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Abstract

Radon transforms play an essential role in seismic data processing. They have been

extensively used to separate signals from coherent noise, reconstruct seismic data,

and estimate the arrival direction of waves impinging on arrays. This thesis fo-

cuses on applying Radon transforms to seismic signal processing, including multiple

suppression, denoising and seismic data regularization.

After reviewing classical Radon transforms that operate on the full aperture of a seis-

mic gather, I propose a new local Radon transform parameterized by two adjustable

parameters. The proposed Radon transform is derived using a second-order Taylor

approximation of the reflection traveltime around a central seismogram. The pro-

posed local Radon transform enables processing data composed of a superposition

of complex waveforms with spatially variant dips.
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CHAPTER 1

Introduction

Geophysicists aim to quantitatively estimate subsurface geological structures and

properties. Furthermore, they are also interested in knowing about processes that

happen in the interior of the earth (Fowler, 1990). Subsurface studies are often

carried out via indirect sensing methods. In other words, subsurface properties

are estimated from data recorded on the earth’s surface. Geophysicists adopt two

families of methods for obtaining these properties. The first of these, the seismic

method, uses traveltime and amplitude variations of waves propagating in the sub-

surface to estimate geological interfaces and elastic properties. Artificial explosive

sources emit seismic waves into the subsurface. Subsurface interfaces reflect these

waves; they propagate upwards and are finally recorded by arrays of receivers. The

data (seismograms, also called seismic traces) can outline geological structures after

applying signal processing and inversion techniques. In global seismology, naturally

occurring sources (earthquakes) also produce waves that travel through the earth’s

interior. The recorded waveforms permit to map discontinuities at global scales and

elucidate processes associated with them.

The second class of methods is entirely different in principle. They are often called

potential field methods because they measure the distortion of a scalar or vector

potential field caused by perturbations of a physical property in the subsurface. An

example of the latter is the gravity prospection method that studies the distortion of

the gravitational potential generated by variations in subsurface density distribution.

Similarly, electric and magnetic methods measure the distortion of the electric and

magnetic fields due to subsurface variations of resistivity and susceptibility (Telford

1



CHAPTER 1. INTRODUCTION 2

et al., 1990).

Seismic, magnetic, gravity, electrical, and electromagnetic methods are generally

used to explore resources. Some of these techniques are mainly used for hydro-

carbon exploration, and others are employed principally to prospect minerals. For

example, the seismic method is often used for oil and gas exploration. Gravity and

magnetic methods can also be used for oil and gas exploration during an early re-

connaissance of basins. More recently, electromagnetic methods in conjunction with

seismic methods have also been adopted for oil and gas exploration (Mehta et al.,

2005). Despite efforts to combine and utilize several techniques cooperatively, oil

and gas exploration is predominately dominated by seismic methods.

As I mentioned, the seismic method uses artificially generated waves to determine

geological structures containing natural resources such as oil and gas. The seis-

mic method provides data that allows geophysicists to estimate subsurface images

combined with other geophysical and geological data. Civil engineering and hydro-

geology are other areas in which the seismic method can play a significant role. For

instance, in the cases mentioned above, the seismic method is often used to map the

depth to bedrock for construction purposes like towers, dams, highways, or delineate

aquifers.

The seismic method can be divided into two sub-categories. One can adopt refrac-

tions or head waves to determine the depth of layers and the propagation speed of

waves in the subsurface or adopt reflections to define interfaces that reflect energy

back to the subsurface (Yilmaz, 2001). The former is called the Seismic Refraction

Method, and the latter is called the Seismic Reflection Method. This thesis will

concentrate on one particular aspect of the Seismic Reflection Method. Concretely,

it focuses on one processing tool called the Radon transform. The Radon trans-

form is a mathematical tool that allows decomposing seismic waveforms into simple

components. This decomposition is used to filter undesired signals such as multiple

reflections or to perform trace interpolation.

The seismic reflection method can be divided into four important steps that can be

summarized as follows:

1. Data acquisition: Different acquisition layouts are used in the seismic reflec-

tion method. These layouts are based on exploration purposes, target location,
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cost, and operational environment. The goal of land and marine data acquisi-

tion is to collect data, that after processing, can image subsurface structures

serving as a deposit of resources (Vermeer, 1990).

In a land operation, a line of fixed receiver stations records data after a source

is activated. The process is repeated by changing the position of the source,

giving rise to a data volume of seismic traces. Each seismic trace corresponds

to one source-receiver pair. Figure 1.1a shows a shot gather corresponding to

a 2D acquisition where receivers and source are deployed along a line. Figure

1.1b represents the response for one layer. The theoretical traveltime curve

for such an experiment is a hyperbola. Multiple shots are then sorted in

common mid-point (CMP) gathers to produce the acquisition configuration

shown in Figure 1.2a and b. The CMP configuration is obtained via sorting

data acquired as shot gathers. The CMP configuration is needed to carry out

processes such as velocity analysis and normal moveout correction (Yilmaz,

2001).

Because the geological structures are three-dimensional, a 2D data acquisition

layout cannot accurately image these structures. In this case, a 2D seismic

survey will record data that will miss-position geological structures. Therefore,

modern 3D seismic exploration uses an areal pattern of receivers and sources

(in other words, receivers and sources are not deployed along a single line).

A typical 3D land acquisition involves using multiple lines of receives and

numerous lines of sources perpendicular to each other. The latter is often

called an orthogonal survey (Vermeer, 2002). In marine data acquisition, a

vessel tows one or more energy sources and hydrophone streamers. Another

option is to use ships that tow receivers and sources producing narrow and

wide-azimuth 3D seismic survey configurations.

2. Data processing, also called data preconditioning: The elevation of

source and receiver are corrected to a common datum. During this stage, we

also apply incoherent and coherent noise removal techniques and source equal-

ization methods (deconvolution) (Yilmaz, 2001). The main idea is to process

the data so that each common-source gather approximates the acoustic or elas-

tic Green function corresponding to an experiment where a wave produced by

a point source propagates in the earth. Included in the preconditioning stage

are methods for signal-to-noise ratio enhancement and data reconstruction.
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Figure 1.1: a) A shot gather. b) Recorded data via a shot gather. The
red star is the source and the triangles represent receivers. The variable x
represents the position of the receiver.
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Figure 1.2: a) A common midpoint (CMP) gather. b) Recorded data for
CMP gather. Red stars are sources and triangles are receivers.The vari-
able h represents source-receiver distance for each source receiver pair that
composes the CMP gather.
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This thesis concentrates on the application of Radon transforms for coherent

and incoherent noise reduction and reconstruction. The Radon transform is

an indispensable part of the data processing stage of the reflection seismology

method (Hampson, 1986a,b; Trad et al., 2003), and it can also be used for

data interpolation (Kabir and Verschuur, 1995).

3. Imaging and inversion: Imaging and inversion are similar processes. In

general, imaging is used to refer to methods to determine the boundaries of

subsurface structures. Inversion refers to approaches to estimate subsurface

parameters such as elastic moduli or propagation speed of compressional and

shear waves. Both imaging and inversion are based on the solution of classical

math-physics problems associated with wave propagation phenomena (Claer-

bout, 1985). Historically, imaging techniques are referred to as migration

algorithms. Early migration algorithms were based on the Huygens princi-

ple and on Kirchhoff’s integral theorem (Gray et al., 2001). Modern imaging

and inversion algorithms operate with one-way and two-way acoustic or elastic

wave equations, which are often linearized via the Born approximation (Sava

and Hill, 2009).

4. Seismic and geological interpretation: At this stage, subsurface images

are interpreted with the help of regional geological information, core samples,

and formation properties estimated by well logging (Brown, 2011). In other

words, images of the subsurface provide boundaries and, after inversion, one

can also estimate material (rock) properties. However, these images do not tell

us how sediments have deposited during the geological time or how structures

(faults and folds) have emerged; neither they tell us how fluids in the crust

have migrated and accumulated in reservoirs. Geologists and geophysicists

use seismic images in conjunction with geological information to discover areas

with an accumulation of hydrocarbons.

1.1 General considerations about transform-based pro-

cessing

In signal processing, we often transform acquired data to a new domain where signal

separation or filtering processes become easy tasks. Consider a transformation that



CHAPTER 1. INTRODUCTION 7

maps a generic signal d into a new signal called m. The transform can be a Fourier

transform, a wavelet transform, a Radon transform, etc. Many choices of transforms

exist, and we merely assume one has access to the transformation, which we can

write in operator form as follows T . Similarly, let us assume we also have access to

the transform named T −1 that allows returning to the original space. Let us also

assume that the transformation T is linear. In other words, if the original signal is

composed of, for instance, three signals d = d1 + d2 + d3, then the data after being

transformed is given by m = m1 + m2 + m3. Where di maps to mi, i = 1, 2, 3.

Symbolically, one can summarize the process of transforming the data d into m as

m = T d . (1.1)

The main goal of transforming the data d into m is to find a simple signal repre-

sentation. This representation permits, for instance, to isolate the elements of m in

the transform domain. This can be understood through a simple cartoon given in

Figure 1.3. In this simple example, we assume a signal composed of three elements

or waveforms d1, d2, d3. As an example, let us assume that one would like to isolate

d3. The latter is a difficult task because d3 overlaps with d1 and d2. The data

mapped to the new domain is now composed of signals m1,m2,m3 which do not

overlap. Therefore, it is a simple task to filter (mute) m1 and m2 without affecting

m3. After the process of filtering, one can use the transform T −1 to map back m3

into d3. The idealized cartoon shows the process that is generally utilized to separate

waveforms via the Radon transform. It is important to mention that the isolation

of events in the transformed domain also entails some level of compressibility of the

signals di when they are transformed to mi. This concept will become clear when

applying it with examples associated with the Radon transform in conjunction with

sparse inversion techniques.

1.2 Radon transforms

Transformations used in seismic data processing such as Fourier, Wavelet, and

Radon are mathematical linear mappings representing data in a new domain. In the

new domain, the data properties can be employed for signal-to-noise ratio enhance-

ment and waveform separation. Among the various transforms used in seismic data

processing and imaging, the Radon transform has particular significance.
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Figure 1.3: a) Pictorial representation showing the process of filtering af-
ter transforming data to a new domain. Data d is composed of 3 ele-
ments or waveforms d1, d2, d3 which after applying the transform T , they
map to m1,m2,m3. Data in the new domain are isolated and components
m1,m2,m3 are separated. Therefore, filtering (F) becomes an easy task. In
this example, in the transformed domain it is possible to eliminate m1 and
m2 and then return to data space via the transform T −1 to estimate d3.

The Radon transform owns its name to Johan Radon, who introduced it in 1917. The

Radon transform integrates a physical attribute along a specific trajectory (Deans,

1983; Durrani and Bisset, 1984) and has numerous applications in seismology and

medical imaging.

In exploration seismology, the Radon transform has been used in different forms.

For instance, the linear Radon transform also called the Slant Stack transform,

has been used to synthesize plane waves (Treitel et al., 1982). It can be shown

that a point-source seismic shot gather can be decomposed into a set of plane-

wave seismograms for arbitrary angles of incidence via the Slant Stack transform.

Such plane-wave seismograms are an attractive domain for processes such as one-

dimensional inversion and noise attenuation via predictive deconvolution (Corning
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et al., 1987).

In its simplest form, the Radon transform involves mapping data from the offset (x)

and time (t) to intercept time (τ) and ray parameter (p). In this case, the Slant

Stack or Linear Radon transform is defined as an integration of the seismic data

d(x, t) along lines

u(τ, p) =
∑
x

d(t = τ + px, x) (1.2)

where x indicates offset or source-receiver distance. For illustrative purposes, I

consider the synthetic data in Figure 1.4a composed of two events of constant dip.

The data could correspond to a small spatiotemporal window of a seismic two-

dimensional record. The corresponding representation in τ, p is illustrated in Figure

1.4b. As it can be seen by this figure, the transformed data consists of two focused

events in τ, p. This property will be used to separate events and filter them. In

Chapters 2 and 3, I will study methods to guarantee that one can map back the

transformed data u(τ, p) to data space. I will also investigate the estimation of

u(τ, p) via an inversion process that focuses the seismic events in the transformed

domain. The latter facilitates the reconstruction of the data from the transformed

signal and attenuation of noise in the reconstructed data.

1.2.1 Previous contributions

The Radon transform and its numerical solution has received significant attention

in exploration seismology. Initial efforts posed the Radon transform computation

as an inverse problem in the ω − x domain. The latter is the classical approach

introduced by Hampson (1986b), and Beylkin (1987). It is important to mention

that Beylkin (1987) studies a linear Radon transform with integration path given

by t = τ + px while Hampson (1986b) investigates the Parabolic Radon transform.

In other words, a Radon transform with a parabolic integration path t = τ + px2.

The parabolic approximation is used to model the traveltime of reflections after

normal moveout correction (Yilmaz, 2001). Hence, the parabolic Radon transform

is often used to discriminate and filter multiples in common-min-point gathers. The

assumption is that after NMO correction, primaries are flat events and multiples

exhibit parabolic residual moveout. This property is exploited by the parabolic
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Figure 1.4: a) Two waveforms of ray parameter p = −0.5 s/km and p =
1.0 s/km. b) Slant Stack transform. The first event maps to τ = 0.2s,
p = 1.0s/km. The second event maps to τ = 0.4s, p = −0.5s/km. Artifacts
are caused by the finite aperture of the data and sampling of both the offset
h and ray-parameter p axes.
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Radon transform to separate multiples from primaries in the Radon domain. For

instance, one can mute the contribution of primaries in the Radon domain and then

return to data space with a model of the multiple reflections, which can be subtracted

from the original data. By this means, it is possible to obtain a CMP gather that

only contains primary reflections. This type of filter has been investigated by many

authors, including Kabir and Verschuur (1995) who adopted the parabolic Radon

transform to also reconstruct near offset traces, and Darche (1990) who applied

the parabolic Radon transform for trace interpolation. Similarly, Kostov (1990)

proposed a fast algorithm to compute linear and parabolic Radon transforms that

exploits the Toeplitz structure of the Radon least-squares solution in the ω − x

domain. The above contributions correspond to least-squares solutions of the Radon

transform in the ω−x domain. They all use explicit form operators. In other words,

they are based upon transforming data from t−x domain to ω−x domain and setting

the Radon transform problem as one that entails matrix-times-vector multiplications

with explicit form matrices. We often call this type of Radon transform, frequency

domain Radon transform or ω − x domain Radon transforms to differentiate them

from Radon transforms that operate directly in the t − x space with implicit form

linear operators.

Yilmaz (1989) proposed to adopt the parabolic Radon transform also for multiple

suppression. However, rather than adopting the NMO correction to validate the

parabolic traveltime assumption, he offered to use a t2 transformation of the time

axis of the CMP gather to map hyperbolic traveltimes to their parabolic approx-

imation. This technique is also adopted by Sacchi and Ulrych (1995) to obtain

high-resolution parabolic velocity gathers. In Sacchi and Ulrych (1995), a new reg-

ularization technique for the solution of the Radon transform problem is also pro-

posed. Rather than adopting the classical damped least-squares solution (Hampson,

1986b; Beylkin, 1987; Zhou and Greenhalgh, 1994), these authors adopted a Cauchy

regularization term that provokes sparsity in the solution of the Radon transform

coefficients. The approach has been improved by many authors, including Herrmann

et al. (2000) who developed an anti-alias Radon transform, Schonewille and Dui-

jndam (2001) who investigate computational solvers and sampling considerations

for optimal application of the Radon transform and Sacchi and Porsani (2005) who

combine a fast solver for Toeplitz forms with the conjugate gradient method to ob-

tain a high-resolution Radon transform where matrix-times-vector multiplications
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are efficiently executed via a Fast Fourier Transform.

The Radon transform can also be computed in the t − x domain via implicit form

operators (Thorson and Claerbout, 1985). That is, in different words, by adopting

linear operator that behave like a matrix-times-vector multiplication but where the

matrix is never physically built. Thorson and Claerbout (1985) employed the Radon

transform with a hyperbolic integration path to compute velocity stacks which can

be used for velocity analysis, CMP denoising, and data regularization. The ap-

proach has also been studied by Trad et al. (2003) that provides several iterative

algorithms for efficient computation of time-domain Radon transforms and mixed

domain Radon transforms.

In general, frequency domain solutions are faster than time-domain solutions. How-

ever, for the computation of the high-resolution Radon transform, several authors

have concluded solutions are more stable for the time domain solvers rather than

for frequency domain Radon transforms (Cary, 1998; Trad et al., 2003).

Often Radon transforms are applied with time-invariant integration paths that can

be linear or parabolic or with time-variant integration paths that can be parameter-

ized with hyperbolas or apex-shifted hyperbolas (Ibrahim and Sacchi, 2014). Time

invariant paths lead to Radon transforms computed in the ω − x domain or in the

t − x domain. In general, as I have mentioned, frequency-domain algorithms are

more efficient than time-domain algorithms. Conversely, time-variant paths such

as those used for the hyperbolic Radon transform and the apex-shifted hyperbolic

Radon transform lead to an algorithm that operates in the t− x domain. In other

words, time-variant integration paths do not lead to simple algorithms in ω − x

where the Radon operators are estimated via simple matrix manipulations. In the

case of time-invariant integration paths (linear and parabolic Radon transforms), we

can also use mixed domain algorithms where the optimization problem associated

with the computation of the Radon is done in the time domain. Still, the forward

and adjoint operators are speed-up by transforming the data to ω − x and ω − p.

This mixed domain approach is prevalent today as it permits to incorporate sparsity

constraints directly on τ − p rather domain than in ω − p (Cary, 1998).

It is essential to mention that a more flexible Radon transform can be obtained by

defining a two-term second-order approximation to the traveltime in small spatio-

temporal windows. The latter permits the integration path to adapt to the travel-

time of the waveform locally, and it is not restricted to applications of the Radon
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transform that operate in specific domains (e.g., CMP gathers) on the full aper-

ture of the gather. This idea of the locality of the Radon transform in combination

with a second-order approximation of the traveltime integration path is the main

contribution of this thesis. Basically, the traditional linear and parabolic Radon

transforms are adapted to operate with integration paths that are second-order ac-

curate in small windows. This local approach to the computation of the Radon

transform will permit us to process data that does not conform to typical hyper-

bolic traveltime signatures or parabolic traveltimes after NMO correction. This

flexibility is gained by producing a significantly more expensive problem where the

Radon parameters now depend on τ plus two kinematic attributes that we named

A and B rather than one (p). In essence we aim to map data from t−x to a domain

described by τ −A−B, where A and B are two kinematic parameters describing a

local approximation to the traveltime of the seismic reflection. For this purpose, in

this this, I first need to review classical tools and methods used for computing both

ω−x ad t−x Radon transforms and then introduce novel aspects of this thesis that

are associated to the proposed new Radon transform.

1.3 Organization of the thesis

The structure of this thesis is as follows:

• Chapter 1 offers a succinct description of previous contributions, contributions,

and overall basic background about Radon transforms.

• Chapter 2 describes frequency domain solvers for the linear and parabolic

Radon transforms. These solvers are posed in the f − x domain and use

explicit matrix-times-vector multiplication and the inversion of matrices to

compute the Radon transform in the ω − p domain. Moreover, we review

the classical approach proposed by Hampson (1986b) and the high-resolution

(sparse) frequency domain Radon transform proposed by Sacchi and Ulrych

(1995).

• Chapter 3 presents solvers that compute the Radon transform in the time do-

main. These solvers are the Conjugate Gradient method, Iterative Reweighted

Least-squares method (IRLS), and the recently proposed Fast Iterative Shrinkage-

Thresholding Algorithm (FISTA). Both IRLS and FISTA permit to estimate
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high-resolution Radon transforms by imposing sparsity constraints in the τ−p

domain. Also, this chapter explains the adoption of implicit form Radon oper-

ators. In other words, the forward and adjoint Radon operators are treated as

linear operators in implicit form (matrix-free form), and no effort is made to

construct these operators explicitly as matrices in the t−x and τ−p domains.

• Chapter 4 introduces a new Radon transform. This Radon transform is local

and adopts an integration path that is a second-order expansion of the trav-

eltime curve of the seismic reflection. The main goal is to develop a flexible

tool for sparsity promoting denoising and reconstruction of seismic data with

waveforms that can not be represented by hyperbolas or parabolas. Given that

the parametrization is local (as opposed to one that spans the full aperture of

a seismic gather), the proposed Radon operator can cope with spatially vari-

ant dips. The local Radon coefficients found by this method can synthesize

denoised data and interpolate seismic data.

• Chapter 5 In the final chapter, conclusions, and recommendations for future

work are offered.

1.4 Contribution of this thesis to seismic data process-

ing

Traditionally, Radon transforms use integration paths given by t = τ + px (linear

Radon), t = τ + px2 (parabolic Radon) or t =
√

(τ2 + px2 (hyperbolic Radon). I

have proposed to use a new integration path that locally adapts to any waveform.

The path is a second order approximation to reflection travel-times in any domain

and is given by t = τ + A(x − x0) + B(x − x0)
2 where x0 is the central trace

to which we attribute the kinematic attributes A,B. This leads to a new Radon

transform where the the signal is mapped from t − x space to amplitudes that

depend on τ, A,B, x0. As one can imagine, this is equivalent to solving for a multi-

parameter Radon transform. Not fully explore in this thesis, the propose local

multi-parameter Radon transform has a significant resemblance to the non-linear

beam-forming method proposed by Bakulin et al. (2020) for signal-to-noise ratio

enhancement. However, while Bakulin et al. (2020) compute enhanced traces by

summing along second-order travel times derived from parameters computed via
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semblance analysis, the proposed method constructs the denoised traces by the

solution of an inverse problem that entails finding the sparse solution of a multi-

parameter local Radon transform. Some advantages of the proposed method are

• adaptability to spatially variant dips,

• applicability of the method in any domain (not restricted to CMP gathers

such as the classical parabolic or hyperbolic Radon transforms), and

• the local behavior of the transform makes it more adaptable to cope with

amplitude-versus-offset variations and could be an improvement to previously

reported AVO-preserving Radon operators (Wang et al., 2011; Gholami and

Farshad, 2019; Kazemi and Sacchi, 2021).



CHAPTER 2

Frequency domain Radon transforms

2.1 Introduction

In this chapter, I describe the classical algorithm used to estimate the Radon trans-

form as initially proposed by Hampson (1986a). The algorithm operates in the

frequency-space (ω − x) domain. It is an explicit form solution to the problem of

obtaining the Radon transform. An explicit form solver is one where the Radon

transform is expressed as a matrix-times-vector multiplication. The matrix is also

created and stored in memory. In the next chapter, I will describe implicit form

Radon operators. The latter are Radon transforms implemented via matrix-free

operators and iterative methods for linear systems of equations that replace explicit

matrix inversion techniques.

2.2 Linear Radon transform

We first define the Radon transform allowing mapping data from the t − x (time-

space) domain to the τ − p domain where τ is intercept-time, and p is dip or ray

parameter. We denote the seismic gather or a window of it as d(t, x) where t indicates

time and x indicates the spatial coordinate of the seismogram. For instance, x could

refer to the receiver-source distance (offset) of the seismic trace or any other spatial

variable associated with our data.

16
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We first write the general expression of the Linear Radon transform as a simple

mapping from data in t− x to τ − p

m̂(τ, p) = L∗[d(t, x)] =
∫
X

d(τ + px, x) dx , (2.1)

where X indicates the range of integration of the spatial variable x. Similarly, we

can define a forward Radon transform via the following expression

d(t, x) = L[m(τ, p)] =

∫
P
m(t− px, p) dp . (2.2)

The symbol P denotes the integration range of the ray-parameter p. The operator

L∗ is called the Radon adjoint operator. Similarly, the operator L will be called

the forward Radon operator. To simplify the notation, the short operator form

expressions m̂ = L∗d and d = Lm are adopted for equations 2.1 and 2.2, respectively.

Unlike the Fourier transform, the Radon transform is not an orthogonal transform.

In other words, one can substitute 2.2 into 2.1 and verify

m̂ = L∗Lm (2.3)

where L∗L �= I (identity). The latter is the reason, one must used the symbol m̂(τ, p)

rather than m(τ, p) in equation 2.1. One can interpret the adjoint Radon operator

L∗ as an analysis operator that maps the signal from t− x to τ − p. Similarly, the

operator L is interpreted as forward modelling operator capable of synthesizing data

in the t− x domain from its representation in the τ − p domain. In general, m̂(τ, p)

resembles m(τ, p) but clearly, one needs to compute m(τ, p) in order to synthesize

the data via equation 2.2. Therefore, we are in the presence of an inverse problem

where given the seismic observations d(t, x) one need to estimate m(τ, p). The

inverse problem is linear and expressible via a simple matrix-times-vector operation

in the frequency (ω − x) space.

2.3 Obtaining m(τ, p) via inversion in the ω − x domain

It is clear that we will be using discrete data, and therefore, equation 2.1 will be

written as a sum
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m̂(τ, pk) =

nx∑
n=1

d(t = τ + pk xn, xn) , k = 1 . . . np (2.4)

where we understand that x and p are all discrete variables. For instance x can be

replaced by xn, n = 1 . . . nx. Similarly, the ray parameter p can also be discretized

via the expression pk = pmin + (k − 1)Δp, k = 1, . . . np, such that pnp = pmax

and p1 = pmin. The increment Δp can be defined following criteria provided by

Turner (1990). Similarly, np defines the number of τ, p traces that one would like

to estimate. The parameters pmin and pmax are the minimum and maximum dips

in the data that must be provided by the user. These parameters must contain all

possible dips in the data.

Following Hampson (1986b), it is preferable to rewrite the estimation of the Radon

coefficients via the solution of an inverse problem. We reformulate the problem

where the data d(t, x) is synthesized from the Radon τ − p domain. To this end,

one can adopt the following formula to synthesize the data

d(t, xn) =

np∑
k=1

m(τ = t− pk xn, pk) , n = 1 . . . nx . (2.5)

We often call equation 2.4 the adjoint operator or analysis operator. In contrast,

equation 2.5 is called the forward or synthesis operator. Equation 2.5 can be sim-

plified by expressing it in the frequency domain. In other words, we first apply the

Fourier transform to both sides of equation 2.5 and, then, we use the Fourier delay

theorem (Bracewell, 1978) to obtain the following expression

D(ω, xn) =

np∑
k=1

M(ω, pk) e
−iωpkxn , n = 1 . . . nx . (2.6)

The variable ω is the temporal frequency in radians/sec. In the last expression

D(ω, xn) indicates the signal d(t, xn) transformed to the frequency domain. In

other words, d(t, xn) ↔ D(ω, xn). Similarly, m(τ, pj) ↔ M(ω, pj). Equation 2.6

represents a linear system of equation given by
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⎛
⎜⎜⎜⎜⎜⎜⎜⎝

D(ω, x1)

D(ω, x2)

D(ω, x3)
...

D(ω, xnx)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

e−iωx1p1 e−iωx1p2 . . . e−iωx1pnp

e−iωx2p1 e−iωx2p2 . . . e−iωx2pnp

...
... . . .

...

e−iωxnxp1 e−iωxnxp2 . . . e−iωxnxpnp

⎞
⎟⎟⎟⎟⎠ .

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M(ω, p1)

M(ω, p2)

M(ω, p3)
...

M(ω, pnp)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2.7)

The system of equations 2.7 can be represented in compact form as follows

D(ω) = L(ω)M(ω) , (2.8)

where D(ω) is the vector of size nx×1 with the spatial data amplitudes for frequency

ω. Similarly, M(ω) is the vector of size np × 1 with the amplitudes of the Radon

transform for each ray parameter pk at frequency ω. Clearly, the elements of the

nx × np matrix L(ω) are

[L(ω)]n,k = e−iωxn pk , n = 1 . . . nx , k = 1 . . . np . (2.9)

One can also show that the adjoint operator given by equation 2.4 can be written

in the ω − x domain as follows

M̂(ω) = LH(ω)D(ω) (2.10)

where LH(ω) is used to indicate the Hermitian transpose of the matrix L(ω). Again,

we can insert equation 2.8 into 2.10 to obtain

M̂(ω) = LH(ω)L(ω)M(ω) . (2.11)

The operator LH(ω)L(ω) is not an identity, showing that inversion is needed to

estimate M(ω).

2.3.1 Radon transform solution via the damped least-squares method

So far two operators were defined. These operators entail mapping data from ω− p

to ω − x (Forward) and from ω − x to ω − p (adjoint):
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Forward Transform D(ω) = L(ω)M(ω) (2.12)

Adjoint Transform M̂(ω) = L(ω)HD(ω) . (2.13)

We further assume data contaminated with noise and therefore, we will write the

following expression

D(ω) = L(ω)M(ω) +E(ω) (2.14)

where E(ω) is the nx×1 vector representing noise or errors. Our task is to compute

M(ω) from noisy observations represented via equation 2.14. For this purpose we

define a cost function and minimize the error with respect to the unknown vector

M(ω). We define our cost function to minimize using the least-squares criterion

plus a regularization term

J(ω) =‖E(ω)‖22 + μ‖M(ω)‖22 (2.15)

=‖L(ω)M(ω)−D(ω)‖22 + μ‖M(ω)‖22 (2.16)

where the first term is the squared l2 norm of the error and the second term is the

squared l2-norm of the model parameters. The squared l2-norm of the vector, for

instance, M(ω) is given by

‖M(ω)‖22 =
np∑
k=1

|M(ω, pk) |2 , (2.17)

where | · | is the absolute value of a complex number.

The scalar μ > 0 is the tradeoff parameter that controls the relative balance between

the error and model norm. The solution can be obtained by minimizing J with

respect to the unknown parameters M(ω). In this case, we use the condition for the

minimum of the cost function J(ω) which is given by

∂J(ω)

∂M(ω)
= 0 . (2.18)

The last equation leads to the so-called damped least-squares solution (DLS) (Menke,
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1989)

Ms(ω) = [LH(ω)L(ω) + μI ]−1LH(ω)D(ω) (2.19)

= LH(ω)[L(ω)LH(ω) + μI ]−1D(ω) . (2.20)

It is easy to show that equations 2.19 and 2.20 are equivalent expressions. In the

case where np > nx one should adopt equation 2.20 because it involves the inversion

of matrix of size nx×nx. Similarly, when np < nx it is better to adopt 2.19 because

it requires the inversion of a matrix of size np × np.

The cost function J(ω) has two terms. The first term is the misfit, which is the

data fidelity term. The second term is the model norm ‖M(ω)‖22 also called the

regularization term. Determining the tradeoff parameter μ is very important. Dif-

ferent values of the parameter μ lead to solutions with different degrees of fitting

and stability. Practically, speaking μ is chosen by monitoring the predicted data,

and it is adjusted to avoid overfitting or underfitting the data. Given the solution

computed via the damped least-squares method, Ms(ω), we can use the latter to

predict the data via expression:

Dp(ω) = L(ω)Ms(ω) . (2.21)

The computation of the Radon transform using expressions 2.19 or 2.20 and 2.21

require the solution of one matrix inversion per frequency ω. In general, the tradeoff

parameter μ should be different for each frequency. However, for practical purposes,

one can choose the same parameter μ for all the frequencies representing the signal

in the ω − x space.

Figure 2.1 illustrates a synthetic example. In Figure 2.1a we present two linear

events. In 2.1b the two liner events are represented in τ−p. The latter was obtained

via the damped least-squares solution with trade-off parameter μ = 0.1. The panel

is τ − p was then used to obtain the predicted data in Figure 2.1c

A pseudo-code for the ω − x domain Radon transform algorithm is presented in

Algorithm 1. Similarly, Algorithm 2 shows the pseudo-code for the forward Radon

ω − x transform.
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Figure 2.1: a) Two waveforms of ray parameter p = −0.5 s/km and p =
1.0 s/km. This is also the input data. b) Linear Radon transform computed
via the damped least-squares method with tradeoff parameter μ = 0.1. c)
The predicted data synthesized from the Radon τ − p panel in c. d) The
error or difference between the input data in a) and the predicted data in
c).
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Algorithm 1 Frequency domain solution of the Radon transform via the damped
least-squared method. Given the seismic data, this code estimates the Radon trans-
form.

Data: d(t, x)

offset:x, dips: p both given as column vectors

min and max frequencies: ωmin, ωmax, tradeoff: μ

D(ω, x) = fft[d(t, x)]

for ω ∈ [ωmin, ωmax] do

d = D(ω, :)

L = e−iωxpT

m = (LHL+ μI)−1LHd

M(ω, :) = m

end for

Honor the Fourier domain Hermitian symmetry

M(−ω, :) = M∗(ω, :)
m(τ, p) = ifft[M(ω, p)]

Algorithm 2 Frequency domain Forward Radon transform. Given the Radon
transform m(τ, p, this code synthesizes the seismic data.

Radon domain traces m(t, x)

offset:x, dips: p both given as column vectors

min and max frequencies: ωmin, ωmax

M(ω, x) = fft[m(τ, x)]

for ω ∈ [ωmin, ωmax] do

m = M(ω, :)

L = e−iωxpT

d = Lm

D(ω, :) = d

end for

Honor Fourier Domain Hermitian symmetry

D(−ω, :) = D∗(ω, :)
d(t, x) = ifft[D(ω, x)]
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2.3.2 High-resolution Radon Transforms

Rather than using a simple zero-order quadratic regularization (damping) in the

solution of the Radon transform in ω − x space, Sacchi and Ulrych (1995) propose

the so-called high-resolution Radon transform where the cost function to minimize

is given by

J(ω) = ‖L(ω)M(ω)−D(ω)‖22 + μR[M(ω)] (2.22)

where the Cauchy criterion for sparsity was adopted

R[M(ω)] =
∑
k

ln

(
1 +

|M(ω, pk)|2
σ2
c

)
. (2.23)

This norm provokes sparsity in M(ω, pk). Therefore, it was adopted as a means to

increase the focusing power of the Radon transform. Several algorithms have been

proposed to minimize equation 2.22 which now is a non-quadratic cost function and

hence, its condition for a minimum does not lead to a linear system of equations.

Taking the derivatives of J(ω) with respect to the unknown model parameters and

setting them equal to zero leads to the solution of the high-resolution ω − p Radon

transform

M(ω) = [LH(ω)L(ω) + μQ(ω) ]−1LH(ω)D(ω) . (2.24)

In the above expression, the matrix Q(ω) is diagonal, and its diagonal elements are

given by

[Q(ω)]k,k =
σ2
c

σ2
c + |M(ω, pk) |2

. (2.25)

The problem needs to be solved iteratively because the matrix of weights Q(ω)

depends on the solution M(ω). Therefore, the problem can be solved iteratively

adopting the method named Iteratively Reweighted Least Squares (IRLS) (Scales

et al., 1988; Sacchi and Ulrych, 1995; Daubechies et al., 2010). Take for instance

equation 2.24 which in iterative form becomes

Mn(ω) = [LH(ω)L(ω) + μQn−1(ω) ]−1LH(ω)D(ω) (2.26)

where n is now used to indicate iteration number. In this algorithm one needs to

set two parameters μ and σc. The parameter μ controls the degree of fitting to



CHAPTER 2. FREQUENCY DOMAIN RADON TRANSFORMS 25

the data. The parameter σc is a scale parameter that has to be properly chosen

by trial and error in order to obtain sparse solutions. The solution for this method

Ms(ω) = MK(ω), where K is the final iteration at which IRLS has converged. In

general, convergence is achieved in a small number of iterations, typically less than

10 iterations.

Figure 2.2 illustrates a synthetic example. In Figure 2.2a we present two linear

events. In 2.2b the two liner events are represented in τ − p. The latter was

obtained via the high-resolution solution with trade-off parameter μ = 1.0 and

K = 5 iterations. The panel in τ − p was then used to obtain the predicted data

in Figure 2.2c. A comparison of Figures 2.1b and 2.2b shows that the solution with

the Cauchy norm solution has more resolution and generates fewer artifacts than

the solution obtained via the damped least-squares method.
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Figure 2.2: a) Two waveforms of ray parameter p = −0.5 s/km and p =
1.0 s/km. This is also the input data. b) Linear Radon transform computed
via the High-resolution Radon transform with tradeoff parameter μ = 1.0.
c) The predicted data synthesized from the Radon τ − p panel in c. d) The
error or difference between the input data in a) and the predicted data in
c).
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2.4 Parabolic Radon transforms

The process called multiple attenuation, or multiple removal is a challenging step in

seismic exploration. Multiples are coherent noise that destructively interferes with

primary reflections. Multiples are reflections that have undergone more than one

reflection in the subsurface. Parabolic Radon transforms have been one of the most

widely used techniques to suppress multiples. The Parabolic Radon transform pair

is given by

m̂(τ, p) = L′[d(t, x)] =
∫
X

d(τ + px2, x) dx , (2.27)

where X indicates the range of integration of the spatial variable x. The spatial

variable x for a CMP gather is the offset or source-receiver distance. Similarly, we

can define a forward Radon transform via the following expression

d(t, x) = L[m(τ, p)] =

∫
P
m(t− px2, p) dp . (2.28)

The last two expression can be discretized and expressed in the ω − p and ω − x

as done for the Linear Radon transform. However, in this case, the elements of the

matrix of the ω − x Radon operator are given by

[L(ω)]n,k = e−iωx2
n pk , n = 1 . . . nx , k = 1 . . . np . (2.29)

The matrix L(ω) is now

L(ω) =

⎛
⎜⎜⎜⎜⎝

e−iωx2
1p1 e−iωx2

1p2 . . . e−iωx2
1pnp

e−iωx2
2p1 e−iωx2

2p2 . . . e−iωx2
2pnp

...
... . . .

...

e−iωx2
nx

p1 e−iωx2
nx

p2 . . . e−iωx2
nx

pnp .

⎞
⎟⎟⎟⎟⎠ (2.30)

and the problem again entails solving D(ω) = L(ω)M(ω) to obtain the ω− p vector

of complex amplitudes M(ω).
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2.4.1 Traveltime of reflections after the NMO correction

The Parabolic Radon transform is often applied to CMP gathers. In CMP gathers,

primary and multiple reflections are approximated by seismic events with hyperbolic

traveltime signatures that are symmetric t(x) = t(−x) where x is the offset. The

NMO-correction (Yilmaz, 1989) is applied to CMP gathers to flatten hyperbolas.

For this purpose, we use the velocity of the primary reflections. Since the velocity of

multiples is slower than the velocity of primaries, after NMO correction, primaries

are flattened, and multiples will show residual moveout. Residual moveout after

NMO correction can be represented via parabolic traveltimes. Hence, the Parabolic

Radon transform can model a superposition of constant amplitude parabolas repre-

senting primaries and multiple reflections. The latter will enable us to map primaries

and reflections to the Radon domain, where it is easy to separate them.

The traveltime equation for a reflection before NMO is represented via a hyperbola

t(x) =

√
t20 +

x2

v2
(2.31)

where t0 is zero-offset two-way time and v is the RMS velocity of the reflection. The

NMO correction is given by

ΔtNMO = t(x)− t0 (2.32)

or, equivalently

ΔtNMO =

√
t20 +

x2

v2NMO

− t0 (2.33)

where vNMO is the NMO velocity that flattens the hyperbolas associated to pri-

mary reflections. Hence, the traveltime of an event of RMS velocity v after NMO

correction is given by

t(x) =

√
t20 +

x2

v2
−

√
t20 +

x2

v2NMO

+ t0 (2.34)

using Taylor series approximation and retaining up to the second order term, equa-
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tion (2.34) can be written as

t(x) ≈ t0 +
x2

2t0v2res
(2.35)

where vres is
1

vres
=

1

v
− 1

vNMO
. (2.36)

We define p, the curvature of the reflections after the NMO correction

p =
1

2t0
(
1

v2
− 1

v2NMO

) . (2.37)

Consequently, one can write the parabolic traveltime

t(x) = t0 + px2 . (2.38)

The traveltimes for a primary reflection after NMO correction becomes t(x) = t0

because we choose vNMO = v; in other words, the NMO correction is performed

with the velocity of the primary. Multiple reflections, in general, have a velocity

that is lower than the velocity of primary reflections and hence v < vNMO. For this

reason, multiples after NMO correction will show parabolic residual moveout. The

parametrization in terms of p is usually replaced by the following parametrization

t(x) = t0 + q

(
x

xf

)2

. (2.39)

With the parametrization given above, q represents residual moveout at far offset

xf (maximum absolute offset). The parametrization 2.39 is more convenient that

the one given by expression 2.38. The latter is because q is residual moveout in

seconds, a parameters much easier to interpret than p in equation 2.38 which has

units of s/m2.

It is important to mention that the parabolic approximation could also be validated

via a t2 time stretching (Yilmaz, 1989). In this case, hyperbolic traveltimes in a

CMP gather are transform via the following change of variables t′ = t2 which leads

to

t2 = t20 +
x2

v2
−→ t′ = t′0 +

x2

v2
. (2.40)

If we call p = 1
v2
, then hyperbolic traveltimes in time-stretched coordinates become
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parabolic traveltimes. In my research, I have not used time-stretching to validate

the parabolic approximation because it produces an undesired time-variant wavelet

deformation (Yilmaz, 1989). All my examples involving Parabolic Radon transforms

adopt the NMO correction to validate the parabolic approximation.

Figure 2.3 illustrates a synthetic example. In Figure 2.3a, we present two NMO-

corrected events. One event mimics a primary and the other a multiple with residual

moveout. In 2.3b the events are represented in τ − q. The latter was obtained via

the damped-least squares solution with tradeoff parameter μ = 0.7. The panel in

τ − q was then used to obtained the predicted data in Figure 2.3c and the error

panel in Figure 2.3d.

Figure 2.4 illustrates the same synthetic example shown in Figure 2.2. However,

in this example, I used the high-resolution Radon transform as proposed by Sacchi

and Ulrych (1995) with Cauchy regularization term. Heuristically, the best tradeoff

parameter was found to be μ = 10. It is clear that the high-resolution Radon

transform has produced a Radon panel with more focused events than the panel

obtained via the damped least-squares solution.

2.4.2 Real data example

Figures 2.5 and 2.6 compare multiple attenuation via the Parabolic Radon transform

with the classical solution that uses damped least-squares inversion and for the high-

resolution Radon transform obtained via Cauchy regularization. Figure 2.5a shows

a CMP gather after NMO correction. The data corresponds to a marine survey

carried out in the Gulf of Mexico by Western Geophysical. Generally known as

the Mississippi Canyon dataset, the data was released to researchers and used to

test multiple attenuation algorithms by several research groups (Verschuur, 1999; Li,

2001; Sabbione and Sacchi, 2017). Figure 2.5b shows the Radon solution via damped

least-squares. The Radon panel was filter with a cutoff curvature qc = 0.05s. In

other words, the primaries were eliminated by removing all Radon coefficients with

residual moveout q < qc. Then the remaining coefficients were mapped back to data

space to synthesize the multiple reflections. Finally, multiples are removed from

the original data by simple subtraction to yield Figure 2.5c. As one can see, the

curved events corresponding to under-corrected multiples were eliminated from the

CMP gather. The process is repeated in Figure 2.6 but using the high-resolution
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Figure 2.3: a) The input data are two NMO-corrected events. b) The
Parabolic Radon transform computed via the damped least-squares method
with tradeoff parameter μ = 0.70. c) The predicted data synthesized from
the Radon τ − q panel in c. d) The error or difference between given by the
input data in minus the predicted data.
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Figure 2.4: a) The input data are two NMO-corrected events. b)
The Parabolic Radon transform computed via the damped high-resolution
Parabolic Radon transform with tradeoff parameter μ = 10. c) The pre-
dicted data synthesized from the Radon τ − q panel in c. d) The error or
difference between given by the input data in minus the predicted data.
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Parabolic Radon transform implemented via a Cauchy regularization term. If we

compare Figure 2.5b and 2.6b, it is clear that the high-resolution Radon transform

attempts to collapse the smearing of events in the τ − q domain. In other words,

events are more focused when adopting the high-resolution Radon transform than

using the classical Radon transform with the damped least-squares solver.
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Figure 2.5: a) CMP gather from the Gulf of Mexico (Mississippi Canyon
dataset). b) Parabolic Radon transform (Damped least-squares solution).
c) The estimated primaries.
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Figure 2.6: a) CMP gather from the Gulf of Mexico (Mississippi Canyon
dataset). b) Parabolic Radon transform (High-resolution solution). c) The
estimated primaries.



CHAPTER 3

Time domain Radon transforms

3.1 Introduction

Chapter 2 examines the classical damped least-squares, and high-resolution Radon

transforms (Hampson, 1986a; Beylkin, 1987; Sacchi and Ulrych, 1995) with algo-

rithms that are implemented in the ω − x domain with explicit solvers. These

algorithms are very efficient because the Radon transform is computed by solving

small inverse problems in the ω − x domain. Moreover, as pointed out by Kos-

tov (1990) and further explored by Sacchi and Porsani (2005), one can exploit the

Toeplitz structure of the np×np matrix LH(ω)L(ω) in the ω−x solutions discussed

in Chapter 2. For instance, systems of equations with Toeplitz structure can be

efficiently solved via Levinson recursion in O(n2
p) operations (Kostov, 1990).

This chapter explores Radon domain solutions computed in the t − x domain via

implicit form operators. This idea originates in the paper by Thorson and Claerbout

(1985) that develops linear and hyperbolic Radon transforms with t− x operators.

The latter also allows the development of Radon transforms for time-variant integra-

tion paths, such as in the case of the Hyperbolic Radon transform. It also provides

algorithms where regularization is directly imposed on τ−p rather than in the ω−p

domain, as discussed in Chapter 2. In essence, both the misfit function that controls

data fit and the model norm regulating the smoothness or spareness of the solution

is posed in the t− x and τ − p domain. This type of method has been investigated

by Cary (1998) who was the first to recognize that time-domain solutions are more

36
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stable than ω−x solutions at the time of computing sparse (high-resolution) Radon

transforms. The problem has also been studied in detail by Trad et al. (2003) who

discussed different iterative solvers to obtain time-domain Radon transforms.

3.2 Hyperbolic Radon transform

The hyperbolic Radon transformation is a time-variant Radon operator that was

first introduced by Thorson and Claerbout (1985) who coined the name Velocity

Stacks for it. The integration is now across hyperbolas of the form

t =

√
τ2 +

x2

v2
=

√
τ2 + px2 , (3.1)

where τ is the intercept (zero offset) time, and v is the velocity of the hyperbola. In

other words, we are after a mapping from t − x to τ − p or more specific to τ − v

where p = 1/v2. This type of transform is an excellent operator to process seismic

data in the CMP domain, where one can consider a superposition of waveforms

with hyperbolic traveltimes. Notice that the integration path is time-variant, and

therefore, one cannot use the Fourier delay theorem to map the transform to the

ω − x domain as it was done in Chapter 2.

As in the Linear and Parabolic Radon transform, we express the adjoint and forward

operators as follows

m̂(τ, v) =

∫
X
d(t =

√
(τ2 +

x2

v2
, x) dx (3.2)

d(t, x) =

∫
V
m(τ =

√
(t2 − x2

v2
, v) dv . (3.3)

Now, our task is estimating from the data d(t, x) the associated Hyperbolic Radon

transform m(τ, v). Clearly, we first need to discretize the operators

m̂(τ, vj) =

nx∑
i=1

d(t =

√
(τ2 +

x2i
v2j

, xj) j = 1 . . . nv (3.4)
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and

d(t, xi) =

nv∑
j=1

m(τ =

√
(t2 − x2i

v2j
, vj) i = 1 . . . nx (3.5)

where we have discretized the velocity axis v in nv velocities. The offset x is also

discrete and corresponds to nx seismic traces. The time axes t and τ are also discrete.

For simplicity let us assume they have been discretize at the same sampling rate Δt

following tn = (n − 1)Δt and τn = (n − 1)Δt with n = 1 . . . nt. Then one can use

operator notation to discribe equations 3.4 and 3.5 as follows

m̂ = L′d (3.6)

and

d = Lm , (3.7)

where m is the vector of length (nt × nv) × 1 of Radon coefficients and d is the

vector of length (nt × nx) × 1 containing the CMP gather. Clearly, the action of

the hyperbolic Radon adjoint operator on d is the operator L′ and the action of

the forward Radon operator on m is the operator L. We use calligraphic fonts to

indicate operators and we stress that these two operators L and L′ are not stored as

matrices (e.g. L and LT ). One can think that L and L′ are functions or subroutines
whose action is equivalent to that of applying matrix-times-vector multiplications.

It is clear that the matrix L cannot be constructed in explicit form1. because

such a matrix will have an unmanageable size of (nt × nx) × (nt × nv). The latter

is forbiddingly large for applications involving CMPs, for instance, of typical size

nx = 100 traces nv = 100 velocities and nt = 1000 time samples.

Clearly, given that L and L′ are operators (not matrices), one cannot find, for in-

stance, the least-squares solution via explicit form expressions that involve (L′L)−1.

Hence, we will resort to iterative solvers where the operators L and L′ are ap-

plied without constructing their matrix-form expression. In essence, we will use an

algorithm to compute either L or L′ and then resort on the dot-product test to guar-

antee that these algorithms behave as if they were mimicking matrix-times-vector

multiplications (see, for instance, Claerbout (1992), for a clear exposition of the dot-

product test.) Before discussing the inverse problem, we also provide pseudo-codes

for the operators L and L′ in Algorithm 3. Bear in mind, that Algorithm 3 is a

1The opposite of explicit form is an implicit form or matrix-free method.
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simplification and the actual algorithm is more complicated because it involves an

interpolation step to assign times t or τ to samples of d(tn, x) or m(τn, v) where tn

and τn are discrete time samples, respectively.

Algorithm 3 Time-domain implicit Radon operators for Hyperbolic traveltimes.
The algorithm applies the forward L or the adjoint L′ operator.

if adj = true Input is d (do m̂ = L′d)
if adj = false Input is m (do d = Lm)

for τ do

for h do

for v do

t =
√

τ2 + (x/v)2

if adj = true m̂(τ, v) = m̂(τ, v) + d(t, x)

if adj = false d(t, x) = d(t, x) +m(τ, v)

end for

end for

end for

if adj = true Return m̂

if adj = false Return d

3.3 The inverse problem

We now are in the condition of estimating m from d to estimate the hyperbolic

Radon transform. For this purpose, we will use iterative solvers (See Appendix) to

find the solution ms that minimize the cost function

ms = argmin
m

‖d− Lm‖22 + μR(m) (3.8)

where R is the regularization term. Once ms is estimated, it can be used to predict

he seismic data via dpred = Lms.



CHAPTER 3. TIME DOMAIN RADON TRANSFORMS 40

3.3.1 Least-squares solution with damping via the Conjugate Gra-

dient Least-squares (CGLS) method

If R is the squared l2 norm of the model parameters then we have

ms = argmin
m

‖d− Lm‖22 + μ‖m‖22 (3.9)

where ‖m‖22 =
∑

n,j |m(τn, vj)|2. The solution that minimizes J can be found via

the method of conjugate gradient (CG) (Hestenes et al., 1952) or more specifically,

the Conjugate Gradient Least-squares method (CGLS) which operates directly with

operator L and L′ (Golub and Van Loan, 1996). One important aspect of CGLS

that one must mention is that the algorithm finds the minimum of J via a series of

steps where one has to only evaluate the action of L and L′. In other words, one

needs to know how to perform the rules Lu and L′v to any arbitrary vector u and v

of model and data space, respectively. If one Knows these two rules, the minimum

of J is attained in a total of iterations equal to the number of unknowns. However,

it is important to mention that an approximate solution can be found in fewer steps

(iterations). The solution corresponds to the damped least-squares solution of the

Hyperbolic Radon transform that, for simplicity, we will name the CGLS solution.

Trad et al. (2003) has also discussed the possibility of using preconditioning and

iteration truncation to find time-domain Radon transforms with CGLS.

3.3.2 Least-squares solution with a sparsity constraint (High-resolution

Radon transform)

One can find high-resolution solutions by invoking a sparsity-promoting solution. In

this case, we adopt an l1 regularization term that forces solutions that are sparse.

In other words, we solve the problem

ms = argmin
m

‖d− Lm‖22 + μ‖m‖1 . (3.10)

The l1 norm of the Radon coefficients is given by ‖m‖1 =
∑

n,j |m(τn, vj)|. The cost
function to minimize in equation 3.10 is non-quadratic, and therefore, one cannot use

the conjugate gradient method. Different methods have been proposed to solve this

type of problem. In this thesis, two methods have been adopted. One is Iterative
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reweighted least-squares (IRLS) with a CGLS inner solver (Trad et al., 2003), and

the other is the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) proposed

by Beck and Teboulle (2009). Both IRLS and FISTA only require the evaluation

of L and L′ in each iteration. As such, these algorithms are incredibly flexible for

situations where one has access to implicit form operators (See Appendix).

3.3.3 Incorporation of a wavelet into the time-domain Radon trans-

form

We have found the convergence of CGLS, IRLS, and FISTA can be accelerated by

incorporating a wavelet in the implicit-form formulation of the Radon problem. For

instance, in the codes, L is replaced by WL where W is an operator that applies

convolution with a wavelet. Similarly, the adjoint operator becomes L′W ′ where
now W ′ means crosscorrelation with a wavelet (Claerbout, 1992). This modification

helps find a solution that requires fewer coefficients in the Radon domain. In other

words, we are using a more accurate forward operator given by d = WLm. The

addition of the wavelet does not add significantly to the computational cost of the

solution. In cases when the wavelet is unknown, one can adopt a simple band-pass

zero-phase wavelet with a band estimated from the amplitude spectrum of the data.

This approximated wavelet is often sufficient to obtain a reasonable solution ms.

3.4 Synthetic data examples

Algorithm 3 can also be used to compute the forward and adjoint operators for

the parabolic Radon transform by replacing the hyperbolic integration path with

t = τ + q(x/xf )
2 (the parabolic approximation in terms of residual moveout at far

offset). This section uses synthetic experiments to test the t − x inversion of the

parabolic, and hyperbolic Radon transforms and compares inversions computed via

CGLS, IRLS and FISTA.

Figure 3.1a show and example with two primaries and four multiples after NMO

correction. Figure 3.1b shows the τ − q model estimated by CGLS. Figure 3.1c

is the reconstructed data from the τ − q domain. Similarly, Figure 3.1d is the

estimated Radon τ − q data obtained via the FISTA solver and the associated

reconstructed data in Figure 3.1e. Finally, Figures 3.1f and g are the τ−q panel and
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the reconstructed data obtained via the IRLS algorithm. Notice that both FISTA

and IRLS have produced similar τ−q transform of superior resolution than the τ−q

domain estimated via CGLS. This is due to the having adopted the l1 constraint

in the estimation of Figure 3.1d (FISTA) and Figure 3.1g (IRLS). In Figure 3.2 we

show modelled multiples after applying muting in τ − q domain and transforming

back the multiples in τ − q to t − x. Then the multiples were subtracted from the

data to obtain the primaries. Figures 3.2 a, b and c correspond to the solution

obtained via CGLS. Similarly, Figures 3.2d, e and f and 3.1g, h and i correspond to

sparse Radon transforms using FISTA and IRLS, respectively.

Figure 3.3a show and example with primaries and multiples in a synthetic CMP

gather. Contrary to the previous example, we did not apply NMO correction, and

this experiment is concerned with testing the hyperbolic Radon transform. Figure

3.3b shows τ − v model estimated by CGLS. Figure 3.3c is the reconstructed data

from the τ − v domain. Similarly, Figures 3.3d is the estimated Radon τ − v data

obtained via the FISTA solver and the associated reconstructed data in Figure 3.3e.

Finally, Figures 3.3f and g are the τ − v panel and the reconstructed data obtained

via the IRLS algorithm. Notice that both FISTA and IRLS have produced similar

τ −v transforms of improved resolution than the τ −v domain estimated via CGLS.

This is due to the having adopted the l1 constraint in the estimation of Figure 3.3d

(FISTA) and Figure 3.3g (IRLS). In Figure 3.4 we show modelled multiples after

applying muting in τ−v domain and transforming back the multiples in τ−v to t−x.

Then the multiples were subtracted from the data to obtain the primaries. Figures

3.4 a, b and c correspond to the solution obtained via CGLS. Similarly, Figures

3.4d,e and f and 3.3g,h and i correspond to sparse Radon transforms employing

FISTA and IRLS, respectively.

3.5 Offset regularization via the hyperbolic Radon trans-

form

For completeness, the last example shows an application of the hyperbolic Radon

transform to offset (source-receiver) regularization. Figure 3.5a shows a CMP gather

from an onshore survey. The offset is irregularly sampled. This often happens when

the sources and receivers are not regularly distributed on the acquisition line. We

use the hyperbolic Radon transform to estimate the τ − v representation of the
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Figure 3.1: a) NMO corrected data composed of primary and multiple events.
b) τ − q domain estimated via CGLS. c) Predicted data from b). d) Sparse
τ − q domain estimated via FISTA. e) Predicted data from d). f) Sparse
τ − q domain estimated via IRLS. g) Predicted data from f).
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Figure 3.2: a), b) and c) τ − q domain, predicted multiples and primaries
via CGLS. d), e) and f) Sparse τ − q domain, predicted multiples and pri-
maries via FISTA. g), h) and i) Sparse τ − q domain, predicted multiples
and primaries via IRLS.
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Figure 3.3: a) Data composed of primary and multiple events. b) τ − v
domain estimated via CGLS. c) Predicted data from b). d) Sparse τ − v
domain estimated via FISTA. e) Predicted data from d). f) Sparse τ − v
domain estimated via IRLS. g) Predicted data from f). The shaded area
corresponds to the multiples in τ − v space.
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Figure 3.4: a), b) and c) τ−v domain, predicted multiples and primaries via
CGLS. d), e) and f) Sparse τ − v domain, predicted multiples and primaries
via FISTA. g), h) and i) Sparse τ − v domain, predicted multiples and
primaries via IRLS.
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data. Then, from the τ − v result, one can synthesize data at new spatial regular

coordinates. Figures 3.5b and c show the τ − v panels computed with the Radon

transforms computed via CGLS and FISTA (sparse), respectively. Figure 3.5d and

e are the reconstructed data from the τ−v panels in Figure 3.5b and c, respectively.

This technique can be utilized to regularize the offset, for instance, before seismic

migration. Last, Figure 3.6 shows the velocity spectra (Semblance) for the data

before regularization and after regularization from the τ − v solutions obtained via

the FISTA and IRLS algorithms.
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Figure 3.5: a) Onshore CMP gather with irregular distribution of offset. b)
τ − v transform obtained via CGLS. c) Sparse τ − v transform obtained via
the FISTA algorithm. d) Reconstructed from b). e) Reconstructed from c).
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Figure 3.6: Semblance panels showing velocity spectra. a) Velocity spectra
of the original CMP gather in Figure 3.5a. b) Velocity spectra of the recon-
structed data in Figure 3.5d. c) Velocity spectra of the reconstructed data
in 3.5e. Notice the superior resolution of events at about 3.5s in b) and c).



CHAPTER 4

Local Radon transform with a second-order traveltime

approximation

4.1 Introduction

This chapter will introduce a new transform named the local Radon transformation.

Many studies have given much attention to optimized Radon transformations for

high-resolution solutions and lower computational costs. However, these studies

are often concerned with the application of linear, parabolic and hyperbolic Radon

transforms. These transforms can not handle complex waveforms well because they

have been explicitly designed to cope with linear, parabolic, and hyperbolic moveout

events. Moreover, they are often designed to operate on the whole aperture of a

seismic gather where waveforms with specific traveltime trajectories are expected to

be found. Contrary to the latter, seismic data can have complexity not captured by

linear, parabolic or hyperbolic traveltimes.

Radon transform can be characterized into three categories based on the specific

integration paths to stack the energy along the designated integral lines. The most

common lines for Radon transform applied in seismic processing are straight lines,

parabolic and hyperbolic curves. However, the travel time equation is not always

hyperbolic for reflections, and they also depend on which data domain reflections are

analyzed. For instance, hyperbolic events are correct for many applications when

the data are processed in the CMP domain. However, simple hyperbolic traveltimes

might not be optimal in common-shot or common-receiver domains in the presence

50
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of structural dip. Also, in complex structures such as overthrust tectonics, salt

domes and basalt, the assumption of hyperbolic trajectories is disrupted because

of the complexity of the subsurface and propagation of waves in anisotropic media.

Therefore, classical Radon transforms suffer from inaccuracy, particularly at large

offsets. Other moveout parametrization could be used as generalized moveout ap-

proximations such as those proposed by Stovas and Fomel (2017), the method of

Ravve and Koren (2017) and the extended generalized moveout approximation of

Abedi and Stovas (2019) to cope, for instance, with traveltimes signatures caused

by anisotropy.

In this thesis, I propose a local Radon transform that can adapt to complex wave-

forms. By making the Radon transform local, one can use Radon domain coefficients

to synthesize complex waveform with laterally varying dips. Many applications of

this proposed local Radon transform come to mind. For instance, a local Radon

transform can be used for seismic data denoising and seismic data interpolation.

Moreover, following the work of Lin and Sacchi (2020) a local Radon transform

could serve for robust simultaneous source processing.

4.2 Local Radon transforms

Opposite to the conventional local Radon transform parameterized in slope, curva-

ture (residual moveout) or velocity, I have developed a multi-parameter parameteri-

zation for the new transform using a second-order Taylor expansion to approximate

the traveltime of reflections in any domain. The main idea of this approach is to use

dip and curvature information of seismic events in local windows of neighbouring

traces to extract the corresponding Radon domain coefficients that synthesize the

data. As shown in Chapters 2 and 3, I will solve an inverse problem where the data

is mapped from t− x to the Radon domain. The local Radon domain now depends

on two kinematic parameters described in the following sections, and the inverse

problem becomes rather cumbersome for explicit form solutions as those proposed

in Chapter 2. Hence, I will resort to implicit operators following the route already

described in Chapter 3.

We first consider a local approximation of the traveltime of a reflection in terms of
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a second-order Taylor expansion.

T (x) ≈ Tapp(x) = T0 +A(x)(x− x0) +B(x)(x− x0)
2 . (4.1)

In the above, T0 is the intercept time at x = x0, x is offset, and x0 is the position of a

central seismic trace. The parameters A and B correspond to derivatives evaluated

at x0. Clearly, A is also dip or local ray parameter and B is curvature

T (x) ≈ Tapp(x) = T0 +
∂T (x0)

∂x
(x− x0) +

1

2

∂2T (x0)

∂x2
(x− x0)

2 . (4.2)

Once could divide the spatial aperture of the data into spatially localized windows,

and the Radon transform can be implemented for each window independently for a

specific number of traces placed. However, it is preferable to use a single transform

where the window is part of the Radon operator. For this purpose, the proposed

adjoint and forward operators for the local Radon transform are as follows

m̂(τ, A,B, x0) =

x0+L∑
x=x0−L

d(t = τ +A(x− x0) +B(x− x0)
2, x) (4.3)

and

d(t, x) =
∑
x0

∑
A,B

m(τ = t− (A(x− x0) +B(x− x0)
2), A,B, x) . (4.4)

The number of traces placed in each window depends on the geological structures,

controlled by the parameter L. The total integration aperture of the transform for

each central trace x0 is 2L+ 1. Smaller windows should be applied to complicated

areas with low SNR, while larger windows should be used for relatively simple ge-

ological features. However, the increase of L will cause an increase in computation

time. So the size of the window is a trade-off between cost and accuracy. These

two transforms are speeded-up by discretizing x0 at a different rate than x. As

in Chapters 2 and 3, we can simply designate the forward mapping as L and the

adjoint operator as L′. Moreover, in other to increase computational efficiency, we

can adopt a hybrid approach where the inverse problem to determine m(τ, A,B, x0)

from equation 4.3 is written in the frequency domain as follows

M̂(ω,A,B, x0) =

x0+L∑
x=x0−L

D(ω, x)eiω(A(x−x0)+B(x−x0)2) (4.5)



CHAPTER 4. LOCAL RADON TRANSFORM 53

and

D(ω, x) =
∑
x0

∑
A,B

m(ω,A,B, x0)e
−iω(A(x−x0)+B(x−x0)2) . (4.6)

We now move the operators to time domain, in a way that expressions corresponds

to mapping from t− x to τ − A− B − x0 and vicervesa, yet with the cost of sums

in frequency domain

m̂(τ, A,B, x0) = F−1M̂(ω,A,B, x0) = F−1
x0+L∑

x=x0−L

eiω(A(x−x0)+B(x−x0)2)Fd(t, x)

(4.7)

and

d(t, x) = F−1D(ω, x) = F−1
∑
x0

∑
A,B

e−iω(A(x−x0)+B(x−x0)2)Fm(τ, A,B, x0) . (4.8)

where F is the Fourier operator that maps traces in time t to frequency ω. Similarly,

F−1 is the inverse Fourier operator. Equations 4.7 and 4.8 can be written in operator

form as follows

m̂ = L′d (4.9)

and

d = Lm (4.10)

where m is the vector containing all coefficients of m(τ, A,B, x0) and d is the data

vector with elements d(t, x). In essence we gave packed the operators required in

equations 4.7 and 4.8 into L and L′. Notice that the Hermitian Fourier symmetry

property for real signals is used to speed up the computation of L and L′. In other

words, only positive frequencies are used when evaluating the sum. Clearly, in the

numerical implementation, F and F ′ are time-domain Discrete Fourier Transforms

are executed in the implicit form via Fast Fourier Transforms.

The problem now is reduced to estimating m by minimizing the cost function of the

problem

J = ‖d− Lm‖22 + μRm (4.11)

where, as in Chapter 2, we will adopt the CGLS method minimize J when R is

the l2-norm of m. Whereas, we will use IRLS or FISTA when solving the problem
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with R given by the l1 norm. Again, it is important to mention that the l1-norm

regularization will induce sparse (high-resolution) Radon transforms. The CGLS,

IRLS and FISTA Methods are given in Appendix A.

4.3 Local Radon using travel time in a CMP gather

given by Dix’s hyperbola

This section discusses the kinematic meaning of the parameters A and B via a simple

example. We adopt a hyperbola to describe a reflection, for instance, in the CMP

domain and study how the second-order traveltime approximation approximates the

hyperbola. We start with the hyperbolic traveltime for a reflection

T =

√
τ2 +

x2

v2
(4.12)

where x is the offset, v is the velocity of the reflection, and τ is the two-way time.

Expanding this travel time using the Taylor series in the vicinity of the arbitrary

position, for example, x0, results in the following second-order approximation

T (x0 +Δx) = T0 +
∂T (x0)

∂x
(Δx) +

1

2

∂2T (x0)

∂x2
(Δx)2 (4.13)

where the coefficients A and B can be calculated by taking the first and second

derivative of Dix’s equation precisely as

A =
x

v2
√
τ2 + x2

v2

(4.14)

and

B = (
1

2v2
√
τ2 + x2

v2

)(1− Ax√
τ2 + x2

v2

) . (4.15)

Figure 4.1 and Figure 4.2 show the moveout curves, the blue ones, and Tapp(x),

red ones obtained by the Taylor expansion. The red curves are for x0 = 0m and

x0 = 100m. Figure 4.1(a) and Figure 4.2(a) display the approximated trajectory

only using the first term of Taylor expansion, while 4.1(b) and 4.2(b) are the approx-

imated curves based on the two-term expansion. As they show, the approximated
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curves do not match the traveltime very well if constructed with only one term.

However, Tapp(x) and the true traveltime overlap reasonably for a small window,

(x0 −Δx ≤ x ≤ x0 +Δx) using two-term approximation.

Figure 4.3 shows different plots for coefficients A and B calculated using equations

(4.14) and (4.15) for different velocities and τ = 1.2s. As shown for relatively small

offsets, the coefficient A (the slope) is small, increasing for far offsets. The value of

B or the curvature is maximum for near offsets, decreasing for far offsets.
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Figure 4.1: (a) Traveltime, the blue curve and the first term approximated
Taylor expansion, the red line for x0 = 0m, (b) Traveltime, the blue curve
and the second terms approximated Taylor expansion, the red line, for x0 =
0m.
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Figure 4.2: (a) Traveltime, the blue curve and the first term approximated
Taylor expansion, the red line, for x0 = 100m, (b) Traveltime, the blue
curve and the second terms approximated Taylor expansion, the red line, for
x0 = 100m.
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Figure 4.3: Coefficients A and B for different velocities and offsets, t0 = 1.2
ms.
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4.4 Synthetic examples

We examine the local Radon transform with a numerically synthetic dataset to show

the proposed local transform. To obtain the sparse model in the local Radon domain,

we used the FISTA and IRLS algorithms. The synthetic dataset corresponds to 91

traces or 251 samples each. The window length is 325 meters, and the interval of

x0 is 157 meters. The wavelet used in the data set is Ricker 25 Hz.

Figure 4.4 shows the results obtained via FISTA algorithm after 55 iterations. The

figures consist of four panels. The left panel (a) is the free noise data, (b) is observed

data with SNR = 2, panel (c) is predicted data (reconstructed from the model),

and (d) is the difference between observed and reconstructed data. Figure 4.5 shows

six cube models computed for six different x0 by the FISTA algorithm.

Figure 4.6 shows the results obtained via the IRLS algorithm using μ = 5 as a

trade-off parameter and SNR = 2 after ten iterations and consists of four panels:

the left panel (a) is the free noise data, (b) is observed data, panel (c) is predicted

data (reconstructed from the model), and (d) is the difference between observed

and reconstructed data. Figure 4.7 shows different reconstructed data with varying

trade-offs μ and the difference between the reconstructed data and original data as

an error. To show the enhancement of the data using the local Radon algorithm,

we compare the input and output SNR. Figure 4.8 to Figure 4.12 show the input

data for SNR = −5,−2, 0, 2, 4, respectively. Each figure has four panels that are a)

the noise-free data, b) the noisy data, c) the reconstructed data, and d) is the error

panel.

Figure 4.13 shows the output SNR (reconstruction quality) versus the input SNR

for the previous figures. This experiments portray the denoising capability of the

local Radon transform. In general, the method is sensitive to the selection of the

trade-off parameter μ and monitoring the residuals is necessary to obtain an optimal

trade-off parameter for proper data denoising.

Besides the enhancement, the local Radon transformation can be used for the re-

construction of missing data. In this case, we run the algorithm with a sampling

operator. Once we estimated the local Radon transform from the sampled data, one

can synthesize all the data (missing and given observation) and obtain the recon-

structed data. Figure 4.14 is consists of four panels. Panel a) is the synthetic data
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Figure 4.4: Estimated results by the FISTA algorithm after 55 iterations.
(a) The free noise data. (b) The observed data. (c) Predicted data (recon-
structed from the Radon domain). (d) The difference between the observed
and reconstructed data.
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Figure 4.5: Cube models computed for six different x0s. These results were
obtained by inverting the Radon coefficients via the FISTA algorithm.
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Figure 4.6: Computed results via the IRLS algorithm using μ = 5 after
ten iterations. (a) The free noise data. (b) The observed data. (c) Predic-
tied data (reconstructed from the model). (d) The difference between the
observed and reconstructed data.
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Figure 4.7: Computed results by the IRLS algorithm using different values
of μ after ten iterations. In this experiment the first row is the predicted
data from the Radon model. The second row is the estimated noise. From
left to right, the tradeoff parameter from small to large (μ = 0.1, 1, 10, 100).
Excessive overfitting is observed in a). Excessive under-fitting is observed in
d).
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Figure 4.8: (a) The noise free data. (b) Noisy data SNR = −5, (c) Recon-
structed data. (d) The error.

a

0 500 1000
Offset (m)

0

0.2

0.4

0.6

0.8

1

T
im

e 
(s

)

b

0 500 1000
Offset (m)

0

0.2

0.4

0.6

0.8

1

T
im

e 
(s

)

c

0 500 1000
Offset (m)

0

0.2

0.4

0.6

0.8

1

T
im

e 
(s

)

d

0 500 1000
Offset (m)

0

0.2

0.4

0.6

0.8

1

T
im

e 
(s

)

Figure 4.9: (a) The noise free data. (b) Noisy data SNR = −2. (c) Recon-
structed data. (d) The error.
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Figure 4.10: (a) The noise free data. (b) Noisy data SNR = 0. (c) Recon-
structed data. (d) The error.
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Figure 4.11: (a) The noise free data. (b) Data with additive noise SNR = 2.
(c) Reconstructed data. (d) The error panel.
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Figure 4.12: (a) The noise free data. (b) Noisy data SNR = 4. (c) Recon-
structed data. (d) The error.

set with SNR = 15, b) is the decimated data from panel a), panel c) shows the

interpolated data using local Radon transformation, and panel d) is the difference

between Figure 4.14a and Figure 4.14 b. This example is challenging for interpo-

lation because dips vary quickly across offset. Despite the latter, the Local Radon

transform was able to recover the missing observations.
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Figure 4.13: The graph shows the output SNR (quality of the reconstitu-
tion) versus the SNR of the input data for the experiments.
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Figure 4.14: (a) Synthetic data SNR = 15. (b) Decimated data. (c) Inter-
polated data using local Radon transformation. (d) The difference between
(a) and (b).

4.5 Real data example

This section tests the local Radon transformation on a real dataset (Gulf of Mexico,

Mississippi Canyon data). The data corresponds to a near offset section.

Figure 4.15 shows three panels which are (a) the input data, (b) is the reconstructed

data using local Radon transform from the decomposed data and (c) is the difference

between input and reconstructed, (a) and (b). This experiment shows that the

proposed local Radon transform can synthetize data composed of complex laterally

varying dips.
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Figure 4.15: (a) Real dataset, a near offset section from the Mississippi
Canyon survey. (b) The reconstructed data using local Radon transform.
(c) The difference between panels (a) and (b).
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Figure 4.16 shows the reconstruction of missing data for the above real data using

the local Radon transform. Figure 4.16a is the input data, Figure 4.16b is the

decimated data, 4.16c is the reconstructed data using local Radon transform from

the decomposed data and panel (d) is the difference between the input (a) and

reconstructed (c). Figure 4.17 repeats the experiment but for random sampling.

The interpolation experiments show that the local Radon transform could also be

used for compressive acquisition where data are regularly or randomly subsampled

for saving acquisition costs.
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Figure 4.16: (a) A near offset marine dataset corresponding to a survey
in the Gulf of Mexico (Mississippi Canyon data). (b) Regularly decimated
data to test interpolation. c) Interpolated data via the proposed local Radon
Transform. d) Difference panel corresponding to the true data in a) minus
the interpolated data in c). As one can see, only steep dips have been poorly
reconstructed.
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Figure 4.17: (a) A near offset marine dataset corresponding to a survey in
the Gulf of Mexico (Mississippi Canyon data). (b) Randomly decimated data
to test interpolation about 80% of traces are missing. c) Interpolated data
via the proposed local Radon Transform. d) Difference panel corresponding
to the true data in a) minus the interpolated data in c). As one can see,
only steep dips have been poorly interpolated.



CHAPTER 5

Conclusions

I have reviewed different Radon transforms used in exploration seismology and paid

particular attention to understanding solvers for estimating sparse Radon trans-

forms (also called high-resolution Radon transforms). These solvers include CGLS,

FISTA and IRLS, and, as other authors, I have shown that FISTA and IRLS pro-

vide a solution that has more resolution than classical Radon transforms solved via

damped-least squares and CGLS. I also studied different operators that can be cat-

egorized as explicit and implicit. For practical purposes, I preferred to concentrate

on implicit form operators where operators replace matrices, and iterative solvers

permit to estimate the Radon transform. In general, Parabolic and Hyperbolic

Radon transforms are potential tools to process seismic data in the CMP domain.

To process data in other domains or structurally complicated data sets, one needs

to develop a local Radon transform where the operator adapts to spatially varying

dips. My main contribution is the development of a local Radon transform that

adopts a second-order traveltime approximation. This new transform was inspired

in the work mainly presented in Chapter 3 on implicit operators for Parabolic, and

Hyperbolic Radon transforms, where I showed how to use different solvers to map

data from t − x to τ − q or τ − v. These operators were modified to work locally

with the second-order travel time approximation that adapts to different reflection

traveltime signatures, in general, with applications not restricted to CMP gathers.

This flexible local Radon transform offers a new operator for seismic data denois-

ing and seismic data reconstruction. However, more work is required to move the

current research to process data from 3D surveys where the data depends on two or
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more spatial dimensions. At the current stage, the operators I have developed are

too time-consuming for porting them to processing 3D surveys, and more research

is needed to find even more efficient ways to compute local Radon transforms for

dataset of the form d(t, x, y) which represent gathers of a typical modern 3D survey.

As the main conclusion for this work, I developed a 2D local Radon transform that

is very versatile in terms of applicability. I have also found that adopting FISTA or

IRLS solvers for computing the sparse Radon transform produces similar results with

no real computational difference between these two methods. In essence, the main

block for advancing this research is to find fast ways of implementing forward and

adjoint operators L and L′. At this stage, I conclude that the hybrid implementation

of the local Radon transform in t − x and ω − x provides a more computationally

efficient way of computing the transform than using an approach fully developed in

the time domain as in Chapter 3.

Future work should not only concentrate on finding more efficient algorithms but also

on in-depth studies of local Radon transforms for application such as simultaneous

source processing and multidimensional compressive reconstructions.
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APPENDIX A

Solvers

A.1 Conjugate Gradient Least-squares Method (CGLS)

The CG algorithm (Hestenes et al., 1952) minimizes the cost function

J = ‖Lm− d‖22 + μ‖d‖22 (A.1)

which is equivalent to solving the system of equations

(LTL+ μI)m = g . (A.2)

If we let A = LTL+ μI and g = LTd, one gets

Am = g . (A.3)

The symmetric matrixAT = A is positive-definitive (xTAx > 0) and of sizeM×M .

The classical CG algorithm solves A.3 in M steps. The multiplication of A times

a vector is executed in each step. If the algorithm converges in K < N iterations,

then its cost is about O(N2K). Moreover, if we have a way of implementing fast

matrix-times vector multiplications by exploiting a special structure1 of A, the cost

O(N2K) further decreases.

CGLS is a modification of the CG method where in its steps, multiplication of A

1For instance, if the matrix has a Toeplitz structure, products of the form Au, can be executed
via the Fast Fourier Transform (Sacchi and Porsani, 2005).
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times a vector are avoided. Each step directly requires the application of matrix-

time-vector products of matrices L and LT (Golub and Van Loan, 1996). Algorithm

4 shows the classical CGLS algorithm, the matrix L is replaced by the linear operator

L and LT by L′. In Chapter 3 L and L′ are time-domain Radon operators. In

Chapter 4, they are time-domain local Radon operators but partially implemented

in the frequency domain.

Algorithm 4 CGLS

Given Forward L and Adjoint L′ operators and initial point m0,

this algorithm minimizes J = ‖Lm− d‖22 + μ‖m‖22
m = m0 & k = 0

r = b− Lm Forward

s = L′r− μm Adjoint

p = s

γ = ‖s‖22
for k < kmax do

q = Lp Forward

δ = ‖q‖22 + μ‖p‖22
α = γ/δ

m = m+ αp

r = r− αq

s = L′ r− μm Adjoint

γnew = ‖s‖22
β = γnew/γ

γ = γnew

p = s+ βp

k = k + 1

end for

A.2 Iterative Reweighted least-squares (IRLS)

The IRLS (Scales et al., 1988; Daubechies et al., 2010) algorithm finds sparse solu-

tions of the Radon transform by minimizing the cost function
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J = ‖Lm− d‖22 + μ‖m‖1 . (A.4)

The cost function J can be replaced by the following quadratic form

J = ‖Lm− d‖22 + μ‖Wm‖22 , (A.5)

where

‖m‖1 ≈ ‖Wm‖22 (A.6)

with W a diagonal matrix with elements given by Wi,i = 1
|mi|+ε and ε is a mall

number to avoid division by zero.The IRLS solution is expressed by

mk = argmin
m

‖Lm− d‖22 + μ‖Wk−1m‖22 , (A.7)

where k is the IRLS iteration and W k−1
i,i = 1

|mk−1
i |+ε

. We let Wm = u and hence,

Pu = m, with Pi,i = |mi|+ ε, then

uk = argmin
u

‖LPk−1u− d‖22 + μ‖u‖22 , (A.8)

where the last expression is equivalent to A.1. Hence, each quadratic problem A.8

is solved via the CGLS algorithm described in the proceeding section but now the

operator L in Algorithm 4 must be replaced by LP. In this way, we have an

external IRLS iteration and the internal iteration of the CGLS method. In the

IRLS implementation used in this thesis, the internal CGLS iteration is set to a

maximum of 50 iterations and the norm of the gradient of J is used as a stopping

criterion. The external IRLS iteration is fixed to a maximum of 5 iterations unless

convergence is achieved in fewer iterations. A pseudo-code for IRLS is given in

Algorithm 5.
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Algorithm 5 IRLS

Given Forward L and Adjoint L′ operators and initial point m0,

this algorithm minimizes J = ‖Lm− d‖22 + μ‖m‖1
m = m0 & k = 0

Initialize P

for k < kmax do

use cgls to solve u = argminu ‖LPu− d‖22 + μ‖u‖22
m = Pu

update P

k = k + 1

end for

A.3 Fast Iterative Shrinkage-Thresholding Algorithm

(FISTA)

FISTA is also used to minimize A.4 (Beck and Teboulle, 2009). The algorithm

derives from the Iterative Shrinkage-Thresholding Algorithm (ISTA) (Daubechies

et al., 2010). FISTA is basically ISTA in conjunction with Nesterov’s accelerated

gradient descent (Beck and Teboulle, 2009). The algorithm FISTA implemented

in this thesis follows Beck and Teboulle (2009) with step length computed via the

power-iteration method (Golub and Van Loan, 1996) to guarantee its convergence.

Algorithm 6 is the pseudo-code for FISTA. The operator ST in the pseudo-code is

the shrinkage operator defined as

ST (x) = (|x| − T )+sign(x) . (A.9)
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Algorithm 6 FISTA

Given Forward L and Adjoint L′ operators and initial point m0,

this algorithm minimizes J = ‖Lm− d‖22 + μ‖m‖1
m = m0 & k = 0

u = m

use power iteration to compute α =max eigenvalue of L′L
T = μ/(2α)

for k < kmax do

mold = m

v = Lu
m = ST [u+ (1/α)L′(d− v)]

t′ = t

t = (1 +
√
1 + 4t2)/2

u = m+ [(t′ − 1)/t](m−mold)

end for


