This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision Last revision Both sides next revision | ||
publications:annualreports:saig_21 [2021/01/24 23:48] msacchi |
publications:annualreports:saig_21 [2021/01/25 00:06] msacchi |
||
---|---|---|---|
Line 13: | Line 13: | ||
<fc #008000>SAIG 21-1 (2020) Rongzhi Lin, Breno Bahia and M D Sacchi </fc>\\ | <fc #008000>SAIG 21-1 (2020) Rongzhi Lin, Breno Bahia and M D Sacchi </fc>\\ | ||
<WRAP indent>{{:sponsorsandstudents:saig21r:chap_01.pdf | Simultaneous source separation via iterative robust de-noising with low-rank Hankel constraint }}\\ | <WRAP indent>{{:sponsorsandstudents:saig21r:chap_01.pdf | Simultaneous source separation via iterative robust de-noising with low-rank Hankel constraint }}\\ | ||
- | Matlab Package: | + | Matlab Package: {{:sponsorsandstudents:deblending_Robust_SSA.zip | deblending_Robust_SSA.zip}} |
Line 27: | Line 27: | ||
<fc #008000>SAIG 21-4 (2020) Fernanda Carozzi </fc>\\ | <fc #008000>SAIG 21-4 (2020) Fernanda Carozzi </fc>\\ | ||
- | <WRAP indent>{{:sponsorsandstudents:saig21r:chap_04.pdf |Robust reconstruction via a generalized loss function }}</WRAP> | + | <WRAP indent>{{:sponsorsandstudents:saig21r:chap_04.pdf |Robust reconstruction via a generalized loss function }}\\ |
+ | Julia package {{sponsorsandstudents:Robust_Reconstruction_GLF.zip| Robust_Reconstrtuction_GLF.zip}} | ||
+ | </WRAP> | ||
<fc #008000>SAIG 21-5 (2020) Ji Li and M D sacchi </fc>\\ | <fc #008000>SAIG 21-5 (2020) Ji Li and M D sacchi </fc>\\ | ||
- | <WRAP indent>{{:sponsorsandstudents:saig21r:chap_05.pdf |Deblending via Fast Robust Greedy Pursuit }}</WRAP> | + | <WRAP indent>{{:sponsorsandstudents:saig21r:chap_05.pdf |Deblending via Fast Robust Greedy Pursuit }}\\ |
+ | Matlab package {{sponsorsandstudents:Robust_MP.zip| Robust_MP.zip}} | ||
+ | </WRAP> | ||
<fc #008000>SAIG 21-6 (2020) Breno Bahia, Rongzhi Lin and M D Sacchi</fc>\\ | <fc #008000>SAIG 21-6 (2020) Breno Bahia, Rongzhi Lin and M D Sacchi</fc>\\ | ||
- | <WRAP indent>{{:sponsorsandstudents:saig21r:chap_06.pdf |Regularization by Denoising for simultaneous source separation }}</WRAP> | + | <WRAP indent>{{:sponsorsandstudents:saig21r:chap_06.pdf |Regularization by Denoising for simultaneous source separation }} |
+ | \\ | ||
+ | Julia package {{sponsorsandstudents:RED_Deblending.zip| RED_Deblending.zip}} | ||
+ | </WRAP> | ||
<fc #008000>SAIG 21-7 (2020) Breno Bahia and M D Sacchi</fc>\\ | <fc #008000>SAIG 21-7 (2020) Breno Bahia and M D Sacchi</fc>\\ | ||
Line 40: | Line 47: | ||
<fc #008000>SAIG 21-8 (2020) Breno Bahia and M D Sacchi</fc>\\ | <fc #008000>SAIG 21-8 (2020) Breno Bahia and M D Sacchi</fc>\\ | ||
- | <WRAP indent>{{:sponsorsandstudents:saig21r:chap_08.pdf |From low rank matrices to sparse vectors in the presence of atypical observations | + | <WRAP indent>{{:sponsorsandstudents:saig21r:chap_08.pdf |From low-rank matrices to sparse vectors in the presence of atypical observations |
}}</WRAP> | }}</WRAP> | ||
Line 46: | Line 53: | ||
<fc #008000>SAIG 21-9 (2020) Kristian D. T. Bautista and Mauricio Sacchi</fc>\\ | <fc #008000>SAIG 21-9 (2020) Kristian D. T. Bautista and Mauricio Sacchi</fc>\\ | ||
<WRAP indent>{{:sponsorsandstudents:saig21r:chap_09.pdf |Deep-LSRTM: Solving least-squares reverse time migration with learned updating operators | <WRAP indent>{{:sponsorsandstudents:saig21r:chap_09.pdf |Deep-LSRTM: Solving least-squares reverse time migration with learned updating operators | ||
- | }}</WRAP> | + | }}\\ |
+ | Python/TensorFlow package: Contact Kristian for Dockerfile | ||
+ | </WRAP> | ||
<fc #008000>SAIG 21-10 (2020) Amsalu Anagaw and Mauricio Sacchi</fc>\\ | <fc #008000>SAIG 21-10 (2020) Amsalu Anagaw and Mauricio Sacchi</fc>\\ | ||
- | <WRAP indent>{{:sponsorsandstudents:saig21r:chap_10.pdf |Regularization by Denoising (RED) with adaptive-weighted Total Variation for 3D FWI model updates in large- contrast media | + | <WRAP indent>{{:sponsorsandstudents:saig21r:chap_10.pdf |Regularization by Denoising (RED) with adaptive-weighted Total Variation for 3D FWI model updates in large-contrast media |
}}</WRAP> | }}</WRAP> | ||