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-
—" Capacity Calculation for CO, Storage

y hx¢px(1-S5,)

Pco,res 18 the density of CO2 at reservoir conditions
R; is the recovery factor
A is the area of the field,
h is the effective thickness of the reservoir
¢ is the porosity,
S, 1s the water saturation,
V., is the volume of injected water

pr is the volume of produced watet.



o Obijectives

¢ CO, Storage Capacity of Gandhar Oilfield

N

J Properties to be found using Conventional RC and Al/ML
* Pay zone thickness
* Qil Saturation
* Porosity

O Algorithms to be tested:
* Naive Bayes , ~
* Logistic Regression

* Decision Tree ,
* Support Vector Machine |
* Kernel Support Vector Machine

* XGBoost LEOEND

* Random Forest TP B

* K-Nearest Neighbors ¥ o e i
* Artificial Neural Network &\ / ! [ ——
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RC using well data
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1. Improved accuracy and
reduced risk

2. Increased speed

3. Better decision-making
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RC using Al/ML
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o e How is a model developed?

outliers,

Preparation ERNLEES: \o

processing

r = L(xi-0)i-y)
VE&i-%)2E(yi-y)?
Fe a 1.U re 2 Usmg , where, X; = values of the x-variable 1n a sample
o Pearson’s X = mean of the values of the x-variable
Se I ecll.l on correlation  y; = values of the y-variable in a sample

¥ = mean of the values of the y-variable
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Model 1

Delineates pay zones
(sand) using well data



- Feature Selection —

Pearson’s r between inputs and output
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" More data = Better results
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0 Results
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Model 2

Predicts oil saturation
using well data
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Model 3

Predicts porosity using
seismic attributes
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\_/ Model Selection and Validation
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-
—" Capacity Calculation for CO, Storage

y hx¢px(1-S5,)

Pco,res 18 the density of CO2 at reservoir conditions
R; is the recovery factor
A is the area of the field,
h is the effective thickness of the reservoir
¢ is the porosity,
S, 1s the water saturation,
V., is the volume of injected water

pr is the volume of produced watet.



- Results and Discussion
~— 5
- Property G 130 G 451 G 425 G 239 Mean
Thickness (m) 45.5 99 87.75 105.75 |84.5
Porosity (%) 13.44 11.64 11.59 10.93 11.9
Oil Saturation (%) 14.78 6.5 10.51 14.2 11.49
Water Saturation (%) |85.21 93.5 89.49 85.79 88.51
Parameters | pco,res [R¢ A h ¢ S, =1-S, Mco,res
Units kg/m3 Fraction |m2 m Fraction |Fraction kg
Values 531.75 |0.39 5x 107 |84.5 0.119 10.1149 1.198 x 10'°
MCOZTBS =11.98 MMt >
MCOZeff = 5.99 Mt ~ 6 MMt /

A O O )
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0 Conclusion

7
~ Conventional RC used integrated seismic and well-log data to qualitatively interpret the reservoir, identify pay

_J 2ones, and guantitatively interpret porosity and oil saturation. Visual inspection of well-log data revealed pay
zones with an effective thickness of 84.5 m, oil saturation of 11.9%, and porosity of 11.49%.

Three models have been proposed for machine-learning-assisted RC to delineate pay zones, predict oil saturation
from well log data, and predict pore class from seismic attributes. Test results determined model selection. Then, a
blind well prediction verified the results.

Without field-specific data, a crude storage capacity calculation was shown.
Effective CO, storage capacity is 5.99 MMt, while theoretical capacity is 11.98 MMt.

High-porosity and low-permeability pay zones throughout the depleted oil and gas reservoirs of India's Cambay
Basin and other sedimentary basins make CO, sequestration promising.

=

This study can be used in other depleted oil and gas fields to find suitable CO, injection sites and optimize the /
injection strategy for safe and effective subsurface CO, storage.
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Future Scope

Multicomponent seismic and time-
lapse seismic can add reservoir
property and dynamics
information. Integrating
production, geochemical, and
other data can reveal reservoir
behaviour and properties.

Tuning hyperparameters is
essential for model accuracy and
generalization. Evolutionary
algorithms tune hyperparameters.

Detailed pay zone permeability
studies can optimise injection
strategy.

Regularize the predicting and
predictor variables using Empirical
Mode Decomposition or Entropy-
based Fourier Transform during
non-linear mapping, as in Model-
3. Information filtering matches the
frequencies of both variables and
improves mapping accuracy.

A 3D geocellular model of the
properties can be created for
visualization.

More well data improves
algorithm performance.
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' Porosity from well-logs g
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~ RC using seismic data o

~
& TWT section * Changes !n (EICOUSfIC impedance
* Changes in lithology

o E(t) =+/T2(t) + H2(t)
Envelope * Shows discontinuities, lithology changes, faults, deposition changes, tuning
effects, and SB.

Instantaneous frequency

Impedance It reveals discontinuities and improves structural delineation. High contrast
indicates possible SB and shows unconformities.

__E(®) :
S(t) = O] '

The high sweetness regions in the seismic indicates the presence of

hydrocarbon-bearing sand units.
2 @ N U

-~ Sweetness
e
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Conventional RC allows for flexibility in the interpretation of data, enabling geoscientists to adjust the

models based on their expertise and intuition.

Discussion

Advantages of Al/ML in RC

Disadvantages of Al/ML in RC

Improved accuracy and reduced risk

High data requirements

Increased speed

Lack of transparency

Better decision-making

Limited understanding of underlying physics

Random Forest works well in geophysics:
1. Ability to handle complex datasets
2. Robustness to noise
3. Deals well with non-linear relationships
4. Ability to work with small datasets

SVR works well in geophysics because:
1. Deals well with non-linear relationships
2. Can handle a large number of variables




COjltransport:
(wialpipeline),

Capture and Store O

The Solution: Carbon Capture, Utilization, and Storage (CCUS)/
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Feature Selection .
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CCUS is the need of the hour! "/
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- Geophysicists are the

'

2 ‘Doctors of Mother Earth’!
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J “Role of Geophysics in CCUS o

\_J
e Seismic reflection surveys identify the thickness and geometry of the
storage formation.

S|te Se I eCt | O n e Gravity and magnetic surveys can provide information on the structure
and composition of the underlying rock formations.

. e Porosity and permeability obtained from well-logs and seismic data.
Rese 'volIr e Techniques like seismic tomography, resistivity imaging, and

. . magnetotelluric surveys can provide detailed subsurface images.
characterization

 Seismic monitoring can detect the movement of the CO, plume and
any changes in the subsurface

I nJ eCt ION MOonN |t0 ri ng e EM surveys can detect changes in the electrical conductivity of the

formation.

—

movement of the CO2 plume or the development of microseismicity.

e Electromagnetic surveys can detect changes in the electrical
conductivity of the formation, which can indicate the presence of CO,.

e Seismic surveys can detect any changes in the subsurface, such as the )

Post-injection
monitoring




Dip and-Spatial Coverage

Inline
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