmax = 50m

and 50 initial rays; an additional 443 rays were interpolated throughout the simulation,

though only a sparse selection of the mesh is shown because the full mesh is too dense to

plot. At the beginning of the simulation, the wavefront propagated through a relatively

simple part of the velocity model; thus, the wavefront mesh exhibits straightforward behav-

ior near the source. In particular, the rays diverged uniformly, resulting in a semi-circular

wavefront. As the wavefront propagated farther into the model, it encountered complex ge-

ological structures. Since these structures are characterized by strong velocity gradients, the

rays began to rapidly bend. This phenomenon is particularly noticeable at (x, z) = (3500m,

2300m), where the wavefront encountered a low-velocity layer. The part of the wavefront

that passed through the low-velocity layer lagged behind the rest of the wavefront, forcing

the rays to converge toward each other. Since the wavefront construction method keeps only

the first arrivals, all later arrivals were terminated, resulting in the ray stitching pattern

observed from x=3500m to x=6000m at approximately z=2500m depth. A similar pattern

can be seen in locations where the rays have turned upward.

Despite the complexity of the raypaths, the wavefront remained relatively smooth through-

out most of the simulation, as shown in figure 3.7(b). However, the wavefront became less

smooth as it propagated through the aforementioned low-velocity layer. In particular, the

part of the wavefront that passed through the low-velocity layer lagged behind the rest of

the wavefront, resulting in a sharp “v” feature. However, the wavefront immediately healed

itself after exiting the low-velocity layer.
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Figure 3.6: (a) SAIG velocity model. (b) Smoothed version of (a). Smoothing was
applied to the slowness model using a Gaussian blurring kernel with a radius of
100m. The color-bars show the velocity in units of m/s.
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Figure 3.7: The wavefront construction method. (a) Wavefront mesh for a shot
located at x=1500m on the surface. (b) Location of the wavefront at 60ms intervals.
The color-bars show the velocity in units of m/s.
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Figure 3.8: (a) Interpolated traveltimes and (b) interpolated amplitudes using the
wavefront construction method. The amplitudes are heavily clipped to allow small-
scale variations to be seen. The color-bar for (a) shows the traveltime in units of
seconds. The colorbar for (b) shows the amplitude (unit-less).
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Each piece of the mesh in figure 3.7(a) contains traveltime and amplitude information about

the wavefront. Interpolating this information onto a regular grid using the method discussed

in section 3.3.2 produces the traveltime and amplitude fields shown in figure 3.8(a) and fig-

ure 3.8(b), respectively. As expected, the traveltimes increase away from the source, and

the traveltime gradient follows the direction of the raypaths. The interpolated amplitudes

exhibit a more complex behavior. For the most part, the amplitudes decrease away from

the source, as expected. However, the amplitudes also rapidly increase in a few isolated

regions. By comparing figure 3.7(a) with figure 3.8(b), it is clear that these high-amplitude

regions correspond with locations in which the wavefront is converging on itself. Evidently,

the wavefront construction method is capable of capturing amplitude variations arising from

local changes in the behavior of the wavefront.

3.4.2 Example: Accuracy of the wavefront construction method

The wavefront construction method eliminates a number of fundamental issues associated

with ray tracing. However, the method is only feasible if it can accurately estimate the

traveltime and amplitude components of the Green’s functions. To verify the accuracy of our

Runge-Kutta-based wavefront construction scheme, we compare our estimated traveltimes

and amplitudes with those computed using an analytical expression. Consider the linear

velocity model given by

c(z) = a+ bz ,

where z denotes depth, a is the velocity at the surface, and b is the vertical velocity gradient.

For this example, we chose a=1000m/s and b=1.2s−1. The traveltimes τ and amplitudes A

for this model can be computed analytically as (Vanelle, 2002)

τ =
1

b
arcosh

(
1 +

b2r2

2vsvg

)
,

and

A =

√
2√

b2r4 + 4vsvgr2
,

where arcosh() is the hyperbolic cosine function, r is the distance between the source and

receiver, and vs and vg are the velocities at the source and receiver, respectively.

Figure 3.9(a) shows the absolute error between the estimated and analytical traveltimes;

the average error is approximately 0.25ms. Typical sampling rates for seismic data range

from 1ms to 4ms. Thus, the traveltime errors are less than one sample, suggesting they
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Figure 3.9: Error of the wavefront construction method for a linear velocity model.
(a) Absolute traveltime error. (b) Relative amplitude error. The color-bar for (a)
shows the traveltime error in seconds. The color-bar for (b) shows the relative
amplitude error (unitless).
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are negligible. Furthermore, the errors measured in this example are comparable with (or

less than) the values reported by other authors (Rickett and Fomel, 1999; Zhang et al., 2011).

Figure 3.9(b) shows the relative error between the estimated and analytical amplitudes;

the average error is approximately 1% at each point in the model. This level of error is

acceptable because Kirchhoff migration is substantially less sensitive to amplitude errors

than traveltime errors. Additionally, Buske and Kästner (2004) verified that the amplitudes

computed using the wavefront construction method are consistent with those obtained using

a finite difference solution of the transport equation.

3.5 Summary

The wavefront construction method addresses a number of shortcomings that conventional

ray-based schemes suffer from. In particular, a ray interpolation scheme is introduced that

guarantees the ray-density remains approximately constant. As a result, deep parts of the

model can be adequately sampled and ray shadow zones are no longer an issue. The wave-

front construction method also incorporates a set of rules for determining which rays should

kept and which ones should be terminated if two or more rays cross, thereby improving the

stability and accuracy of the interpolated traveltimes. In addition to this, WCM is flexible

enough to choose between propagating the first-arrival wavefront, highest-amplitude wave-

front, or multiple wavefronts - an obvious advantage compared with grid-based methods.

Moreover, the wavefront construction method retains the accuracy and versatility offered

by ray-based methods, while incorporating the robustness of grid-based methods. For these

reasons, we utilize WCM to estimate the Green’s functions in our Kirchhoff operator.

The wavefront construction method can be implemented in a variety of ways. Most no-

tably, the ray tracing portion of the algorithm can be performed using a variety of different

techniques. We showed that the Runge-Kutta method is accurate enough to compute the

traveltimes and amplitudes with a negligibly small error. However, a lower-order ray tracing

scheme could probably be used to reduce the computational cost of the algorithm without

substantially impacting its accuracy.



CHAPTER 4

Least-squares migration

4.1 Introduction

Conventional seismic migration algorithms estimate an image of the subsurface by applying

a linear migration operator to the seismic data. Since these methods estimate an image via

a direct transformation, they are relatively inexpensive and can achieve satisfactory results

when the recorded seismic data is densely sampled. However, seismic data is generally in-

complete. Moreover, seismic data is often irregularly sampled and contaminated with noise

and other artifacts. Consequently, images obtained using conventional migration algorithms

typically suffer from poor illumination, low resolution, discontinuous reflectors, and migra-

tion artifacts (Nemeth et al., 1999).

Posing seismic migration as an inverse problem yields a higher resolution image with fewer

artifacts (Nemeth et al., 1999; Duquet et al., 2000; Kuehl and Sacchi, 2003; Wang et al.,

2005; Wang and Sacchi, 2006; Tang, 2009; Dai et al., 2012; Dong et al., 2012; Xue et al.,

2015; Yao and Jakubowicz, 2016). This is accomplished by casting migration as a least-

squares optimization problem. The least-squares cost function typically contains two terms:

(i) a data misfit term, which measures how well the predicted synthetic data matches the

observed data, and (ii) a regularization term, which measures the prevalence of undesirable

features in the image. Seismic data that is noisy or irregular typically yields a low-quality

image and therefore requires a larger amount of regularization. Conversely, high-quality

seismic data typically yields an artifact-free image and therefore requires minimal regular-

ization. It is therefore crucial to assign the relative weight of the misfit and regularization

terms based on the quality of the seismic data. If the tradeoff between the two terms is

chosen correctly, a true-amplitude image can be recovered that satisfies the observed seismic

58
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data and is relatively free of artifacts.

Due to its high computational cost, most practical implementations of LSM have focused on

migrating data under the acoustic approximation. The earliest attempts utilized a Kirchhoff

operator due to its relatively low computational cost and versatility (Nemeth et al., 1999;

Duquet et al., 2000). As computer technology advanced, LSM was made more powerful by

utilizing one-way wave equation-based operators (Kuehl and Sacchi, 2003; Wang and Sac-

chi, 2006; Kaplan et al., 2010). Wave equation-based operators simulate wave propagation

more accurately than Kirchhoff operators; consequently, wave equation-based LSM yields a

superior image. Modern implementations of LSM go a step farther by using two-way RTM

operators (Dong et al., 2012; Dai and Schuster, 2013; Yao and Jakubowicz, 2016). Recently,

least-squares migration has been extended to handle elastic data (Stanton and Sacchi, 2017;

Chen and Sacchi, 2017). Elastic LSM properly addresses the vector nature of seismic data;

thus, it is superior to acoustic LSM when there is considerable crosstalk between different

components of the data. Elastic LSM also yields an image of the PS reflectivity, which

can provide insight into the location of fluid contacts and help illuminate targets beneath

gas-filled zones.

The least-squares cost function is typically solved using the conjugate gradient method.

Each iteration of conjugate gradients requires one application of the forward modeling op-

erator and one application of the adjoint migration operator. Thus, least-squares migration

has a substantial computational cost. The rate of convergence of least-squares migration

can be improved by preconditioning the inverse problem. Moreover, by promoting “good”

features in the image at each iteration, the algorithm converges faster and therefore has a

lower computational cost (Wang et al., 2004).

This chapter reviews least-squares migration. The benefits of several different regulariza-

tion strategies are discussed in terms of their computational cost and ability to suppress

artifacts. A regularization strategy for promoting smoothness within common image gath-

ers is reviewed, and an equivalent approach based on preconditioning is derived. Damped

and preconditioned least-squares migration are then compared using a synthetic example.

Lastly, as a continuation of our earlier discussion on Kirchhoff operator aliasing, an example

is shown to illustrate the benefits of using an anti-aliased Kirchhoff operator in least-squares

Kirchhoff depth migration.
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4.2 Regularized least-squares migration

Seismic data is produced when the forward modeling operator acts on the reflectivity model:

d = Lm+ n , (4.1)

where d is the seismic data, L is the forward modeling operator, m is the reflectivity model,

and n is additive noise. In this thesis, L is the Kirchhoff forward modeling operator described

in chapter 2. Thus, from this point onward it is assumed that the seismic data is dominated

by primary reflections. An image of the subsurface reflectivity should ideally be obtained

by applying the inverse of the forward modeling operator to the seismic data:

m̂ = L−1d , (4.2)

where m̂ is the estimated reflectivity model. In practice, the inverse is numerically unstable

or impossible to estimate. Therefore, an alternative approach must be used to perform

seismic migration. As discussed in chapter 2, it is a relatively straightforward task to derive

the adjoint L† of the forward modeling operator. Since the adjoint maps data-domain

features into the model domain, it is a type of migration operator. Thus, an image of the

subsurface can be obtained by applying the adjoint migration operator to the seismic data:

m̂ = L†d . (4.3)

The adjoint migration operator produces an image that suffers from low resolution, incorrect

amplitudes, and sampling artifacts. Consequently, the estimated image does not satisfy the

observed seismic data, which reduces our confidence in the model and makes it difficult to

evaluate the accuracy of the inversion. Over the last two decades, least-squares migration

has been widely advocated as an alternative approach that can improve the resolution of the

image, suppress artifacts, and recover true amplitudes (Nemeth et al., 1999; Duquet et al.,

2000; Kuehl and Sacchi, 2003; Kaplan et al., 2010). Least-squares migration estimates an

image of the subsurface reflectivity by solving the optimization problem

m̂ = arg min
m

||W(Lm− d)||22 + λ2R(m) , (4.4)

where ||.||p denotes the p-norm, W is a diagonal weighting matrix for de-emphasizing low-

quality data, R(m) is the regularization term, and λ is the regularization/tradeoff parameter.

The first term in equation 4.4 measures the misfit between the predicted synthetic data and

the true observed data, and the second term measures the prevalence of undesirable features

in the model. As its name suggests, the tradeoff parameter controls the relative weight of the
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two terms. Low-quality seismic data typically yields an image that suffers from a number of

artifacts and therefore requires a large amount of regularization. Conversely, high-quality

seismic data typically yields an artifact-free image and thus requires minimal regularization.

If the balance between the misfit and regularization terms is chosen correctly, the inverted

image will satisfy the observed seismic data and be relatively free of artifacts.

The regularization term can take a number of different forms, the most popular of which

include:

• R(m) = ||m||22, the 2-norm, also known as the minimum norm (or damped) solution.

Minimizing the 2-norm of the model is analogous to finding the “smallest” solution.

Thus, damping via the minimum norm helps to diminish the amplitude of artifacts in

the inverted image.

• R(m) = ||Dhm||22, also a 2-norm, where Dh is a first or second-order derivative

operator applied along the angle (or offset) dimension of the model. Minimizing the

2-norm of the derivative along offset is analogous to finding a model with smoothly

varying common image gathers. Moreover, since sharp changes in AVO are unrealistic,

this regularization strategy ensures the common image gathers are well-behaved.

These regularization strategies have gained popularity because they are stable and robust,

and because the 2-norm can be solved efficiently using the conjugate gradient method. The

former (i.e. damped LSM) has become particularly popular due to its ability to suppress

artifacts arising from noise and incomplete seismic data.

If we define the cost function as

F (m) = ||W(Lm− d)||22 + λ2R(m) , (4.5)

then a solution to the least-squares optimization problem can be found by finding the global

minimum of equation 4.5. Since equation 4.5 is a convex function, its global minimum can

be obtained by solving
∂F (m)

∂m
= 0 . (4.6)

When R(m) = ||m||22, the closed form solution for the model is given by

m̂ = (L†L+ λ2I)−1L†d , (4.7)
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where I is the identity matrix and W has been absorbed into L. Similarly, when R(m) =

||Dhm||22, the closed form solution is given by

m̂ = (L†L+ λ2D†
hDh)

−1L†d . (4.8)

Evidently, least-squares migration recovers a model by applying the regularized pseudoin-

verse to the data rather than the exact inverse. The forward modeling operator and adjoint

migration operator are typically implemented as computer programs rather than matrices.

Thus, the pseudoinverse cannot be directly computed. Instead, most least-squares prob-

lems are solved using efficient iterative solvers such as the conjugate gradient method (see

Appendix C).

4.3 Preconditioned least-squares migration

Common image gathers should consist of laterally continuous events if the migration velocity

model is correct. It is therefore appropriate to utilize a cost function that penalizes sharp

changes in model properties across the offset dimension. As discussed in the previous section,

this can be accomplished by using the cost function

F (m) = ||Lm− d||22 + λ2||Dhm||22 , (4.9)

where the data weighting operator W has been absorbed into L and d. Regularization is

used to penalize undesirable features in the model. Since sharp changes in AVO are non-

physical, we seek a model in which these features have been suppressed. In equation 4.9, the

derivative operator Dh amplifies high-frequency variations in AVO which the least-squares

solver then minimizes, ultimately yielding a model with smooth common image gathers. Dh

can therefore be viewed as a “bad pass” operator that emphasizes undesirable features in

the model. By making the change of variables z = Dhm, equation 4.9 can be rewritten as

F (z) = ||LD−1
h z− d||22 + λ2||z||22 , (4.10)

where the model m is given by m = D−1
h z. Equations 4.9 and 4.10 are equivalent only

if D−1
h exists. In practice, D−1

h doesn’t need to exist because it can be replaced with a

“good pass” operator that behaves as one wishes. Moreover, since Dh acts as a high-pass

filter (“bad pass” operator) that emphases undesirable features in the model, its inverse

must act as a low-pass filter (“good pass” operator) that promotes desirable features in the

model. Thus, D−1
h can be replaced with an operator that promotes smoothness in the model.

Cost functions that penalize sharp variations in the model typically use a sparse derivative
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operator based on a finite difference approximation. For example, Dh is often implemented

as a sparse matrix with 1’s on one diagonal and -1’s on another diagonal. Finite difference

operators are beneficial for a number of reasons: (i) they are intuitive to understand, (ii) any

order of derivative can be implemented, and (iii) they are represented by sparse matrices.

The last point is particularly important because sparse matrix-vector multiplication has a

low computational cost. Thus, it is relatively inexpensive to use a finite difference operator

to penalize the derivative of the model. However, the inverse of a sparse matrix is generally

non-sparse; thus, if D−1
h exists, the product D−1

h z requires M2 floating point operations.

Choosing Dh as a sparse finite difference operator is not a requirement. Moreover, the same

effect on the model can be achieved by choosing D−1
h as a sparse “good pass” operator and

allowing Dh to be a dense matrix. Therefore, we choose a sparse matrix P as our pre-

conditioner, where the behavior of P is similar to the expected behavior of D−1
h . Subbing

the preconditioner into equation 4.10 yields the formulation for preconditioned least-squares

migration

ẑ = arg min
z

||LPz− d||22 + λ2||z||22 ,

m̂ = Pẑ .
(4.11)

Preconditioning the inverse problem improves the eigenvalue distribution of the operator,

thereby decreasing its condition number and improving its invertbility (Saad, 1992). Conse-

quently, equation 4.11 requires fewer iterations of CG to reach convergence compared with

other cost functions such as damped LSM.

The preconditioner P is a smoothing operator. A natural choice for promoting lateral

continuity within common image gathers is a triangular filter that is applied across the

offset dimension. Triangular filters are represented by sparse matrices and are therefore

computationally efficient to implement. In fact, they can be implemented using the same

methodology that was discussed for the triangular anti-aliasing filter in chapter 2. Ad-

ditionally, they retain the advantage of placing more weight on the central sample than

on neighboring samples. Any choice of smoothing filter should, however, produce similar

results.

4.4 Examples

The following synthetic examples demonstrate the pros and cons of damped and precon-

ditioned least-squares migration. The first example illustrates the benefits of damped and

preconditioned LSM compared with migration via the adjoint in terms of the resolution and

amplitude balance of the image. The second example illustrates the impact of Kirchhoff
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operator aliasing on least-squares migration.

4.4.1 Example: Damped vs preconditioned LSM

Least-squares migration reduces the prevalence of sampling artifacts and helps improve the

resolution of the image, especially in complex geological settings. To illustrate the benefits

of damped and preconditioned least-squares migration, consider the velocity model in figure

4.1. 50 shot gathers were forward modeled using an array of 200 receivers with a sampling

rate of 4ms and a 20Hz Ricker wavelet; figure 4.2 shows a shot gather for a source located

at x=3500m. Figure 4.3 (a), (b), and (c) show the stacked image obtained by performing

migration via the adjoint, damped LSM, and preconditioned LSM with a 5-point triangular

smoothing filter, respectively. Similarly, figure 4.4 (a), (b), and (c) show a common image

gather located at x=5000m for migration via the adjoint, damped LSM, and preconditioned

LSM with a 5-point triangular smoothing filter, respectively. The adjoint migration op-

erator produced an image volume that suffered from a number of issues. First, reflectors

were poorly resolved in the faulted/structurally complex parts of the model as well as the

deeper layers. Second, amplitudes were poorly balanced, particularly in the deeper parts

of the model. Third, the common image gathers contained incorrect amplitude versus off-

set signatures at far offsets. Fourth, the far offsets in the common image gathers suffered

from migration stretch, which further reduced the resolution of the reflectors in the stacked

image. Lastly, the common image gathers were contaminated with low-amplitude artifacts

due to incomplete destructive interference of the Kirchhoff operator.

Least-squares migration solves for a regularized model that is capable of predicting the

seismic data; thus, LSM is expected to resolve the aforementioned issues. As expected,

damped LSM offered a substantial improvement over migration via the adjoint. In particu-

lar, damped LSM boosted the resolution of the reflectors throughout the image, balanced the

amplitudes of the faults and deeper reflectors, corrected the AVO signatures in the common

image gathers, reduced the amount of migration stretch at far offsets, and suppressed the ar-

tifacts arising from incomplete destructive interference of the Kirchhoff operator. However,

the image volume obtained using damped LSM did suffer from minor artifacts. Specifically,

the common image gathers contained low-amplitude noise arising from the non-smooth na-

ture of minimum norm solutions. Since seismic amplitudes are expected to vary smoothly

with offset, promoting lateral continuity within common image gathers is expected to yield a

more stable solution. In this example, lateral continuity is promoted via preconditioning by

applying a 5-point triangular filter across the offset dimension of the common image gath-

ers. As shown in figures 4.3 and 4.4, preconditioned LSM yielded the highest quality image

volume with the fewest artifacts. Moreover, the preconditioner suppressed high-frequency
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Figure 4.1: SAIG velocity model (m/s).
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Figure 4.2: Forward modeled shot gather at x=3500m for the velocity model in
figure 4.1.
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Figure 4.3: Stacked migrated image for (a) migration via the adjoint, (b) damped
least-squares migration, and (c) preconditioned least-squares migration with a 5-
point triangular smoothing filter.
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Figure 4.4: Common image gather located at x=5000m for (a) migration via the
adjoint, (b) damped least-squares migration, and (c) preconditioned least-squares
migration with a 5-point triangular smoothing filter.
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variations in AVO and promoted lateral continuity of real events, resulting in laterally

smooth common image gathers. Additionally, low-amplitude random noise was averaged

out, yielding a relatively artifact-free image volume. Preconditioning also helped to reduce

the amount of stretch at far offsets, thereby improving the resolution of the stacked image.

Lastly, and perhaps most importantly, preconditioned LSM experienced a higher conver-

gence rate than damped LSM, as shown in figure 4.5. In fact, damped LSM required 36

iterations to reach convergence while preconditioned LSM required only 20 iterations. This

difference is substantial because the high computational cost of least-squares migration is its

largest drawback. Thus, preconditioning increases the feasibility of applying least-squares

migration to large 2D or 3D data sets.

4.4.2 Example: Kirchhoff operator aliasing in LSM

Chapter 2 discussed the impact of Kirchhoff operator aliasing when performing migration

via the adjoint. An example was also provided to illustrate the effect of operator aliasing

with a two-reflector model. The current example is a continuation of the one from chapter

two, but differs in that it illustrates the impact of operator aliasing in the framework of least-

squares migration. This example uses the same two-reflector model as before, as shown in

figure 4.6(a). Additionally, the same constant-velocity model with v=2000m/s was used to

generate the zero-offset section in figure 4.6(b). The data consists of 50 receivers that were

uniformly spaced over a distance of 2500m. Each receiver used a sampling interval of 4ms

to ensure the data is adequately sampled in time. Thus, the spatial and temporal sampling

of the data is sufficient to avoid data aliasing. Any artifacts appearing in the least-squares

migrated image must therefore be a consequence of operator aliasing.

In figure 4.6(c), the input data was migrated using damped least-squares migration with-

out accounting for Kirchhoff operator aliasing. Since operator aliasing was ignored, the

Kirchhoff operator incorrectly migrated the data at each iteration of conjugate gradients.

Consequently, the image is contaminated with low-amplitude artifacts that precede the real

reflectors. Compared with figure 2.10(c), it is clear that LSM has partially suppressed

the aliased energy. However, an ideal migration operator should eliminate the aliased en-

ergy altogether. Therefore, it is appropriate to perform least-squares migration using the

anti-aliased Kirchhoff operator presented in chapter 2. In figure 4.6(d), the input data

was migrated using damped least-squares migration with an anti-aliased Kirchhoff opera-

tor. Comparing figure 4.6(c) with figure 4.6(d), it is clear that the anti-aliased Kirchhoff

operator has suppressed the aliased energy in the image, as expected. Evidently, Kirchhoff

operator aliasing has consequences in both migration via the adjoint and least-squares mi-

gration.
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Figure 4.6: (a) Synthetic reflectivity model. (b) Zero-offset seismic section produced
using the forward Kirchhoff operator L. (c) Least-squares migrated image using the
aliased Kirchhoff operator based on Algorithm 1. Least-squares migrated image
using the anti-aliased Kirchhoff operator based on Algorithm 2.



CHAPTER 4. LEAST-SQUARES MIGRATION 71

0 2 4 6 8 10

Iteration

0.0

0.2

0.4

0.6

0.8

1.0

C
o
s
t

Aliased

Anti-Aliased

Figure 4.7: Convergence curve for aliased and anti-aliased least-squares Kirchhoff
depth migration.



CHAPTER 4. LEAST-SQUARES MIGRATION 72

Since least-squares migration is an expensive, iterative process, it is tempting to ignore

operator aliasing. However, it turns out that using an anti-aliased Kirchhoff operator can

decrease the total cost of least-squares migration. When anti-aliasing is ignored, the ad-

joint operator introduces aliasing artifacts into the updated image at each iteration. These

artifacts reduce the models ability to predict the seismic data, which in turn increases the

misfit between the predicted and observed data. Consequently, aliased Kirchhoff operators

are expected to converge slower. Anti-aliased Kirchhoff operators, on the other hand, only

migrate features whose frequency content is below the Nyquist frequency of the operator.

Thus, artifacts are not introduced into the updated image, which in turn decreases the misfit

between the predicted and observed data. These claims can be verified by comparing the

convergence curves for aliased and anti-aliased least-squares Kirchhoff migration, as shown

in figure 4.7. Specifically, the anti-aliased Kirchhoff operator converges slightly faster than

the aliased Kirchhoff operator, thereby decreasing the cost of LSM. However, it should be

noted that the difference in convergence rates is relatively small. This is likely due to the

fact the forward Kirchhoff operator is a convolutional operator; consequntly, the positive

and negative aliasing artifacts approximately cancel each other when the forward Kirchhoff

operator is applied to the model.

4.5 Summary

Conventional seismic migration algorithms produce an image that suffers from sampling

artifacts and low resolution, and is incapable of predicting the observed seismic data. LSM

addresses these issues by casting migration as an optimization problem in which the goal

is to solve for a regularized model that is capable of predicting the observed data. Most

cost functions utilize minimum norm regularization, which seeks to find a model whose

norm is small. Minimum norm solutions are generally non-smooth and therefore result in

low-amplitude artifacts. An improved image can be obtained by preconditioning the inverse

problem by promoting smoothness along the offset dimension of each common image gather.

The resulting common image gathers are more stable; thus, conjugate gradients converges

in fewer iterations.

Although LSM is a powerful technique, it suffers from a number of shortcomings that limit

its practicality. First, choosing the tradeoff parameter is a difficult, expensive process.

Moreover, an L-curve or χ2 test must be generated using multiple different values of the

tradeoff parameter in order to identify the optimal choice. In practice, LSM is too expensive

to repeat multiple times. Thus, there is considerable uncertainty when choosing the tradeoff

parameter. Second, LSM is highly sensitive to errors in the velocity model. If the velocity
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model contains errors, least-squares migration will contaminate the migrated image with

artifacts in order to minimize the cost function. Thus, LSM must be preceded by a robust

velocity inversion technique. Lastly, the computational cost of LSM limits its practical

application for large 2D and 3D data sets. Preconditioning has been shown to improve the

rate of convergence of LSM. However, more work on this topic is required to improve the

feasibility of LSM with large data.



CHAPTER 5

Converted wave LSM with S-velocity errors

5.1 Introduction

Recently, there has been a growing interest in using PS converted waves as a supplementary

tool in seismic exploration. Moreover, PS waves provide complimentary information that

can be used to infer subsurface properties that cannot be estimated using PP waves alone.

A few noteworthy examples include the identification of fluid contacts, imaging beneath

gas-filled zones, and constraining the location of weak reflectors.

Migration is a crucial step in the converted wave processing workflow. Ideally, it should be

implemented as the inverse of the forward modeling operator. However, because the inverse

generally cannot be estimated, the adjoint is often used instead. The adjoint is capable of

recovering a structurally correct image, but with low resolution and incorrect amplitudes.

Therefore, the adjoint is considered a poor approximation to the inverse. Modern migration

algorithms resolve these issues by solving for the pseudoinverse via least-squares migration.

For example, Nemeth et al. (1999) found that LSM with a Kirchhoff operator improved

the resolution of faults and reduced the acquisition footprint. More recently, Stanton and

Sacchi (2014) found that converted wave LSM produced a higher-resolution image and fewer

crosstalk artifacts compared with migration using the adjoint.

All seismic migration algorithms involve numerical propagation of seismic waves. Therefore,

an accurate velocity model for the target region must be estimated beforehand. A great

effort has been made to advance the technology surrounding velocity model estimation

(Tarantola, 1984a; Bishop et al., 1985; Luo and Schuster, 1991; Pratt, 1999; Pratt and

Shipp, 1999). Despite these advances, no technique is capable of recovering the true model

without errors. This is particularly evident for S-velocity inversion, which requires the use

74
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of converted wave data. Converted waves suffer from a low signal-to-noise ratio and are

inherently more complex than PP waves. Consequently, S-velocity models are generally

less accurate than P-velocity models. This poses a problem for converted wave migration,

which requires an accurate estimate of both the P- and S-velocity models. If the errors

in the S-velocity model are substantial, the migration operator will incorrectly propagate

the converted waves, resulting in a structurally incorrect, unfocused image (Yan and Sava,

2010).

Luo and Hale (2014) recently addressed the problem of performing acoustic LSM in the

presence of velocity errors. The authors introduced a dynamic image warping operator

into the cost function to align the observed data with the predicted synthetic data prior to

computing the misfit. This ultimately reduced the sensitivity of the inversion to traveltime

errors, thereby enabling the cost function to focus on fitting amplitudes. Zhang et al. (2014)

proposed a related use for DIW: flattening common image gathers (CIGs). While both of

these techniques are capable of improving the focus and resolution of the image, neither of

them can ascertain the true location for the reflectors.

In this chapter, we modify the conventional cost function used in converted wave LSM

to improve its accuracy in the presence of S-velocity errors. Our modified cost function

includes a DIW operator that compensates for S-velocity errors by warping the image prior

to computing the predicted synthetic data. Unlike the methods proposed by Luo and Hale

(2014) and Zhang et al. (2014), our method is capable of recovering the correct location

for the reflectors. However, the method is only suitable for converted wave migration, and

is based on the assumption that the P-velocity model and PP image have been accurately

estimated.

5.2 Warped converted wave LSM

Converted wave LSM aims to recover an image of the subsurface by minimizing the cost

function

J = ||LPSmPS − dPS||22 + ||mPS||22 , (5.1)

where LPS = LPS(vP, vS) is the converted wave forward modeling operator, vP and vS are

the P- and S-velocity models, mPS is the converted wave image volume, and dPS is the

converted wave data after wavefield separation. Equation 5.1 is typically solved using an

iterative method such as conjugate gradients (CG). Each iteration of CG involves applying

the forward operator to predict synthetic data, followed by migrating the data residual using

the adjoint. Therefore, the cost for each iteration of CG is roughly double that of migration

using the adjoint.
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Equation 5.1 assumes the P- and S-velocity models have been accurately estimated. When

this assumption holds true, the migration operator simulates the true propagation of con-

verted waves. Therefore, equation 5.1 should approximately converge to the true image.

However, if vP or vS contain errors, the migration operator will incorrectly propagate the

converted waves, resulting in an incorrect image with non-flat CIGs. In the current study,

we focus on improving migration in the latter case. Due to the increased complexity of

converted waves compared with PP waves, we assume the S-velocity model contains the

majority of the errors. Under this assumption it is implied that the P-velocity model is

approximately correct, and therefore an accurate PP image can be obtained. Additionally,

it is known a priori that PP and PS reflectors are co-located in space. Therefore, structural

differences between the PP and PS images can be primarily attributed to errors in the S-

velocity model. We propose to compensate for these errors by utilizing image registration

to estimate the relative shifts between the PP and PS images.

Several algorithms have been developed for performing image registration. In this work, we

utilize the dynamic image warping technique proposed by Hale (2013). DIW aims to recover

the sequence of shifts u[1 : N ] that aligns two traces, f and g, such that

f [i] ≈ g[i+ u[i]] . (5.2)

The shifts are estimated by solving the optimization problem

u[i] = arg min
l

N∑
1

e[i, l[i]]] , (5.3)

subject to the constraints

ul ≤ u[i] ≤ uu , rl ≤ u[i]− u[i− 1] ≤ ru , (5.4)

where e[i,l ] is the alignment error array given by

e[i, l] = (f [i]− g[i+ l])2 . (5.5)

Here, ul and uu are lower and upper bounds on shifts u[i], and rl and ru are lower and

upper bounds on the strain. Therefore, ul and uu control the minimum and maximum

shifts allowed, while rl and ru determine how rapidly the shifts can vary.

Equation 5.3 is capable of registering a single trace. DIW can therefore be extended to

multi-dimensional images by solving equation 5.3 for each trace in the image. However, this

approach neglects to impose continuity constraints across each dimension, and is therefore

prone to introducing artifacts into the registered image. Hale (2013) demonstrated that a
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better result can be achieved by smoothing the alignment error array across each dimension

prior to solving equation 5.3. See Appendix D for a detailed review of multidimensional

dynamic image warping.

Ideally, DIW should estimate the relative shifts between the least-squares PP and PS image

volumes. In practice, it is too expensive to perform LSM beforehand. However, because

the relative shifts between the PP and PS image volumes are expected to vary smoothly, it

should be sufficient to perform DIW using the adjoint image volumes.

After the relative shifts have been estimated, we construct a warping operator, W, such

that its transpose, W†, applies the shifts to the converted wave image. An approximation

of the converted wave image, m̂PS , can therefore be obtained by solving

m̂PS = W†L†
PSdPS . (5.6)

The image obtained using equation 5.6 is approximately equivalent to what would have been

obtained using the adjoint migration operator with the true S-velocity model. Therefore,

W† reduces the sensitivity of the migration operator to S-velocity errors. Note that W†

is incapable of compensating for P-velocity errors. Errors in the P-velocity model will

introduce inaccuracies into the PP image, which in turn will be transmitted to the converted

wave image via the warping operator.

Since W† aligns the images, W must have the opposite effect, i.e., W effectively applies

the shifts in the opposite direction. If the true converted wave image, mPS , is known, W

can compensate for S-velocity errors by warping the true image prior to demigration:

dPS ≈ LPSWmPS . (5.7)

W warps the true image volume by an amount that roughly offsets the error introduced by

the erroneous S-velocity model. Therefore, the true observed data is approximately equal

to the predicted synthetic data.

Although equation 5.6 is capable of compensating for S-velocity errors, it fails to recover

true amplitudes and suffers from low resolution. An improved image can be obtained by

solving a least-squares problem that minimizes the difference between the observed data

and the predicted synthetic data in equation 5.7. Therefore, we propose a new cost function

that is a modification of equation 5.1:

J = ||LPSWmPS − dPS||22 + ||mPS||22 . (5.8)

Equation 5.8 can be readily solved using an iterative scheme such as conjugate gradients.
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5.3 Example: LSM with S-velocity errors

To demonstrate the efficacy of our modified cost function, we performed a synthetic test

using an anticline model with P- and S-velocities shown in figures 5.1(a) and 5.1(b), respec-

tively. Migration velocity models were obtained by smoothing the true models with a 2D

Gaussian filter. We then contaminated the S-velocity model with the errors in figure 5.1(c).

50 two-component shot gathers were generated using elastic finite difference modeling with

a 40Hz Ricker wavelet. PP and PS data was then extracted by taking the divergence and

curl of the data, respectively; figure 5.2 shows the PP and PS data for a source located at

800m. For simplicity, we utilized a 2D Kirchhoff depth migration/demigration operator to

migrate the data, where the traveltimes were estimated using the wavefront construction

method Vinje et al. (1993).

Figures 5.3(a) and 5.4(a) show the stacked PP image and a CIG obtained using the adjoint

PP migration operator. The reflectors are correctly positioned and the CIGs are flat. How-

ever, the image suffers from low resolution and poorly balanced amplitudes. Figures 5.3(b)

and 5.4(b) show the stacked PS image and a CIG obtained using the adjoint PS migration

operator. A comparison of the PP and PS CIGs suggests that the S-velocity model contains

errors. Therefore, when we performed converted wave LSM using the conventional cost

function, we obtained an incorrect image with non-flat CIGs, as shown in Figures 5.3(c)

and 5.4(c).

Because the S-velocity model was known to contain errors, we proceeded to perform con-

verted wave LSM using our modified cost function. We began by performing DIW using

the adjoint PP and PS image volumes; figure 5.4(f) shows the estimated shifts for the CIG

located at x=1000m. The magnitude of the shifts generally increases with offset. This is

due to the fact that the converted wave CIGs were non-flat, with the far offsets requir-

ing a larger correction than the near offsets. Applying the estimated shifts to the adjoint

PS image volume resulted in the stacked PS image and CIG in figures 5.3(d) and 5.4(d).

Compared with the original PS CIGs, the reflectors in the warped CIGs have been flat-

tened and shifted back to their true location. Therefore, the warping operator successfully

compensated for the errors in the S-velocity model. However, the image still suffers from

low resolution and incorrect amplitudes. Therefore, an improved image can be obtained by

utilizing our modified cost function in equation 5.8. Our modified cost function converged

to the stacked PS image and CIG in figures 5.3(e) and 5.4(e). Unlike the conventional cost

function, our modified cost function was able to flatten the CIGs and recover the true loca-

tion of the PS reflectors. Additionally, our modified cost function retained the traditional

advantages associated with least-squares migration, including true amplitudes and improved

resolution.
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Figure 5.1: (a) True P-wave velocity model. (b) True S-wave velocity model. (c)
Errors in S-velocity model. The color-bars show the velocity in units of m/s.
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Figure 5.2: (a) PP data and (b) PS data produced by elastic finite difference mod-
eling for a source located at x=800m. The direct wave was removed using a top
mute.
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Figure 5.3: Migration in the presence of S-velocity errors. (a) Adjoint PP image.
(b) Adjoint PS image. (c) Conventional PS LSM image. (d) Warped adjoint PS
image. (e) Warped PS LSM image.
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Figure 5.4: Common image gathers located at x=1000m for (a) PP adjoint, (b) PS
adjoint, (c) conventional PS LSM, (d) warped PS adjoint, and (e) warped PS LSM.
Panel (f) shows the shifts that were used/estimated by the warping operator; the
color-bar shows the vertical shifts in units of meters.
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5.4 Summary

Converted wave least-squares migration minimizes the misfit between the observed PS data

and the predicted synthetic PS data. If the P- or S-velocity models contain errors, the migra-

tion operator will incorrectly propagate the converted waves; consequently, the conventional

cost function will converge to an incorrect image that is contaminated with artifacts. In this

chapter, we modified the conventional cost function used in converted wave least-squares

migration to reduce its sensitivity to S-velocity errors. Our modified cost function includes

a dynamic image warping operator that compensates for S-velocity errors by warping the

image prior to computing the predicted synthetic data. Moreover, the relative shifts between

the adjoint PP and PS images are used to compensate for S-velocity errors by warping the

PS image prior to forward modeling. The shifts applied by the warping operator offset the

errors introduced by the erroneous S-velocity model; consequently, the predicted synthetic

PS data matches the observed PS data, so a correct PS image can be recovered.

We demonstrated with synthetic data that our modified cost function converges to a more ac-

curate image than the conventional cost function when the S-velocity model contains errors.

In particular, dynamic image warping was found to be sufficiently accurate for estimating

the relative shifts between the adjoint PP and PS images. Applying the estimated shifts to

the PS image aligned the PS reflectors with the PP reflectors. Conversely, when the adjoint

of those shifts were applied to the PS image prior to forward modeling, the predicted PS

data was found to approximately match the observed PS data. As a result, our modified cost

function yielded a high-resolution, true-amplitude PS image that was structurally correct.

Additionally, since our modified cost function has a reduced sensitivity to S-velocity errors,

it was found to produce substantially fewer artifacts than the conventional cost function.

Although the initial results are promising, our modified cost function suffers from a funda-

mental issue that limits its practicality. Specifically, if the geology is structurally complex

and the velocity errors are large, reflectors may intersect within common image gathers.

The conventional dynamic image warping method does not include any a priori constraints

for addressing this issue; consequently, the estimated shifts may contain errors. More work

on this topic is therefore required to improve the robustness of the method. For example,

it may be beneficial to decouple the warping procedure into three separate steps: (i) apply

a residual moveout correction to each common each gather, (ii) stack the common image

gathers to form a post-stack image, then (iii) perform image registration using the post-

stack images. Decoupling the warping procedure in this manor should improve the stability

of the shifts and lower the computational cost.
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Conclusions

6.1 Summary

Conventional seismic migration operators yield an image that suffers from low resolution,

poorly balanced amplitudes, and sampling artifacts. Least-squares migration addresses these

issues by finding a model that minimizes the difference between the true observed data and

the predicted synthetic data. This thesis aimed to advance the technology surrounding

multicomponent least-squares Kirchhoff depth migration by improving the stability of the

forward/adjoint Kirchhoff operator and modifying the conventional PP and PS migration

cost functions.

The Kirchhoff operator maps scatterers from the model domain into diffractions in the data

domain. Since seismic data is collected using a limited number of traces, the data-domain

diffractions are sampled a finite number of times; consequently, the Kirchhoff operator is

subject to the issue of aliasing. Kirchhoff operator aliasing can be circumnavigated using

one of two strategies: (i) limiting the dip of the Kirchhoff operator, or (ii) suppressing the

frequencies that violate the dip Nyquist criterion. Limiting the dip is viable when the ge-

ology is flat; however, if the geology is structurally complex, information is needed from

the steeply dipping parts of the Kirchhoff operator in order to generate an accurate image.

The latter approach for anti-aliasing was investigated in chapter 2 of this thesis. Moreover,

an efficient triangular anti-aliasing filter was embedded in the forward/adjoint Kirchhoff

operator to suppress the frequencies that violated the dip Nyquist criterion. Unlike alterna-

tive anti-aliasing methods, which require multiple copies of the data to be forward modeled

and saved, the triangular anti-aliasing filter used in this study required the use of only

one data set, thereby decreasing the input/output cost of the algorithm and improving the
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memory-efficiency of the operator. Anti-aliasing the Kirchhoff operator was found to yield

an improved image for both conventional migration and least-squares migration. Moreover,

the triangular anti-aliasing filter suppressed the aliased frequencies in the data, resulting

in a relatively artifact-free image. Importantly, the inclusion of the triangular anti-aliasing

filter came with a negligible increase in computational cost, making it a natural choice for

least-squares migration. Finally, since the anti-aliasing filter suppressed the aliased energy

at each iteration of conjugate gradients, least-squares migration with an anti-aliased Kirch-

hoff operator converged in fewer iterations than least-squares migration with an aliased

Kirchhoff operator. Thus, anti-aliasing not only improved the quality of the image, but also

increased the rate of convergence of least-squares migration.

The Kirchhoff operator uses Green’s functions to simulate the propagation of seismic waves.

Specifically, a source-side Green’s function is used to simulate the downward propagation

of seismic waves from the source into the subsurface, and a receiver-side Green’s function

is used to simulate the upward propagation of scattered waves to each receiver. Kirchhoff

migration therefore requires a robust method for estimating Green’s functions. Chapter 3 of

this reviewed the wavefront construction method for estimating seismic Green’s functions.

The wavefront construction method utilizes ray tracing principles to propagate the wave-

front itself, rather than individual rays. As a result, the wavefront construction method can

compute and distinguish between multiple arrivals based on the geometry of the wavefront.

Alternatively, a single arrival, such as the first arrival or highest-amplitude arrival, can be

isolated and propagated on its own. This is a substantial advantage compared with other

robust techniques for estimating Green’s functions, which are typically limited to computing

first arrivals. Additionally, the relative divergence of each point on the wavefront can be

compared at successive iterations to obtain an estimate of the amplitude of the Green’s

functions. Thus, the wavefront construction method is capable of accurately estimating all

of the quantities required by the Kirchhoff operator.

Least-squares migration is typically solved iteratively using the conjugate gradient method.

Each iteration of conjugate gradients requires one application of the forward modeling oper-

ator and one application of the adjoint migration operator. Thus, each iteration of CG costs

approximately double that of conventional migration. Since several iterations are required

to reach convergence, least-squares migration has a substantial computation cost. For this

reason, industry has been slow to adopt LSM. Many industrial implementations of LSM

circumnavigate this issue by truncating CG after a fixed number of iterations. Although

this strategy lowers the computational cost of LSM, it also reduces the quality and reso-

lution of the migrated image. Therefore, there is considerable motivation to improve the

rate-of-convergence of LSM. Chapter 4 of this thesis investigated a preconditioning strategy
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for reducing this cost. Moreover, a “good-pass” smoothing filter was embedded in the misfit

term of the cost function to promote lateral continuity within common image gathers. Since

seismic amplitudes are expected to vary smoothly with offset, the preconditioner stabilized

the inverse problem. Moreover, preconditioning the inverse problem improved the eigen-

value distribution and decreased the condition number of the operator, thereby improving

its invertibility. As a result, fewer iterations of conjugate gradients were needed to reach

convergence.

Lastly, this thesis sought to improve the accuracy of converted wave migration in the pres-

ence of S-velocity errors. Due to the difficulty in estimating S-velocity models, converted

wave images are typically less accurate than PP images. However, it is known a priori that

PP and PS reflectors are collocated in space. This thesis exploited this observation by uti-

lizing image registration to automatically warp/align the PS reflectors with the presumably

correct PP reflectors, thereby reducing the sensitivity of converted wave migration to errors

in the S-velocity model. The warping operator was then embedded in the converted wave

migration cost function, allowing for the recovery of a high-resolution, true-amplitude PS

image that is structurally correct, despite the presence of errors in the S-velocity model.

The method was applied to a simple anticline velocity model as a proof-of-concept. The

modified cost function was found to flatten the common image gathers and shift the PS

reflectors to their correct location in space. Additionally, since the predicted synthetic data

better matched the observed data, fewer artifacts were introduced into the final image.

To summarize, the main contributions of this thesis were:

1. The development of an anti-aliased forward/adjoint Kirchhoff operator that satisfies

the dot product test,

2. A demonstration of the improved convergence rate resulting from using an AVO-

smoothing preconditioner in least-squares migration,

3. The proposal of a new converted wave least-squares migration cost function that uti-

lizes image registration to reduce the impact of S-velocity errors.

6.2 Future work

This thesis proposed a new cost function for performing converted wave least-squares mi-

gration in the presence of S-velocity errors. The method relies on using image registration

to estimate the relative shifts between corresponding reflectors in the PP and PS image vol-

umes. Those shifts are then embedded in a warping operator that is used to compensate for
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S-velocity errors. Evidently, the method is limited by the accuracy and robustness of the im-

age registration technique. This thesis focused on a robust, computationally efficient image

registration technique called dynamic image warping. Dynamic image warping proved to be

sufficiently stable for the simple velocity model used in chapter 5. However, real models are

often substantially more complicated than the one used in this work. Moreover, real PP and

PS images often contain closely-spaced reflectors. If the errors in the S-velocity model are

substantial, the reflectors may intersect each other in the common image gather domain.

It is not yet known if dynamic image warping is robust enough to correctly handle this

situation. Therefore, more work is required to determine the validity of our cost function

when the model is structurally complex. Moving forward, it may be advantageous to break

the warping procedure into three steps: (i) apply a residual moveout correction to each

common each gather, (ii) stack the common image gathers to form a post-stack image, then

(iii) perform image registration using the post-stack images. Decoupling the method in this

manor should improve the stability of the estimated shifts and decrease the computational

cost.

This work focused on least-squares migration with a Kirchhoff operator. It would be an

interesting and useful experiment to investigate the benefits of using a wave equation-based

operator in our proposed converted wave LSM cost function. Since image registration is

affected by artifacts, the greater accuracy associated with wave equation-based operators

should allow for the recovery of more accurate relative shifts, which in turn should result in

an improved converted wave image.
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Runge, C. (1895). Über die numerische auflösung von differentialgleichungen. Mathematische

Annalen, 46(2):167–178.

Saad, Y. (1992). Numerical methods for large eigenvalue problems. St Martins Press.

Sakoe, H. and Chiba, S. (1978). Dynamic programming algorithm optimization for spoken

word recognition. IEEE transactions on acoustics, speech, and signal processing, 26(1):43–

49.

Sava, P. and Fomel, S. (2006). Time-shift imaging condition in seismic migration. Geo-

physics, 71(6):S209–S217.

Sava, P. C. and Fomel, S. (2003). Angle-domain common-image gathers by wavefield con-

tinuation methods. Geophysics, 68(3):1065–1074.

Scales, J. A. (1987). Tomographic inversion via the conjugate gradient method. Geophysics,

52(2):179–185.

Schneider, W. A. (1978). Integral formulation for migration in two and three dimensions.

Geophysics, 43(1):49–76.

Sethian, J. A. (1996). A fast marching level set method for monotonically advancing fronts.

Proceedings of the National Academy of Sciences, 93(4):1591–1595.

Shearer, P. M. (2009). Introduction to seismology. Cambridge University Press, New York,

New York, 2nd edition.

Shragge, J. (2014). Reverse time migration from topography. Geophysics, 79(4):S141–S152.

Stanton, A. and Sacchi, M. D. (2014). Least squares migration of converted wave seismic

data. CSEG Recorder, 39(10):48–52.

Stanton, A. and Sacchi, M. D. (2017). Elastic least-squares one-way wave-equation migra-

tion. Geophysics, 82(4):S293–S305.

Stoffa, P. L., Fokkema, J. T., de Luna Freire, R. M., and Kessinger, W. P. (1990). Split-step

Fourier migration. Geophysics, 55(4):410–421.

Stolt, R. H. (1978). Migration by Fourier transform. Geophysics, 43(1):23–48.



BIBLIOGRAPHY 93

Symes, W. W. and Carazzone, J. J. (1991). Velocity inversion by differential semblance

optimization. Geophysics, 56(5):654–663.

Tang, Y. (2009). Target-oriented wave-equation least-squares migration/inversion with

phase-encoded Hessian. Geophysics, 74(6):WCA95–WCA107.

Tarantola, A. (1984a). Inversion of seismic reflection data in the acoustic approximation.

Geophysics, 49(8):1259–1266.

Tarantola, A. (1984b). Linearized inversion of seismic reflection data. Geophysical prospect-

ing, 32(6):998–1015.

van der Baan, M. (2006). PP/PS wavefield separation by independent component analysis.

Geophysical Journal International, 166(1):339–348.

Vanelle, C. (2002). Traveltime-based true-amplitude migration. PhD thesis, University of

Hamburg.

Vidale, J. (1988). Finite-difference calculation of travel times. Bulletin of the Seismological

Society of America, 78(6):2062–2076.

Vinje, V., Iversen, E., and Gjøystdal, H. (1993). Traveltime and amplitude estimation using

wavefront construction. Geophysics, 58(8):1157–1166.

Wang, J., Kuehl, H., and Sacchi, M. D. (2004). Preconditioned least-squares wave-equation

AVP migration. In CSEG Annual Convention, CDROM.

Wang, J., Kuehl, H., and Sacchi, M. D. (2005). High-resolution wave-equation AVA imag-

ing: Algorithm and tests with a data set from the western canadian sedimentary basin.

Geophysics, 70(5):S91–S99.

Wang, J. and Sacchi, M. D. (2006). High-resolution wave-equation amplitude-variation-

with-ray-parameter (AVP) imaging with sparseness constraints. Geophysics.

Xue, Z., Chen, Y., Fomel, S., and Sun, J. (2015). Seismic imaging of incomplete data

and simultaneous-source data using least-squares reverse time migration with shaping

regularization. Geophysics.

Yan, J. and Sava, P. (2010). Analysis of converted-wave extended images for migration

velocity analysis. In SEG Technical Program Expanded Abstracts 2010, pages 1666–1671.

Society of Exploration Geophysicists.

Yao, G. and Jakubowicz, H. (2016). Least-squares reverse-time migration in a matrix-based

formulation. Geophysical Prospecting, 64(3):611–621.
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APPENDIX A

The eikonal and transport equations

The Kirchhoff operator uses Green’s functions to simulate the propagation of the source-side

and receiver-side wavefield. It is therefore crucial to establish a method for accurately and

efficiently estimating the Green’s functions. For seismic waves, the Green’s functions take

the following form:

G(x, ω) = A(x)eiωτ(x) , (A.1)

where ω is the angular frequency, x is an arbitrary position in the subsurface, A(x) is the

amplitude (geometrical spreading factor), and τ(x) is the traveltime. Each Green’s function

therefore has two unknowns that must be solved for: A(x) and τ(x). In order to solve for the

unknowns, the wavefield must be expanded using a trial solution. The most common trial

solution is the high-frequency WKBJ approximation, which assumes the wavefield u(x, ω)

can be written as (Bleistein et al., 2001)

u(x, ω) ≈ ωβeiωτ(x)
∞∑
j=0

Aj(x)

(iω)j
, (A.2)

where β is an integer number and Aj is the jth order wave amplitude. As Bleistein et al.

(2001) noted, there are several motivations for using a trial solution of this form. First, it

can be rigorously shown that linearly independent solutions of the 1D Helmholtz equation

take the form of equation A.2 as |ω| approaches infinity. Second, there are many known

cases where the exact solution of the higher dimensional Helmholtz equation also takes the

form of equation A.2. Third, it makes sense from a physical perspective. Division by (iω)j

represents successive integrations in the time domain. Since integration is a smoothing op-

eration, the lowest-order terms in equation A.2 represent the sharpest (highest frequency)

part of the solution. Therefore, the WKBJ trial solution is naturally capable of incorporat-

ing the high-frequency assumption.
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Away from the source, the wavefield satisfies the homogeneous Helmholtz equation

L(x, ω)u(x, ω) =
[
∇2 +

ω2

c(x)2

]
u(x, ω) = 0 , (A.3)

where c(x) is the velocity model, ∇2 is the Laplace operator, and L(x, ω) = ∇2 + ω2

c(x)2 is

the Helmholtz operator. Subbing the WKBJ trial solution into equation A.3 gives the result

Lu = ωβeiωτ
∞∑
j=0

1

(iω)j

[
ω2

{
1

c2
− (∇τ)2

}
Aj

+ iω
{
2∇τ · ∇Aj +Aj∇2τ

}
+∇2Aj

]
,

(A.4)

where the dependent variables have been dropped to improve readability. In order to satisfy

the homogeneous Helmholtz equation, equation A.4 must be equal to zero. The terms with

different powers of ω will generally not cancel each other. Therefore, the coefficient of

each power of ω must be independently equated to zero, starting with the largest possible

exponent, which is β + 2. Since ωβ+2 is only present in the first term of the summation,

and it only occurs when j = 0, setting its coefficient to zero is a simple task that yields the

eikonal equation
1

c2(x)
− (∇τ(x))2 = 0 . (A.5)

Note that we intentionally avoided the trivial solution in which A0 = 0. This choice also

guarantees that the entire first term in the summation is zero for all higher order Aj , which

means only the second and third term must be considered in the remainder of this discussion.

The second largest power of ω is β+1. Of the remaining two terms, ωβ+1 shows up in only

the middle term, and only when j = 0. Therefore, equating the coefficient of ωβ+1 to zero

gives the (first) transport equation

2∇τ(x) · ∇A0(x) +A0(x)∇2τ(x) = 0 . (A.6)

Note that when j = 0, the order of the third term in the summation is β. Next, we proceed

to j = 1. When j = 1, the order of the second term is β and the order of the third term

is β − 1. Therefore, the solution for higher order Aj can be obtained recursively using the

formula

2∇τ(x) · ∇Aj(x) +Aj(x)∇2τ(x) = −∇2Aj−1(x) . (A.7)

In conclusion, the traveltime and amplitude components of the Green’s functions can be

estimated by solving the eikonal and transport equations, respectively.



APPENDIX B

The Runge-Kutta method

The Runge-Kutta method is a numerical method that was proposed by the mathematicians

Runge (1895) and Kutta (1901) for estimating the solution of ordinary differential equations

of the form
dy

dt
= f(t, y) , y(t0) = y0 , (B.1)

where y = y(t) is the unknown function we want to estimate, t is the time, f is a func-

tion of y and t that can be evaluated analytically, and y0 and t0 are the known initial

conditions (e.g., see Franklin, 2013). The Runge-Kutta method aims to solve equation B.1

by numerically integrating the solution forward in time; thus, the Runge-Kutta method

is iterative. The method is initialized using the conditions given by y0 and t0. The so-

lution at each sequential iteration is then computed based on the solution at the current

iteration as well as the value of the function f at multiple trial points along the step interval.

Several versions of the Runge-Kutta method have been proposed, each with a different

level of accuracy. The most common version of the Runge-Kutta method is accurate to the

fourth order and is typically referred to as “RK4” or the “classical Runge-Kutta method”.

For a given temporal step size h, the classical Runge-Kutta method integrates from iteration

n to n+ 1 using the following scheme:

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4) ,

tn+1 = tn + h ,

(B.2)
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where yn and tn are the solution and time at the nth step, and k1, k2, k3, and k4 are given

by

k1 = f(tn, yn) ,

k2 = f(tn +
h

2
, yn +

h

2
k1) ,

k3 = f(tn +
h

2
, yn +

h

2
k2) ,

k4 = f(tn + h, yn + hk3) .

(B.3)

Thus, the classical Runge-Kutta method estimates the the value of y at the next step based

on the value of y at the current step plus a weighted average four other values: k1, k2,

k3, and k4. k1 represents the update computed using the slope at the beginning of the

interval. k2 and k3 represent the update computed using two different estimates of the

slope at the midpoint of the interval. Finally, k4 represents the update computed using the

slope at the end of the interval. By averaging the four increments, low-order errors terms

can be eliminated, resulting in a more accurate solution. Not surprisingly, more weight is

given to the updates computed at the midpoint, as they provide the best approximation

of the average solution. For many numerical problems, the function f is known only at

discrete points. Therefore, the Runge-Kutta method requires an interpolation scheme for

evaluating f at an arbitrary point. In this thesis, linear interpolation is used because of

its low computational cost; when f depends on two or three dimensions, as is the case in

seismic ray tracing, bilinear or trilinear interpolation can be used.



APPENDIX C

Conjugate gradients for least-squares

The conjugate gradient method is an algorithm for solving the following system of linear

equations (Hestenes and Stiefel, 1952; Scales, 1987):

Ãx = b̃ , (C.1)

where Ã is a positive-definite matrix or operator, x is a vector of model parameters, and

b̃ is a vector of data. In damped least-squares migration, the goal is to minimize a cost

function of the form

F (x) = ||Ax− b||22 + λ2||x||22 , (C.2)

where A is the forward modeling operator that simulates the seismic experiment, b is the

recorded seismic data, and λ is the regularization parameter. Equation C.2 can be expressed

in the form of equation C.1 by rewriting it as

[
A

λ

]
x =

[
b

0

]
, (C.3)

where 0 is a vector of zeros. Thus, Ã =

[
A

λ

]
and b̃ =

[
b

0

]
. Damped least-squares migration

can therefore be solved using the conjugate gradient method (Algorithm 4). Importantly, the

conjugate gradient method does not require A to be explicitly stored as a matrix. Moreover,

it only requires information about the action of A and AT on a general vector; consequently,

A and AT can be implemented as operators in the form of computer programs. Care must

therefore be taken to ensure that AT is the exact adjoint of A.

The same idea can be used to extend the conjugate gradient method to solve more compli-
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cated cost functions. For example, preconditioned least-squares migration (e.g. see chapter

4) can be solved by concatenating the preconditioner P with the forward modeling operator

A. Thus, for preconditioned LSM, Ã =

[
AP

λ

]
. When implementing preconditioned LSM,

it is important to make use of the following linear algebra identity: (AP)T = PTAT . Thus,

preconditioned LSM can be solved with Algorithm 4 by replacing A with AP and replacing

AT with PTAT .

Algorithm 4 Conjugate gradients for least-squares

b ← vector of observed data
λ ← regularization parameter
Niter ← maximum number of iterations
tol ← convergence tolerance
r = d
s = g = AT r
x = 0
γ = gTg
γ0 = γ
cost0 = rT r
for j = 1 : Niter do

t = As
Δ = tT t+ λsT s
if Δ ≤ tol then

BREAK
end if
α = γ/Δ
x = x+ αs
r = r− αt
g = AT r
g = g− λx
γ0 = γ
γ = gTg
cost = rT r+ λxTx
β = γ/γ0
s = βs+ g
if

√
γ ≤ √

γ0tol then
BREAK

end if
end for
return x



APPENDIX D

Dynamic image warping

Dynamic image warping (DIW) is a multidimensional extension of 1D dynamic time warping

(DTW) (Hale, 2013). Therefore, we begin with a review of dynamic time warping. Consider

two seismic traces, f and g, that contain the same reflection events, but are unaligned in

time. The two sequences are approximately related by f [i] ≈ g[i + s[i]], where s[i] is the

relative shift between the ith element of f and g. If the relative shifts are known, they can

be applied to g to register it with f .

In order to estimate the relative shifts between the two signals, the alignment error must

first be computed. Hale (2013) suggested to measure the alignment error based on the

squared difference between the two signals:

e[i, l] ≡ (f [i]− g[i+ l])2 , (D.1)

where l is the integer lag between the two signals. The alignment error e[i, l] approaches

zero when the lag l is approximately equal to the true shift s[i]. The estimated vector of

relative shifts u[i] can therefore be obtained by solving the optimization problem

u[i] = arg min
l

N∑
1

e[i, l[i]]] , (D.2)

subject to the constraints

ul ≤ u[i] ≤ uu , rl ≤ u[i]− u[i− 1] ≤ ru , (D.3)

where ul and uu are lower and upper bounds on the magnitude of the shifts, and rl and ru

are lower and upper bounds on the rate of change of the shifts (i.e. the strain). Therefore,
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ul and uu control the minimum and maximum shifts allowed, while rl and ru determine

how rapidly the shifts can vary.

Equation D.2 is solved using a two-step process: (i) forward accumulation of alignment

errors, followed by (ii) backtracking to estimate the optimal shifts. The first step is a

recursive process in which the alignment errors e[i, l] are summed to obtain the “distances”

d[i, l]. The forward accumulation procedure depends on the strain rates rl and ru; for the

simplest case where rl = ru = 1, the distances are obtained using the framework

d[i, l] = e[i, l] + min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
d[i− 1, l − 1]

d[i− 1, l]

d[i− 1, l + 1]

. (D.4)

It is generally desirable to limit the strain to less than one. Moreover, decreasing the

strain increases the smoothness of the estimated shifts, thereby improving the stability of

the algorithm (Hale, 2013). The most straightforward approach for limiting the strain is to

sample the lags at fractions of a time step. However, this is not ideal because it increases the

computational cost of the algorithm (Hale, 2013). A more efficient strategy for limiting the

strain is to allow the lag to vary by only one time step over a period of several samples. For

example, to limit the strain to 50%, any change in lag for one sample should be followed by

no change in lag for the next sample. The distances for a 50% strain are therefore computed

using the recursive framework

d[i, l] = e[i, l] + min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
d[i− 2, l − 1] + e[i− 1, l − 1]

d[i− 1, l]

d[i− 2, l + 1] + e[i− 1, l + 1]

. (D.5)

This strategy can be used to limit the strain to any rational number of the form 1/b, where

b is an integer.

After the distances have been forward accumulated, the optimal shifts can be estimated

through a process called backtracking. Backtracking is initialized by selecting the optimal

shift u[N ] for the last sample in the trace, where N is the number of samples in the trace.

Since d[N, l] represents the accumulated alignment error for the last sample in the trace, the

optimal shift u[N ] for the last sample is obtained by choosing the lag l that minimizes d[N, l].

The remaining shifts are then estimated using a recursive framework. For the simplest case

where rl = ru = 1, the shifts are estimated by recursively solving

u[i− 1] = arg min
l∈{u[i]−1,u[i],u[i]+1}

d[i− 1, l] (D.6)
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for each sample i in the trace. Equation D.6 states that the optimal shift at sample i − 1

is either u[i] − 1, u[i], or u[i] + 1, depending on which one yields the smallest “distance”.

Equation D.6 can be modified for strains less than 100% by shifting sequences in blocks of

two or more samples (Hale, 2013).

Dynamic time warping can be used to register multidimensional images by performing DTW

on one row or column of the image at a time. However, the resulting shifts are only guar-

anteed to be smooth and continuous along the dimension in which DTW was performed;

moreover, the shifts are generally discontinuous and rapidly varying along the other dimen-

sions. Hale (2013) showed that a substantial improvement can be achieved by smoothing

the alignment error array across each dimension of the image prior to performing DTW;

this modified approach is referred to as dynamic image warping. Hale (2013) recognized

that the forward accumulation algorithm represents integration and is therefore a smoothing

operation. The forward accumulation algorithm is therefore a natural choice for smoothing

the alignment errors. For the simplest case in which the image has only 1 dimension, the

smooth alignment error array ẽ is given by

ẽ[i, l] = ẽf [i, l] + ẽr[i, l]− e[i, l] , (D.7)

where ẽf [i, l] is obtained by forward accumulating the alignment errors and ẽr[i, l] is obtained

by reverse accumulating the alignment errors. The smoothing operation can be extended to

multidimensional images by applying equation D.7 to each dimension of the image. Impor-

tantly, the behavior of the multidimensional DIW operator can be controlled by imposing

different strain limits (rl and ru) across each dimension of the image volume. Thus, by

smoothing each dimension of the alignment error array using appropriate strain limits, it is

possible to recover a set of shifts that is continuously smooth across each dimension, despite

the fact that DTW is applied across only one dimension.



APPENDIX E

Software

E.1 The Julia programming language

The Julia programming language offers high-level syntax with relatively low-level perfor-

mance. In addition to this, the language has an extensive library of mathematical functions

and built-in functionality for distributed memory parallelism, thereby making the language

well-suited for solving research-level numerical problems. Moreover, Julia’s simple syntax

allows for fast-paced development of prototype software that is capable of solving large

problems efficiently. For these reasons, this thesis relied on the Julia language for the de-

velopment of both large-scale programs and small-scale tests.

E.2 Open-source software

The software produced during the creation of this thesis was written in the Julia program-

ming language. Some of this software has been made available as part of the open-source

seismic processing package named SeismicJulia, which is maintained by the Signal Analysis

and Imaging Group at the University of Alberta. The SeismicJulia package can be found

by visiting https://github.com/SeismicJulia. Table E.1 describes the main programs

developed and used during the creation of this thesis.
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Function Description

kdmig2d

Kirchhoff depth migration for two-dimensional models. This function
represents the forward and adjoint Kirchhoff operator for performing
seismic modeling and migration. A triangular anti-aliasing filter is
used to suppress artifacts arising from Kirchhoff operator aliasing.
Parallelism is implemented by distributing the shot gathers over all
of the available worker processes.

WFC

The wavefront construction method. This function uses the wave-
front construction method for estimating seismic Greens functions.
Parallelism is implemented by distributing the source locations over
all of the available worker processes.

SDIW

Smooth dynamic image warping. This function uses smooth dynamic
image warping to estimate the sequence of shifts that optimally aligns
one image with a reference image. This function can also directly
apply those shifts to the image to register it with the reference image.

DistributeArray

Distribute an array over multiple processes. This function distributes
a multidimensional array over all of the available worker processes by
breaking that array into evenly-sized sub-arrays along one of its di-
mensions. This function should be used in combination with FetchAr-
ray.

FetchArray

Fetch/retrieve the components of an array that have been distributed
across multiple processes. This function fetches the sub-arrays of
a larger array that have been distributed over all of the available
worker processes. This function should be used in combination with
DistributeArray.

SendTo
Send arguments from the master process to worker processes. This
function takes a list of arguments that are defined on the master
process and sends them to user-defined worker processes.

ReadFile
Read a binary file from disk. This function reads a binary file con-
taining an array from disk. It should be used in combination with
WriteFile.

WriteFile
Write a binary file to disk. This function saves an array to disk as a
binary file. It should be used in combination with ReadFile

CopyFile
Copy a binary file on disk. This function generates a copy of a binary
file that is currently saved on disk.

Integrate!
Perform causal integration or acausal integration. This function per-
forms causal integration (forward operator) and acausal integration
(adjoint operator) along one dimension of a multidimensional array.

TriFilter
Triangular filter. This function applies an n-point triangular filter
across one dimension of a multidimensional array.

bilinear
Bilinear interpolation. This function uses bilinear interpolation to
interpolate the velocity model between grid points.

Table E.1: Description of the main Julia functions developed during the creation of
this thesis.


