RESERVOIR CHARACTERIZATION AND CAPACITY CALCULATION FOR CO₂ STORAGE USING AI/ML TECHNIQUES IN GANDHAR OIL FIELD, CAMBAY BASIN, INDIA

By

Akash Nair

Under the guidance of

Prof. William K. Mohanty

Professor, IIT Kharagpur, India

Dr. Srikumar Roy Senior Research Scientist, iCRAG, University College Dublin, Ireland

Capacity Calculation for CO₂ Storage \bigcirc $M_{CO_2} = \rho_{CO_2 res} [R_f \times A \times h \times \phi \times (1 - S_w) - V_{iw} + V_{pw}]$

 $\rho_{CO_2 res}$ is the density of CO2 at reservoir conditions

R_f is the recovery factor

A is the area of the field,

h is the effective thickness of the reservoir

 ϕ is the porosity,

 S_w is the water saturation,

 V_{iw} is the volume of injected water V_{pw} is the volume of produced water.

 $M_{CO_2eff} = 0.5 \times M_{CO_{2res}}$

Objectives

• CO₂ Storage Capacity of Gandhar Oilfield

Properties to be found using Conventional RC and AI/ML

- Pay zone thickness
- Oil Saturation
- Porosity

Algorithms to be tested:

- Naive Bayes
- Logistic Regression
- Decision Tree
- Support Vector Machine
- Kernel Support Vector Machine
- XGBoost
- Random Forest
- K-Nearest Neighbors
- Artificial Neural Network

Data Used

Attribute

1.00

-0.00

-1.00

Gandhar_seismic.brk

Conventional Reservoir Characterization

Seismic-towell tie

RC using well data

RC using seismic data

RC using well data

0

RESULTS

CONVENTIONAL RESERVOIR CHARACTERIZATION

Pay Zone	Depth (m)	Thickness (m)	Porosity (%)	Oil Saturation (%)	Water Saturation (%)
14	2747-2753	6	16.45	18.25	81.75
13	2773-2776	3	13.63	14.85	85.15
12	2786-2787	1	12.46	6.16	93.84
11	2791-2795	4	14.28	25.45	74.55
10	2798-2801	3	13.05	12.2	87.8
9	2804-2807	3	8.36	6.37	93.63
8	2811-2814	3	12.22	12.91	87.09
7	2821-2825	4	10.03	3.49	96.51
6	2829-2836.5	7.5	15.67	19.93	80.07
5	2837-2838	1	1.64	5.68	94.32
4	2839-2842	3	13.78	16.08	83.92
3	2845-2847	2	18.18	10.25	89.75
2	2853-2855	2	9.98	17.14	82.86
1	2858-2861	3	14.93	14.74	85.26

Model 1 Delineates pay zones (sand) using well data

Feature Selection

00

Model Selection

Classification Algorithm Accuracy to delineate pay zone

0

Model Evaluation

Testing Validation

More data = Better results

Model 2 Predicts oil saturation using well data

Model Selection

Performance of regression algorithms in blind well prediction

Algorithms

Results

Model 3 Predicts porosity using seismic attributes

-0.80 SV

Sweetness

Model Selection and Validation

Capacity Calculation for CO₂ Storage \bigcirc $M_{CO_2} = \rho_{CO_2 res} [R_f \times A \times h \times \phi \times (1 - S_w) - V_{iw} + V_{pw}]$

 $\rho_{CO_2 res}$ is the density of CO2 at reservoir conditions

R_f is the recovery factor

A is the area of the field,

h is the effective thickness of the reservoir

 ϕ is the porosity,

 S_w is the water saturation,

 V_{iw} is the volume of injected water V_{pw} is the volume of produced water.

 $M_{CO_2eff} = 0.5 \times M_{CO_{2res}}$

Results and Discussion

Property	G_130	G_451	G_425	G_239	Mean
Thickness (m)	45.5	99	87.75	105.75	84.5
Porosity (%)	13.44	11.64	11.59	10.93	11.9
Oil Saturation (%)	14.78	6.5	10.51	14.2	11.49
Water Saturation (%)	85.21	93.5	89.49	85.79	88.51

Parameters	ρ _{CO2} res	R _f	Α	h	φ	$S_o = 1 - S_w$	M _{CO2} res
Units	kg/m3	Fraction	m2	m	Fraction	Fraction	kg
Values	531.75	0.39	5 x 10 ⁷	84.5	0.119	0.1149	1.198 x 10¹⁰

 $M_{CO_2 res} = 11.98 \text{ MMt}$ $M_{CO_2 eff} = 5.99 \text{ Mt} \sim 6 \text{ MMt}$

Conclusion

Conventional RC used integrated seismic and well-log data to <u>qualitatively interpret the reservoir, identify pay</u> <u>zones</u>, and <u>quantitatively interpret porosity and oil saturation</u>. Visual inspection of well-log data revealed pay zones with an <u>effective thickness of 84.5 m, oil saturation of 11.9%, and porosity of 11.49%</u>.

<u>Three models have been proposed</u> for machine-learning-assisted RC to delineate pay zones, predict oil saturation from well log data, and predict pore class from seismic attributes. Test results determined model selection. Then, a blind well prediction verified the results.

Without field-specific data, a crude storage capacity calculation was shown. <u>Effective CO₂ storage capacity is 5.99 MMt, while theoretical capacity is 11.98 MMt</u>.

<u>High-porosity and low-permeability</u> pay zones throughout the depleted oil and gas reservoirs of India's Cambay Basin and other sedimentary basins make <u>CO₂ sequestration promising</u>.

This study can be used in other depleted oil and gas fields to find suitable CO₂ injection sites and optimize the injection strategy for safe and effective subsurface CO₂ storage.

Selective References

- Bachu, S., & Shaw, J. (2003). Evaluation of the CO₂Sequestration Capacity in Alberta's Oil and Gas Reservoirs at Depletion and the Effect of Underlying Aquifers. J Can Pet Technol 42.
- Chaki, S., Routray, A., & Mohanty, W. K. (2015). A novel preprocessing scheme to improve the prediction of sand fraction from seismic attributes using neural networks. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 8(4), 1808–1820. https://doi.org/10.1109/JSTARS.2015.2404808
- Chopra, S., & Marfurt, K. J. (2007). SEISMIC ATTRIBUTES FOR PROSPECTIDENTIFICATION AND RESERVOIR CHARACTERIZATION.
- MOP&NG. (2022). Draft 2030 Roadmap for Carbon Capture Utilization and Storage (CCUS) for Upstream E&P Companies.
- Pal, M. (2005). Random forest classifier for remote sensing classification. International Journal of Remote Sensing, 26(1), 217–222. https://doi.org/10.1080/01431160412331269698
- Steyn, M., Oglesby, J., Turan, G., Zapantis, A., Gebremedhin, R., Al Amer, N., Havercroft, I., Ivory-Moore, R., Yang, X., Abu Zahra, M., Pinto, E., Rassool, D., Williams, E., Consoli, C., & Minervini, J. (2022). GLOBAL STATUS OF CCS 2022.
- Verma, A. K., Chaki, S., Routray, A., Mohanty, W. K., & Jenamani, M. (2014). Quantification of sand fraction from seismic attributes using Neuro-Fuzzy approach. *Journal of Applied Geophysics*, 111, 141– 155. https://doi.org/10.1016/j.jappgeo.2014.10.005
- Vishal, V., Verma, Y., Chandra, D., & Ashok, D. (2021). A systematic capacity assessment and classification of geologic CO2 storage systems in India. *International Journal of Greenhouse Gas Control*, 111. https://doi.org/10.1016/j.ijggc.2021.103458

Supplementary Slides

Future Scope

Multicomponent seismic and timelapse seismic can add reservoir property and dynamics information. Integrating production, geochemical, and other data can reveal reservoir behaviour and properties.

Detailed pay zone permeability studies can optimise injection strategy. Tuning hyperparameters is essential for model accuracy and generalization. Evolutionary algorithms tune hyperparameters.

More well data improves algorithm performance.

Regularize the predicting and predictor variables using Empirical Mode Decomposition or Entropybased Fourier Transform during non-linear mapping, as in Model-3. Information filtering matches the frequencies of both variables and improves mapping accuracy.

A 3D geocellular model of the properties can be created for visualization.

Delineating pay zones using well-logs

Porosity from well-logs

Neutron Porosity, ϕ_N Density Porosity, ϕ_D

Total Porosity, $\phi_T = \frac{\phi_N + \phi_D}{2}$

Oil Saturation from well-logs

Shows discontinuities, lithology changes, faults, deposition changes, tuning effects, and SB.

$$F(t) = \frac{d\left(\tan^{-1}\left(\frac{H(t)}{T(t)}\right)\right)}{dt}$$

• A low-frequency anomaly is a hydrocarbon indicator.

Impedance

Instantaneous frequency

Sweetness -

• It reveals discontinuities and improves structural delineation. High contrast indicates possible SB and shows unconformities.

• $s(t) = \frac{E(t)}{\sqrt{F(t)}}$

• $Z = \rho V$

• The high sweetness regions in the seismic indicates the presence of hydrocarbon-bearing sand units.

Discussion

Conventional RC allows for flexibility in the interpretation of data, enabling geoscientists to adjust the models based on their expertise and intuition.

*	Advantages of AI/ML in RC	Disadvantages of AI/ML in RC
	Improved accuracy and reduced risk	High data requirements
	Increased speed	Lack of transparency
	Better decision-making	Limited understanding of underlying physics

Random Forest works well in geophysics:

- 1. Ability to handle complex datasets
- 2. Robustness to noise
- 3. Deals well with non-linear relationships
- 4. Ability to work with small datasets

SVR works well in geophysics because:

- 1. Deals well with non-linear relationships
- 2. Can handle a large number of variables

Capture and Store

The Solution: Carbon Capture, Utilization, and Storage (CCUS)

Feature Selection

0

Features

Feature Selection

CCUS is the need of the hour!

Geophysicists are the 'Doctors of Mother Earth'!

Role of Geophysics in CCUS

Seismic reflection surveys identify the thickness and geometry of the storage formation. Site Selection Gravity and magnetic surveys can provide information on the structure and composition of the underlying rock formations. • Porosity and permeability obtained from well-logs and seismic data. Reservoir • Techniques like seismic tomography, resistivity imaging, and magnetotelluric surveys can provide detailed subsurface images. characterization • Seismic monitoring can detect the movement of the CO₂ plume and any changes in the subsurface Injection monitoring • EM surveys can detect changes in the electrical conductivity of the formation.

Post-injection monitoring

- Seismic surveys can detect any changes in the subsurface, such as the movement of the CO2 plume or the development of microseismicity.
- Electromagnetic surveys can detect changes in the electrical conductivity of the formation, which can indicate the presence of CO₂.

Dip and Spatial Coverage

b. Time slice at 2.18 s

c. Time slice at 2.20 s

e. Time slice at 2.24 s

g. Time slice at 2.28 s

d. Time slice at 2.22 s

f. Time slice at 2.26 s

h. Time slice at 2.30 s